Abstract

A model of target detection thresholds, first presented by Max Berek of Leitz, is fitted into a simple set of closed equations. These are combined with a recently published universal formula for the human eye’s pupil size to yield a versatile formalism that is capable of predicting binocular performance gains. The model encompasses target size, contrast, environmental luminance, binocular’s objective diameter, magnification, angle of view, transmission, stray light, and the observer’s age. We analyze performance parameters of various common binocular models and compare the results with popular approximations to binocular performance, like the well-known twilight index. The formalisms presented here are of interest in military target detection as well as in civil applications such as hunting, surveillance, object security, law enforcement, and astronomy.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Visibility of Light Sources Against a Background of Uniform Luminance

Melvin H. Horman
J. Opt. Soc. Am. 57(12) 1516-1521 (1967)

How Large is a Point Source?

Arthur C. Hardy
J. Opt. Soc. Am. 57(1) 44-47 (1967)

Visibility

Seibert Q. Duntley, Jacqueline I. Gordon, John H. Taylor, Carroll T. White, Almerian R. Boileau, John E. Tyler, Roswell W. Austin, and James L. Harris
Appl. Opt. 3(5) 549-598 (1964)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription