Y. Zhang and Y. Cai, “Random source generating far field with elliptical flat-topped beam profile,” J. Opt. 16, 075704 (2014).

Y. Zhang, L. Liu, C. Zhao, and Y. Cai, “Multi-Gaussian Schell-model vortex beam,” Phys. Lett. A 378, 750–754 (2014).

[CrossRef]

Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, and O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89, 013801 (2014).

[CrossRef]

O. Korotkova and E. Shchepakina, “Rectangular multi-Gaussian Schell-model beams in atmospheric turbulence,” J. Opt. 16, 045704 (2014).

[CrossRef]

O. Korotkova, “Random sources for rectangularly-shaped far fields,” Opt. Lett. 39, 64–67 (2014).

[CrossRef]

C. Ding, O. Korotkova, Y. Zhang, and L. Pan, “Cosine-Gaussian correlated Schell-model pulsed beams,” Opt. Express 22, 931–942 (2014).

[CrossRef]

R. Chen, L. Liu, S. Zhu, G. Wu, F. Wang, and Y. Cai, “Statistical properties of a Laguerre–Gaussian Schell-model beam in turbulent atmosphere,” Opt. Express 22, 1871–1883 (2014).

[CrossRef]

C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39, 769–772 (2014).

[CrossRef]

Y. Chen, F. Wang, C. Zhao, and Y. Cai, “Experimental demonstration of a Laguerre–Gaussian correlated Schell-model vortex beam,” Opt. Express 22, 5826–5838 (2014).

[CrossRef]

Y. Chen and Y. Cai, “Generation of a controllable optical cage by focusing a Laguerre–Gaussian correlated Schell-model beam,” Opt. Lett. 39, 2549–2552 (2014).

[CrossRef]

X. Liu, F. Wang, C. Wei, and Y. Cai, “Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam,” Opt. Lett. 39, 3336–3339 (2014).

[CrossRef]

Y. Chen, L. Liu, F. Wang, C. Zhao, and Y. Cai, “Elliptical Laguerre–Gaussian correlated Schell-model beam,” Opt. Express 22, 13975–13987 (2014).

[CrossRef]

H. Lajunen and T. Saastamoinen, “Non-uniformly correlated partially coherent pulses,” Opt. Lett. 21, 190–195 (2013).

C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic plane-wave pulse with non-uniform correlation distribution,” Phys. Lett. A 377, 1563–1565 (2013).

[CrossRef]

S. Du, Y. Yuan, C. Liang, and Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013).

[CrossRef]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).

[CrossRef]

J. Cang, P. Xiu, and X. Liu, “Propagation of Laguerre–Gaussian and Bessel–Gaussian Schell-model beams through paraxial optical system in turbulent atmosphere,” Opt. Laser Technol. 54, 35–41 (2013).

[CrossRef]

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103, 091102 (2013).

[CrossRef]

J. Zhang, Z. Wang, B. Cheng, Q. Wang, B. Wu, X. Shen, L. Zheng, Y. Xu, and Q. Lin, “Atom cooling by partially spatially coherent lasers,” Phys. Rev. A 88, 023416 (2013).

[CrossRef]

Z. Mei, O. Korotkova, and E. Shchepakina, “Electromagnetic multi-Gaussian Schell-model beams,” J. Opt. 15, 025705 (2013).

[CrossRef]

Z. Mei and O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38, 91–93 (2013).

[CrossRef]

Y. Gu and G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38, 1395–1397 (2013).

[CrossRef]

F. Wang, X. Liu, Y. Yuan, and Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38, 1814–1816 (2013).

[CrossRef]

Z. Mei and O. Korotkova, “Cosine-Gaussian Schell-model sources,” Opt. Lett. 38, 2578–2580 (2013).

[CrossRef]

Z. Mei, E. Shchepakin, and O. Korotkova, “Electromagnetic non-uniformly correlated beams in turbulent atmosphere,” Opt. Express 21, 17512–17519 (2013).

[CrossRef]

Y. Zhan and D. Zhao, “Scattering of multi-Gaussian Schell-model beams on a random medium,” Opt. Express 21, 24781–24792 (2013).

[CrossRef]

S. Zhu, X. Zhu, L. Liu, F. Wang, and Y. Cai, “Theoretical and experimental studies of the spectral changes of a polychromatic partially coherent radially polarized beam,” Opt. Express 21, 27682–27696 (2013).

[CrossRef]

X. Liu, Y. Shen, L. Liu, F. Wang, and Y. Cai, “Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam,” Opt. Lett. 38, 5323–5326 (2013).

[CrossRef]

S. Sahin and O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37, 2970–2972 (2012).

[CrossRef]

Z. Tong and O. Korotkova, “Non-uniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37, 3240–3242 (2012).

[CrossRef]

Z. Tong and O. Korotkova, “Electromagnetic nonuniformly correlated beam,” J. Opt. Soc. Am. A 29, 2154–2158 (2012).

[CrossRef]

O. Korotkova, S. Sahin, and E. Shchepakina, “Multi-Gaussian Schell-model beams,” J. Opt. Soc. Am. A 29, 2159–2164 (2012).

[CrossRef]

G. Wu, F. Wang, and Y. Cai, “Coherence and polarization properties of a radially polarized beam with variable spatial coherence,” Opt. Express 20, 28301–28318 (2012).

[CrossRef]

Y. Dong, F. Wang, C. Zhao, and Y. Cai, “Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam,” Phys. Rev. A 86, 013840 (2012).

[CrossRef]

C. Zhao, F. Wang, Y. Dong, Y. Han, and Y. Cai, “Effect of spatial coherence on determining the topological charge of a vortex beam,” Appl. Phys. Lett. 101, 261104 (2012).

[CrossRef]

F. Wang, Y. Cai, Y. Dong, and O. Korotkova, “Experimental generation of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 100, 051108 (2012).

[CrossRef]

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012).

[CrossRef]

Y. Cai, “Generation of various partially coherent beams and their propagation properties in turbulent atmosphere: a review,” Proc. SPIE 7924, 792402 (2011).

[CrossRef]

C. Ding, Y. Cai, O. Korotkova, Y. Zhang, and L. Pan, “Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse,” Opt. Lett. 36, 517–519 (2011).

[CrossRef]

Y. Dong, Y. Cai, C. Zhao, and M. Yao, “Statistics properties of a cylindrical vector partially coherent beam,” Opt. Express 19, 5979–5992 (2011).

[CrossRef]

C. Zhao and Y. Cai, “Trapping two types of particles using a focused partially coherent elegant Laguerre–Gaussian beam,” Opt. Lett. 36, 2251–2253 (2011).

[CrossRef]

F. Wang, G. Wu, X. Liu, S. Zhu, and Y. Cai, “Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source,” Opt. Lett. 36, 2722–2724 (2011).

[CrossRef]

H. Lajunen and T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36, 4104–4106 (2011).

[CrossRef]

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104, 173902 (2010).

[CrossRef]

Y. Cai and F. Wang, “Tensor method for treating the propagation of scalar and electromagnetic Gaussian Schell-model beams: a review,” Open Opt. J. 4, 1–20 (2010).

Y. Zhang, B. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).

[CrossRef]

P. Xu, X. He, J. Wang, and M. Zhan, “Trapping a single atom in a blue detuned optical bottle beam trap,” Opt. Lett. 35, 2164–2166 (2010).

[CrossRef]

Y. Gu and G. Gbur, “Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence,” J. Opt. Soc. Am. A 27, 2621–2629 (2010).

[CrossRef]

S. B. Raghunathan, T. van Dijk, E. J. G. Peterman, and T. D. Visser, “Experimental demonstration of an intensity minimum at the focus of a laser beam created by spatial coherence: application to the optical trapping of dielectric particles,” Opt. Lett. 35, 4166–4168 (2010).

[CrossRef]

F. Gori, V. R. Sanchez, M. Santarsiero, and T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A 11, 085706 (2009).

[CrossRef]

C. Zhao, Y. Cai, X. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17, 1753–1765 (2009).

[CrossRef]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).

[CrossRef]

R. Martínez-Herrero, P. M. Mejías, and F. Gori, “Genuine cross-spectral densities and pseudo-modal expansions,” Opt. Lett. 34, 1399–1401 (2009).

[CrossRef]

R. Martínez-Herrero and P. M. Mejías, “Elementary-field expansions of genuine cross-spectral density matrices,” Opt. Lett. 34, 2303–2305 (2009).

[CrossRef]

C. Zhao, Y. Cai, and O. Korotkova, “Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams,” Opt. Express 17, 21472–21487 (2009).

[CrossRef]

T. van Dijk, G. Gbur, and T. D. Visser, “Shaping the focal intensity distribution using spatial coherence,” J. Opt. Soc. Am. A 25, 575–581 (2008).

[CrossRef]

C. Zhao, Y. Cai, F. Wang, X. Lu, and Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33, 1389–1391 (2008).

[CrossRef]

F. Wang and Y. Cai, “Experimental generation of a partially coherent flat-topped beam,” Opt. Lett. 33, 1795–1797 (2008).

[CrossRef]

F. Gori, M. Santarsiero, and R. Borghi, “Modal expansion for J0-correlated electromagnetic sources,” Opt. Lett. 33, 1857–1859 (2008).

[CrossRef]

F. Wang and Y. Cai, “Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics,” J. Opt. Soc. Am. A 24, 1937–1944 (2007).

[CrossRef]

Y. Cai and U. Peschel, “Second-harmonic generation by an astigmatic partially coherent beam,” Opt. Express 15, 15480–15492 (2007).

[CrossRef]

F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32, 3531–3533 (2007).

[CrossRef]

G. R. M. Robb and W. J. Firth, “Collective atomic recoil lasing with a partially coherent pump,” Phys. Rev. Lett. 99, 253601 (2007).

[CrossRef]

Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89, 041117 (2006).

[CrossRef]

T. E. Gureyev, D. M. Paganin, A. W. Stevenson, S. C. Mayo, and S. W. Wilkins, “Generalized eikonal of partially coherent beams and its use in quantitative imaging,” Phys. Rev. Lett. 93, 068103 (2004).

[CrossRef]

Z. Wang, Q. Lin, and Y. Wang, “Control of atomic rotation by elliptical hollow beam carrying zero angular momentum,” Opt. Commun. 240, 357–362 (2004).

[CrossRef]

Y. Cai and Q. Lin, “Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems,” J. Opt. Soc. Am. A 21, 1058–1065 (2004).

[CrossRef]

J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11, 1137–1143 (2003).

[CrossRef]

Y. Cai, X. Lu, and Q. Lin, “Hollow Gaussian beam and its propagation properties,” Opt. Lett. 28, 1084–1086 (2003).

[CrossRef]

G. Gbur and T. D. Visse, “Can spatial coherence effects produce a local minimum of intensity at focus?” Opt. Lett. 28, 1627–1629 (2003).

[CrossRef]

C. Palma, R. Borghi, and G. Cincotti, “Beams originated by J0-correlated Schell-model planar sources,” Opt. Commun. 125, 113–121 (1996).

[CrossRef]

A. Belendez, L. Carretero, and A. Fimia, “The use of partially coherent light to reduce the efficiency of silver halide noise gratings,” Opt. Commun. 98, 236–240 (1993).

[CrossRef]

F. Gori and G. Guattari, “Modal expansion for J0-correlated Schell-model sources,” Opt. Commun. 64, 311–316 (1987).

[CrossRef]

M. S. Zubairy and J. K. McIver, “Second-harmonic generation by a partially coherent beam,” Phys. Rev. A 36, 202–206 (1987).

[CrossRef]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).

[CrossRef]

A. T. Friberg and R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun 41, 383–387 (1982).

[CrossRef]

F. Gori, “Collet–Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980).

[CrossRef]

P. de Santis, F. Gori, G. Guattari, and C. Palma, “An example of a Collett–Wolf source,” Opt. Commun. 29, 256–260 (1979).

[CrossRef]

E. Wolf and E. Collett, “Partially coherent sources which produce the same far-field intensity distribution as a laser,” Opt. Commun. 25, 293–296 (1978).

[CrossRef]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).

[CrossRef]

A. Belendez, L. Carretero, and A. Fimia, “The use of partially coherent light to reduce the efficiency of silver halide noise gratings,” Opt. Commun. 98, 236–240 (1993).

[CrossRef]

F. Gori, M. Santarsiero, and R. Borghi, “Modal expansion for J0-correlated electromagnetic sources,” Opt. Lett. 33, 1857–1859 (2008).

[CrossRef]

C. Palma, R. Borghi, and G. Cincotti, “Beams originated by J0-correlated Schell-model planar sources,” Opt. Commun. 125, 113–121 (1996).

[CrossRef]

R. Chen, L. Liu, S. Zhu, G. Wu, F. Wang, and Y. Cai, “Statistical properties of a Laguerre–Gaussian Schell-model beam in turbulent atmosphere,” Opt. Express 22, 1871–1883 (2014).

[CrossRef]

Y. Chen and Y. Cai, “Generation of a controllable optical cage by focusing a Laguerre–Gaussian correlated Schell-model beam,” Opt. Lett. 39, 2549–2552 (2014).

[CrossRef]

Y. Zhang and Y. Cai, “Random source generating far field with elliptical flat-topped beam profile,” J. Opt. 16, 075704 (2014).

Y. Chen, F. Wang, C. Zhao, and Y. Cai, “Experimental demonstration of a Laguerre–Gaussian correlated Schell-model vortex beam,” Opt. Express 22, 5826–5838 (2014).

[CrossRef]

Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, and O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89, 013801 (2014).

[CrossRef]

Y. Chen, L. Liu, F. Wang, C. Zhao, and Y. Cai, “Elliptical Laguerre–Gaussian correlated Schell-model beam,” Opt. Express 22, 13975–13987 (2014).

[CrossRef]

X. Liu, F. Wang, C. Wei, and Y. Cai, “Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam,” Opt. Lett. 39, 3336–3339 (2014).

[CrossRef]

Y. Zhang, L. Liu, C. Zhao, and Y. Cai, “Multi-Gaussian Schell-model vortex beam,” Phys. Lett. A 378, 750–754 (2014).

[CrossRef]

C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39, 769–772 (2014).

[CrossRef]

C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic plane-wave pulse with non-uniform correlation distribution,” Phys. Lett. A 377, 1563–1565 (2013).

[CrossRef]

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103, 091102 (2013).

[CrossRef]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).

[CrossRef]

S. Du, Y. Yuan, C. Liang, and Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013).

[CrossRef]

S. Zhu, X. Zhu, L. Liu, F. Wang, and Y. Cai, “Theoretical and experimental studies of the spectral changes of a polychromatic partially coherent radially polarized beam,” Opt. Express 21, 27682–27696 (2013).

[CrossRef]

X. Liu, Y. Shen, L. Liu, F. Wang, and Y. Cai, “Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam,” Opt. Lett. 38, 5323–5326 (2013).

[CrossRef]

F. Wang, X. Liu, Y. Yuan, and Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38, 1814–1816 (2013).

[CrossRef]

G. Wu, F. Wang, and Y. Cai, “Coherence and polarization properties of a radially polarized beam with variable spatial coherence,” Opt. Express 20, 28301–28318 (2012).

[CrossRef]

F. Wang, Y. Cai, Y. Dong, and O. Korotkova, “Experimental generation of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 100, 051108 (2012).

[CrossRef]

Y. Dong, F. Wang, C. Zhao, and Y. Cai, “Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam,” Phys. Rev. A 86, 013840 (2012).

[CrossRef]

C. Zhao, F. Wang, Y. Dong, Y. Han, and Y. Cai, “Effect of spatial coherence on determining the topological charge of a vortex beam,” Appl. Phys. Lett. 101, 261104 (2012).

[CrossRef]

C. Ding, Y. Cai, O. Korotkova, Y. Zhang, and L. Pan, “Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse,” Opt. Lett. 36, 517–519 (2011).

[CrossRef]

Y. Cai, “Generation of various partially coherent beams and their propagation properties in turbulent atmosphere: a review,” Proc. SPIE 7924, 792402 (2011).

[CrossRef]

C. Zhao and Y. Cai, “Trapping two types of particles using a focused partially coherent elegant Laguerre–Gaussian beam,” Opt. Lett. 36, 2251–2253 (2011).

[CrossRef]

F. Wang, G. Wu, X. Liu, S. Zhu, and Y. Cai, “Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source,” Opt. Lett. 36, 2722–2724 (2011).

[CrossRef]

Y. Dong, Y. Cai, C. Zhao, and M. Yao, “Statistics properties of a cylindrical vector partially coherent beam,” Opt. Express 19, 5979–5992 (2011).

[CrossRef]

Y. Cai and F. Wang, “Tensor method for treating the propagation of scalar and electromagnetic Gaussian Schell-model beams: a review,” Open Opt. J. 4, 1–20 (2010).

C. Zhao, Y. Cai, X. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17, 1753–1765 (2009).

[CrossRef]

C. Zhao, Y. Cai, and O. Korotkova, “Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams,” Opt. Express 17, 21472–21487 (2009).

[CrossRef]

C. Zhao, Y. Cai, F. Wang, X. Lu, and Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33, 1389–1391 (2008).

[CrossRef]

F. Wang and Y. Cai, “Experimental generation of a partially coherent flat-topped beam,” Opt. Lett. 33, 1795–1797 (2008).

[CrossRef]

Y. Cai and U. Peschel, “Second-harmonic generation by an astigmatic partially coherent beam,” Opt. Express 15, 15480–15492 (2007).

[CrossRef]

F. Wang and Y. Cai, “Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics,” J. Opt. Soc. Am. A 24, 1937–1944 (2007).

[CrossRef]

Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89, 041117 (2006).

[CrossRef]

Y. Cai and S. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).

[CrossRef]

Y. Cai and Q. Lin, “Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems,” J. Opt. Soc. Am. A 21, 1058–1065 (2004).

[CrossRef]

Y. Cai, X. Lu, and Q. Lin, “Hollow Gaussian beam and its propagation properties,” Opt. Lett. 28, 1084–1086 (2003).

[CrossRef]

Q. Lin and Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams,” Opt. Lett. 27, 216–218 (2002).

[CrossRef]

Y. Cai, F. Wang, C. Zhao, S. Zhu, G. Wu, and Y. Dong, “Partially coherent vector beams: from theory to experiment,” in Vectorial Optical Fields: Fundamentals and Applications, Q. Zhen, ed. (World Scientific, 2013), Chap. 7, pp. 221–273.

J. Cang, P. Xiu, and X. Liu, “Propagation of Laguerre–Gaussian and Bessel–Gaussian Schell-model beams through paraxial optical system in turbulent atmosphere,” Opt. Laser Technol. 54, 35–41 (2013).

[CrossRef]

A. Belendez, L. Carretero, and A. Fimia, “The use of partially coherent light to reduce the efficiency of silver halide noise gratings,” Opt. Commun. 98, 236–240 (1993).

[CrossRef]

Y. Chen and Y. Cai, “Generation of a controllable optical cage by focusing a Laguerre–Gaussian correlated Schell-model beam,” Opt. Lett. 39, 2549–2552 (2014).

[CrossRef]

Y. Chen, F. Wang, C. Zhao, and Y. Cai, “Experimental demonstration of a Laguerre–Gaussian correlated Schell-model vortex beam,” Opt. Express 22, 5826–5838 (2014).

[CrossRef]

Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, and O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89, 013801 (2014).

[CrossRef]

Y. Chen, L. Liu, F. Wang, C. Zhao, and Y. Cai, “Elliptical Laguerre–Gaussian correlated Schell-model beam,” Opt. Express 22, 13975–13987 (2014).

[CrossRef]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).

[CrossRef]

J. Zhang, Z. Wang, B. Cheng, Q. Wang, B. Wu, X. Shen, L. Zheng, Y. Xu, and Q. Lin, “Atom cooling by partially spatially coherent lasers,” Phys. Rev. A 88, 023416 (2013).

[CrossRef]

C. Palma, R. Borghi, and G. Cincotti, “Beams originated by J0-correlated Schell-model planar sources,” Opt. Commun. 125, 113–121 (1996).

[CrossRef]

E. Wolf and E. Collett, “Partially coherent sources which produce the same far-field intensity distribution as a laser,” Opt. Commun. 25, 293–296 (1978).

[CrossRef]

P. de Santis, F. Gori, G. Guattari, and C. Palma, “An example of a Collett–Wolf source,” Opt. Commun. 29, 256–260 (1979).

[CrossRef]

Y. Zhang, B. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).

[CrossRef]

C. Ding, O. Korotkova, Y. Zhang, and L. Pan, “Cosine-Gaussian correlated Schell-model pulsed beams,” Opt. Express 22, 931–942 (2014).

[CrossRef]

C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic plane-wave pulse with non-uniform correlation distribution,” Phys. Lett. A 377, 1563–1565 (2013).

[CrossRef]

C. Ding, Y. Cai, O. Korotkova, Y. Zhang, and L. Pan, “Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse,” Opt. Lett. 36, 517–519 (2011).

[CrossRef]

C. Zhao, F. Wang, Y. Dong, Y. Han, and Y. Cai, “Effect of spatial coherence on determining the topological charge of a vortex beam,” Appl. Phys. Lett. 101, 261104 (2012).

[CrossRef]

F. Wang, Y. Cai, Y. Dong, and O. Korotkova, “Experimental generation of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 100, 051108 (2012).

[CrossRef]

Y. Dong, F. Wang, C. Zhao, and Y. Cai, “Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam,” Phys. Rev. A 86, 013840 (2012).

[CrossRef]

Y. Dong, Y. Cai, C. Zhao, and M. Yao, “Statistics properties of a cylindrical vector partially coherent beam,” Opt. Express 19, 5979–5992 (2011).

[CrossRef]

Y. Cai, F. Wang, C. Zhao, S. Zhu, G. Wu, and Y. Dong, “Partially coherent vector beams: from theory to experiment,” in Vectorial Optical Fields: Fundamentals and Applications, Q. Zhen, ed. (World Scientific, 2013), Chap. 7, pp. 221–273.

S. Du, Y. Yuan, C. Liang, and Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013).

[CrossRef]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).

[CrossRef]

C. Zhao, Y. Cai, X. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17, 1753–1765 (2009).

[CrossRef]

A. Belendez, L. Carretero, and A. Fimia, “The use of partially coherent light to reduce the efficiency of silver halide noise gratings,” Opt. Commun. 98, 236–240 (1993).

[CrossRef]

G. R. M. Robb and W. J. Firth, “Collective atomic recoil lasing with a partially coherent pump,” Phys. Rev. Lett. 99, 253601 (2007).

[CrossRef]

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104, 173902 (2010).

[CrossRef]

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012).

[CrossRef]

J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11, 1137–1143 (2003).

[CrossRef]

E. Tervonen, A. T. Friberg, and J. Turunen, “Gaussian Schell-model beams generated with synthetic acousto-optic holograms,” J. Opt. Soc. Am. A 9, 796–803 (1992).

[CrossRef]

A. T. Friberg and R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun 41, 383–387 (1982).

[CrossRef]

Y. Gu and G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38, 1395–1397 (2013).

[CrossRef]

Y. Gu and G. Gbur, “Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence,” J. Opt. Soc. Am. A 27, 2621–2629 (2010).

[CrossRef]

T. van Dijk, G. Gbur, and T. D. Visser, “Shaping the focal intensity distribution using spatial coherence,” J. Opt. Soc. Am. A 25, 575–581 (2008).

[CrossRef]

G. Gbur and T. D. Visse, “Can spatial coherence effects produce a local minimum of intensity at focus?” Opt. Lett. 28, 1627–1629 (2003).

[CrossRef]

F. Gori, V. R. Sanchez, M. Santarsiero, and T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A 11, 085706 (2009).

[CrossRef]

R. Martínez-Herrero, P. M. Mejías, and F. Gori, “Genuine cross-spectral densities and pseudo-modal expansions,” Opt. Lett. 34, 1399–1401 (2009).

[CrossRef]

F. Gori, M. Santarsiero, and R. Borghi, “Modal expansion for J0-correlated electromagnetic sources,” Opt. Lett. 33, 1857–1859 (2008).

[CrossRef]

F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32, 3531–3533 (2007).

[CrossRef]

F. Gori, “Matrix treatment for partially polarized partially coherent beams,” Opt. Lett. 23, 241–243 (1998).

[CrossRef]

F. Gori and G. Guattari, “Modal expansion for J0-correlated Schell-model sources,” Opt. Commun. 64, 311–316 (1987).

[CrossRef]

F. Gori, “Collet–Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980).

[CrossRef]

P. de Santis, F. Gori, G. Guattari, and C. Palma, “An example of a Collett–Wolf source,” Opt. Commun. 29, 256–260 (1979).

[CrossRef]

F. Gori and G. Guattari, “Modal expansion for J0-correlated Schell-model sources,” Opt. Commun. 64, 311–316 (1987).

[CrossRef]

P. de Santis, F. Gori, G. Guattari, and C. Palma, “An example of a Collett–Wolf source,” Opt. Commun. 29, 256–260 (1979).

[CrossRef]

T. E. Gureyev, D. M. Paganin, A. W. Stevenson, S. C. Mayo, and S. W. Wilkins, “Generalized eikonal of partially coherent beams and its use in quantitative imaging,” Phys. Rev. Lett. 93, 068103 (2004).

[CrossRef]

C. Zhao, F. Wang, Y. Dong, Y. Han, and Y. Cai, “Effect of spatial coherence on determining the topological charge of a vortex beam,” Appl. Phys. Lett. 101, 261104 (2012).

[CrossRef]

Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89, 041117 (2006).

[CrossRef]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).

[CrossRef]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).

[CrossRef]

C. Ding, O. Korotkova, Y. Zhang, and L. Pan, “Cosine-Gaussian correlated Schell-model pulsed beams,” Opt. Express 22, 931–942 (2014).

[CrossRef]

Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, and O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89, 013801 (2014).

[CrossRef]

O. Korotkova and E. Shchepakina, “Rectangular multi-Gaussian Schell-model beams in atmospheric turbulence,” J. Opt. 16, 045704 (2014).

[CrossRef]

O. Korotkova, “Random sources for rectangularly-shaped far fields,” Opt. Lett. 39, 64–67 (2014).

[CrossRef]

C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39, 769–772 (2014).

[CrossRef]

Z. Mei and O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38, 91–93 (2013).

[CrossRef]

Z. Mei and O. Korotkova, “Cosine-Gaussian Schell-model sources,” Opt. Lett. 38, 2578–2580 (2013).

[CrossRef]

Z. Mei, E. Shchepakin, and O. Korotkova, “Electromagnetic non-uniformly correlated beams in turbulent atmosphere,” Opt. Express 21, 17512–17519 (2013).

[CrossRef]

Z. Mei, O. Korotkova, and E. Shchepakina, “Electromagnetic multi-Gaussian Schell-model beams,” J. Opt. 15, 025705 (2013).

[CrossRef]

F. Wang, Y. Cai, Y. Dong, and O. Korotkova, “Experimental generation of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 100, 051108 (2012).

[CrossRef]

S. Sahin and O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37, 2970–2972 (2012).

[CrossRef]

Z. Tong and O. Korotkova, “Electromagnetic nonuniformly correlated beam,” J. Opt. Soc. Am. A 29, 2154–2158 (2012).

[CrossRef]

O. Korotkova, S. Sahin, and E. Shchepakina, “Multi-Gaussian Schell-model beams,” J. Opt. Soc. Am. A 29, 2159–2164 (2012).

[CrossRef]

Z. Tong and O. Korotkova, “Non-uniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37, 3240–3242 (2012).

[CrossRef]

C. Ding, Y. Cai, O. Korotkova, Y. Zhang, and L. Pan, “Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse,” Opt. Lett. 36, 517–519 (2011).

[CrossRef]

C. Zhao, Y. Cai, and O. Korotkova, “Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams,” Opt. Express 17, 21472–21487 (2009).

[CrossRef]

C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39, 769–772 (2014).

[CrossRef]

S. Du, Y. Yuan, C. Liang, and Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013).

[CrossRef]

J. Zhang, Z. Wang, B. Cheng, Q. Wang, B. Wu, X. Shen, L. Zheng, Y. Xu, and Q. Lin, “Atom cooling by partially spatially coherent lasers,” Phys. Rev. A 88, 023416 (2013).

[CrossRef]

Z. Wang, Q. Lin, and Y. Wang, “Control of atomic rotation by elliptical hollow beam carrying zero angular momentum,” Opt. Commun. 240, 357–362 (2004).

[CrossRef]

Y. Cai and Q. Lin, “Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems,” J. Opt. Soc. Am. A 21, 1058–1065 (2004).

[CrossRef]

Y. Cai, X. Lu, and Q. Lin, “Hollow Gaussian beam and its propagation properties,” Opt. Lett. 28, 1084–1086 (2003).

[CrossRef]

Q. Lin and Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams,” Opt. Lett. 27, 216–218 (2002).

[CrossRef]

Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, and O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89, 013801 (2014).

[CrossRef]

R. Chen, L. Liu, S. Zhu, G. Wu, F. Wang, and Y. Cai, “Statistical properties of a Laguerre–Gaussian Schell-model beam in turbulent atmosphere,” Opt. Express 22, 1871–1883 (2014).

[CrossRef]

Y. Chen, L. Liu, F. Wang, C. Zhao, and Y. Cai, “Elliptical Laguerre–Gaussian correlated Schell-model beam,” Opt. Express 22, 13975–13987 (2014).

[CrossRef]

Y. Zhang, L. Liu, C. Zhao, and Y. Cai, “Multi-Gaussian Schell-model vortex beam,” Phys. Lett. A 378, 750–754 (2014).

[CrossRef]

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103, 091102 (2013).

[CrossRef]

X. Liu, Y. Shen, L. Liu, F. Wang, and Y. Cai, “Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam,” Opt. Lett. 38, 5323–5326 (2013).

[CrossRef]

S. Zhu, X. Zhu, L. Liu, F. Wang, and Y. Cai, “Theoretical and experimental studies of the spectral changes of a polychromatic partially coherent radially polarized beam,” Opt. Express 21, 27682–27696 (2013).

[CrossRef]

X. Liu, F. Wang, C. Wei, and Y. Cai, “Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam,” Opt. Lett. 39, 3336–3339 (2014).

[CrossRef]

C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39, 769–772 (2014).

[CrossRef]

J. Cang, P. Xiu, and X. Liu, “Propagation of Laguerre–Gaussian and Bessel–Gaussian Schell-model beams through paraxial optical system in turbulent atmosphere,” Opt. Laser Technol. 54, 35–41 (2013).

[CrossRef]

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103, 091102 (2013).

[CrossRef]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).

[CrossRef]

X. Liu, Y. Shen, L. Liu, F. Wang, and Y. Cai, “Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam,” Opt. Lett. 38, 5323–5326 (2013).

[CrossRef]

F. Wang, X. Liu, Y. Yuan, and Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38, 1814–1816 (2013).

[CrossRef]

F. Wang, G. Wu, X. Liu, S. Zhu, and Y. Cai, “Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source,” Opt. Lett. 36, 2722–2724 (2011).

[CrossRef]

C. Zhao, Y. Cai, X. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17, 1753–1765 (2009).

[CrossRef]

C. Zhao, Y. Cai, F. Wang, X. Lu, and Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33, 1389–1391 (2008).

[CrossRef]

Y. Cai, X. Lu, and Q. Lin, “Hollow Gaussian beam and its propagation properties,” Opt. Lett. 28, 1084–1086 (2003).

[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

T. E. Gureyev, D. M. Paganin, A. W. Stevenson, S. C. Mayo, and S. W. Wilkins, “Generalized eikonal of partially coherent beams and its use in quantitative imaging,” Phys. Rev. Lett. 93, 068103 (2004).

[CrossRef]

M. S. Zubairy and J. K. McIver, “Second-harmonic generation by a partially coherent beam,” Phys. Rev. A 36, 202–206 (1987).

[CrossRef]

Z. Mei and O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38, 91–93 (2013).

[CrossRef]

Z. Mei, E. Shchepakin, and O. Korotkova, “Electromagnetic non-uniformly correlated beams in turbulent atmosphere,” Opt. Express 21, 17512–17519 (2013).

[CrossRef]

Z. Mei and O. Korotkova, “Cosine-Gaussian Schell-model sources,” Opt. Lett. 38, 2578–2580 (2013).

[CrossRef]

Z. Mei, O. Korotkova, and E. Shchepakina, “Electromagnetic multi-Gaussian Schell-model beams,” J. Opt. 15, 025705 (2013).

[CrossRef]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).

[CrossRef]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).

[CrossRef]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).

[CrossRef]

T. E. Gureyev, D. M. Paganin, A. W. Stevenson, S. C. Mayo, and S. W. Wilkins, “Generalized eikonal of partially coherent beams and its use in quantitative imaging,” Phys. Rev. Lett. 93, 068103 (2004).

[CrossRef]

C. Palma, R. Borghi, and G. Cincotti, “Beams originated by J0-correlated Schell-model planar sources,” Opt. Commun. 125, 113–121 (1996).

[CrossRef]

P. de Santis, F. Gori, G. Guattari, and C. Palma, “An example of a Collett–Wolf source,” Opt. Commun. 29, 256–260 (1979).

[CrossRef]

C. Ding, O. Korotkova, Y. Zhang, and L. Pan, “Cosine-Gaussian correlated Schell-model pulsed beams,” Opt. Express 22, 931–942 (2014).

[CrossRef]

C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic plane-wave pulse with non-uniform correlation distribution,” Phys. Lett. A 377, 1563–1565 (2013).

[CrossRef]

C. Ding, Y. Cai, O. Korotkova, Y. Zhang, and L. Pan, “Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse,” Opt. Lett. 36, 517–519 (2011).

[CrossRef]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).

[CrossRef]

G. R. M. Robb and W. J. Firth, “Collective atomic recoil lasing with a partially coherent pump,” Phys. Rev. Lett. 99, 253601 (2007).

[CrossRef]

F. Gori, V. R. Sanchez, M. Santarsiero, and T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A 11, 085706 (2009).

[CrossRef]

F. Gori, V. R. Sanchez, M. Santarsiero, and T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A 11, 085706 (2009).

[CrossRef]

F. Gori, M. Santarsiero, and R. Borghi, “Modal expansion for J0-correlated electromagnetic sources,” Opt. Lett. 33, 1857–1859 (2008).

[CrossRef]

F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32, 3531–3533 (2007).

[CrossRef]

O. Korotkova and E. Shchepakina, “Rectangular multi-Gaussian Schell-model beams in atmospheric turbulence,” J. Opt. 16, 045704 (2014).

[CrossRef]

Z. Mei, O. Korotkova, and E. Shchepakina, “Electromagnetic multi-Gaussian Schell-model beams,” J. Opt. 15, 025705 (2013).

[CrossRef]

O. Korotkova, S. Sahin, and E. Shchepakina, “Multi-Gaussian Schell-model beams,” J. Opt. Soc. Am. A 29, 2159–2164 (2012).

[CrossRef]

J. Zhang, Z. Wang, B. Cheng, Q. Wang, B. Wu, X. Shen, L. Zheng, Y. Xu, and Q. Lin, “Atom cooling by partially spatially coherent lasers,” Phys. Rev. A 88, 023416 (2013).

[CrossRef]

F. Gori, V. R. Sanchez, M. Santarsiero, and T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A 11, 085706 (2009).

[CrossRef]

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012).

[CrossRef]

T. E. Gureyev, D. M. Paganin, A. W. Stevenson, S. C. Mayo, and S. W. Wilkins, “Generalized eikonal of partially coherent beams and its use in quantitative imaging,” Phys. Rev. Lett. 93, 068103 (2004).

[CrossRef]

A. T. Friberg and R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun 41, 383–387 (1982).

[CrossRef]

Y. Zhang, B. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).

[CrossRef]

S. B. Raghunathan, T. van Dijk, E. J. G. Peterman, and T. D. Visser, “Experimental demonstration of an intensity minimum at the focus of a laser beam created by spatial coherence: application to the optical trapping of dielectric particles,” Opt. Lett. 35, 4166–4168 (2010).

[CrossRef]

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104, 173902 (2010).

[CrossRef]

T. van Dijk, G. Gbur, and T. D. Visser, “Shaping the focal intensity distribution using spatial coherence,” J. Opt. Soc. Am. A 25, 575–581 (2008).

[CrossRef]

S. B. Raghunathan, T. van Dijk, E. J. G. Peterman, and T. D. Visser, “Experimental demonstration of an intensity minimum at the focus of a laser beam created by spatial coherence: application to the optical trapping of dielectric particles,” Opt. Lett. 35, 4166–4168 (2010).

[CrossRef]

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104, 173902 (2010).

[CrossRef]

T. van Dijk, G. Gbur, and T. D. Visser, “Shaping the focal intensity distribution using spatial coherence,” J. Opt. Soc. Am. A 25, 575–581 (2008).

[CrossRef]

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012).

[CrossRef]

C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39, 769–772 (2014).

[CrossRef]

X. Liu, F. Wang, C. Wei, and Y. Cai, “Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam,” Opt. Lett. 39, 3336–3339 (2014).

[CrossRef]

Y. Chen, L. Liu, F. Wang, C. Zhao, and Y. Cai, “Elliptical Laguerre–Gaussian correlated Schell-model beam,” Opt. Express 22, 13975–13987 (2014).

[CrossRef]

R. Chen, L. Liu, S. Zhu, G. Wu, F. Wang, and Y. Cai, “Statistical properties of a Laguerre–Gaussian Schell-model beam in turbulent atmosphere,” Opt. Express 22, 1871–1883 (2014).

[CrossRef]

Y. Chen, F. Wang, C. Zhao, and Y. Cai, “Experimental demonstration of a Laguerre–Gaussian correlated Schell-model vortex beam,” Opt. Express 22, 5826–5838 (2014).

[CrossRef]

Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, and O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89, 013801 (2014).

[CrossRef]

S. Zhu, X. Zhu, L. Liu, F. Wang, and Y. Cai, “Theoretical and experimental studies of the spectral changes of a polychromatic partially coherent radially polarized beam,” Opt. Express 21, 27682–27696 (2013).

[CrossRef]

X. Liu, Y. Shen, L. Liu, F. Wang, and Y. Cai, “Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam,” Opt. Lett. 38, 5323–5326 (2013).

[CrossRef]

F. Wang, X. Liu, Y. Yuan, and Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38, 1814–1816 (2013).

[CrossRef]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).

[CrossRef]

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103, 091102 (2013).

[CrossRef]

C. Zhao, F. Wang, Y. Dong, Y. Han, and Y. Cai, “Effect of spatial coherence on determining the topological charge of a vortex beam,” Appl. Phys. Lett. 101, 261104 (2012).

[CrossRef]

F. Wang, Y. Cai, Y. Dong, and O. Korotkova, “Experimental generation of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 100, 051108 (2012).

[CrossRef]

G. Wu, F. Wang, and Y. Cai, “Coherence and polarization properties of a radially polarized beam with variable spatial coherence,” Opt. Express 20, 28301–28318 (2012).

[CrossRef]

Y. Dong, F. Wang, C. Zhao, and Y. Cai, “Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam,” Phys. Rev. A 86, 013840 (2012).

[CrossRef]

F. Wang, G. Wu, X. Liu, S. Zhu, and Y. Cai, “Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source,” Opt. Lett. 36, 2722–2724 (2011).

[CrossRef]

Y. Cai and F. Wang, “Tensor method for treating the propagation of scalar and electromagnetic Gaussian Schell-model beams: a review,” Open Opt. J. 4, 1–20 (2010).

F. Wang and Y. Cai, “Experimental generation of a partially coherent flat-topped beam,” Opt. Lett. 33, 1795–1797 (2008).

[CrossRef]

C. Zhao, Y. Cai, F. Wang, X. Lu, and Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33, 1389–1391 (2008).

[CrossRef]

F. Wang and Y. Cai, “Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics,” J. Opt. Soc. Am. A 24, 1937–1944 (2007).

[CrossRef]

Y. Cai, F. Wang, C. Zhao, S. Zhu, G. Wu, and Y. Dong, “Partially coherent vector beams: from theory to experiment,” in Vectorial Optical Fields: Fundamentals and Applications, Q. Zhen, ed. (World Scientific, 2013), Chap. 7, pp. 221–273.

C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic plane-wave pulse with non-uniform correlation distribution,” Phys. Lett. A 377, 1563–1565 (2013).

[CrossRef]

J. Zhang, Z. Wang, B. Cheng, Q. Wang, B. Wu, X. Shen, L. Zheng, Y. Xu, and Q. Lin, “Atom cooling by partially spatially coherent lasers,” Phys. Rev. A 88, 023416 (2013).

[CrossRef]

C. Zhao, Y. Cai, F. Wang, X. Lu, and Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33, 1389–1391 (2008).

[CrossRef]

Z. Wang, Q. Lin, and Y. Wang, “Control of atomic rotation by elliptical hollow beam carrying zero angular momentum,” Opt. Commun. 240, 357–362 (2004).

[CrossRef]

J. Zhang, Z. Wang, B. Cheng, Q. Wang, B. Wu, X. Shen, L. Zheng, Y. Xu, and Q. Lin, “Atom cooling by partially spatially coherent lasers,” Phys. Rev. A 88, 023416 (2013).

[CrossRef]

Z. Wang, Q. Lin, and Y. Wang, “Control of atomic rotation by elliptical hollow beam carrying zero angular momentum,” Opt. Commun. 240, 357–362 (2004).

[CrossRef]

T. E. Gureyev, D. M. Paganin, A. W. Stevenson, S. C. Mayo, and S. W. Wilkins, “Generalized eikonal of partially coherent beams and its use in quantitative imaging,” Phys. Rev. Lett. 93, 068103 (2004).

[CrossRef]

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104, 173902 (2010).

[CrossRef]

E. Wolf and E. Collett, “Partially coherent sources which produce the same far-field intensity distribution as a laser,” Opt. Commun. 25, 293–296 (1978).

[CrossRef]

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

J. Zhang, Z. Wang, B. Cheng, Q. Wang, B. Wu, X. Shen, L. Zheng, Y. Xu, and Q. Lin, “Atom cooling by partially spatially coherent lasers,” Phys. Rev. A 88, 023416 (2013).

[CrossRef]

R. Chen, L. Liu, S. Zhu, G. Wu, F. Wang, and Y. Cai, “Statistical properties of a Laguerre–Gaussian Schell-model beam in turbulent atmosphere,” Opt. Express 22, 1871–1883 (2014).

[CrossRef]

G. Wu, F. Wang, and Y. Cai, “Coherence and polarization properties of a radially polarized beam with variable spatial coherence,” Opt. Express 20, 28301–28318 (2012).

[CrossRef]

F. Wang, G. Wu, X. Liu, S. Zhu, and Y. Cai, “Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source,” Opt. Lett. 36, 2722–2724 (2011).

[CrossRef]

Y. Cai, F. Wang, C. Zhao, S. Zhu, G. Wu, and Y. Dong, “Partially coherent vector beams: from theory to experiment,” in Vectorial Optical Fields: Fundamentals and Applications, Q. Zhen, ed. (World Scientific, 2013), Chap. 7, pp. 221–273.

J. Cang, P. Xiu, and X. Liu, “Propagation of Laguerre–Gaussian and Bessel–Gaussian Schell-model beams through paraxial optical system in turbulent atmosphere,” Opt. Laser Technol. 54, 35–41 (2013).

[CrossRef]

J. Zhang, Z. Wang, B. Cheng, Q. Wang, B. Wu, X. Shen, L. Zheng, Y. Xu, and Q. Lin, “Atom cooling by partially spatially coherent lasers,” Phys. Rev. A 88, 023416 (2013).

[CrossRef]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).

[CrossRef]

S. Du, Y. Yuan, C. Liang, and Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013).

[CrossRef]

F. Wang, X. Liu, Y. Yuan, and Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38, 1814–1816 (2013).

[CrossRef]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).

[CrossRef]

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103, 091102 (2013).

[CrossRef]

J. Zhang, Z. Wang, B. Cheng, Q. Wang, B. Wu, X. Shen, L. Zheng, Y. Xu, and Q. Lin, “Atom cooling by partially spatially coherent lasers,” Phys. Rev. A 88, 023416 (2013).

[CrossRef]

Y. Zhang, L. Liu, C. Zhao, and Y. Cai, “Multi-Gaussian Schell-model vortex beam,” Phys. Lett. A 378, 750–754 (2014).

[CrossRef]

C. Ding, O. Korotkova, Y. Zhang, and L. Pan, “Cosine-Gaussian correlated Schell-model pulsed beams,” Opt. Express 22, 931–942 (2014).

[CrossRef]

Y. Zhang and Y. Cai, “Random source generating far field with elliptical flat-topped beam profile,” J. Opt. 16, 075704 (2014).

C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic plane-wave pulse with non-uniform correlation distribution,” Phys. Lett. A 377, 1563–1565 (2013).

[CrossRef]

C. Ding, Y. Cai, O. Korotkova, Y. Zhang, and L. Pan, “Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse,” Opt. Lett. 36, 517–519 (2011).

[CrossRef]

Y. Zhang, B. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).

[CrossRef]

Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, and O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89, 013801 (2014).

[CrossRef]

Y. Chen, F. Wang, C. Zhao, and Y. Cai, “Experimental demonstration of a Laguerre–Gaussian correlated Schell-model vortex beam,” Opt. Express 22, 5826–5838 (2014).

[CrossRef]

Y. Zhang, L. Liu, C. Zhao, and Y. Cai, “Multi-Gaussian Schell-model vortex beam,” Phys. Lett. A 378, 750–754 (2014).

[CrossRef]

Y. Chen, L. Liu, F. Wang, C. Zhao, and Y. Cai, “Elliptical Laguerre–Gaussian correlated Schell-model beam,” Opt. Express 22, 13975–13987 (2014).

[CrossRef]

C. Zhao, F. Wang, Y. Dong, Y. Han, and Y. Cai, “Effect of spatial coherence on determining the topological charge of a vortex beam,” Appl. Phys. Lett. 101, 261104 (2012).

[CrossRef]

Y. Dong, F. Wang, C. Zhao, and Y. Cai, “Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam,” Phys. Rev. A 86, 013840 (2012).

[CrossRef]

C. Zhao and Y. Cai, “Trapping two types of particles using a focused partially coherent elegant Laguerre–Gaussian beam,” Opt. Lett. 36, 2251–2253 (2011).

[CrossRef]

Y. Dong, Y. Cai, C. Zhao, and M. Yao, “Statistics properties of a cylindrical vector partially coherent beam,” Opt. Express 19, 5979–5992 (2011).

[CrossRef]

C. Zhao, Y. Cai, and O. Korotkova, “Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams,” Opt. Express 17, 21472–21487 (2009).

[CrossRef]

C. Zhao, Y. Cai, X. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17, 1753–1765 (2009).

[CrossRef]

C. Zhao, Y. Cai, F. Wang, X. Lu, and Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33, 1389–1391 (2008).

[CrossRef]

Y. Cai, F. Wang, C. Zhao, S. Zhu, G. Wu, and Y. Dong, “Partially coherent vector beams: from theory to experiment,” in Vectorial Optical Fields: Fundamentals and Applications, Q. Zhen, ed. (World Scientific, 2013), Chap. 7, pp. 221–273.

C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic plane-wave pulse with non-uniform correlation distribution,” Phys. Lett. A 377, 1563–1565 (2013).

[CrossRef]

J. Zhang, Z. Wang, B. Cheng, Q. Wang, B. Wu, X. Shen, L. Zheng, Y. Xu, and Q. Lin, “Atom cooling by partially spatially coherent lasers,” Phys. Rev. A 88, 023416 (2013).

[CrossRef]

R. Chen, L. Liu, S. Zhu, G. Wu, F. Wang, and Y. Cai, “Statistical properties of a Laguerre–Gaussian Schell-model beam in turbulent atmosphere,” Opt. Express 22, 1871–1883 (2014).

[CrossRef]

S. Zhu, X. Zhu, L. Liu, F. Wang, and Y. Cai, “Theoretical and experimental studies of the spectral changes of a polychromatic partially coherent radially polarized beam,” Opt. Express 21, 27682–27696 (2013).

[CrossRef]

F. Wang, G. Wu, X. Liu, S. Zhu, and Y. Cai, “Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source,” Opt. Lett. 36, 2722–2724 (2011).

[CrossRef]

Y. Cai and S. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).

[CrossRef]

Y. Cai, F. Wang, C. Zhao, S. Zhu, G. Wu, and Y. Dong, “Partially coherent vector beams: from theory to experiment,” in Vectorial Optical Fields: Fundamentals and Applications, Q. Zhen, ed. (World Scientific, 2013), Chap. 7, pp. 221–273.

M. S. Zubairy and J. K. McIver, “Second-harmonic generation by a partially coherent beam,” Phys. Rev. A 36, 202–206 (1987).

[CrossRef]

C. Zhao, F. Wang, Y. Dong, Y. Han, and Y. Cai, “Effect of spatial coherence on determining the topological charge of a vortex beam,” Appl. Phys. Lett. 101, 261104 (2012).

[CrossRef]

F. Wang, Y. Cai, Y. Dong, and O. Korotkova, “Experimental generation of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 100, 051108 (2012).

[CrossRef]

Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89, 041117 (2006).

[CrossRef]

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 103, 091102 (2013).

[CrossRef]

Y. Zhang and Y. Cai, “Random source generating far field with elliptical flat-topped beam profile,” J. Opt. 16, 075704 (2014).

Z. Mei, O. Korotkova, and E. Shchepakina, “Electromagnetic multi-Gaussian Schell-model beams,” J. Opt. 15, 025705 (2013).

[CrossRef]

O. Korotkova and E. Shchepakina, “Rectangular multi-Gaussian Schell-model beams in atmospheric turbulence,” J. Opt. 16, 045704 (2014).

[CrossRef]

F. Gori, V. R. Sanchez, M. Santarsiero, and T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A 11, 085706 (2009).

[CrossRef]

Y. Cai and Q. Lin, “Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems,” J. Opt. Soc. Am. A 21, 1058–1065 (2004).

[CrossRef]

T. van Dijk, G. Gbur, and T. D. Visser, “Shaping the focal intensity distribution using spatial coherence,” J. Opt. Soc. Am. A 25, 575–581 (2008).

[CrossRef]

E. Tervonen, A. T. Friberg, and J. Turunen, “Gaussian Schell-model beams generated with synthetic acousto-optic holograms,” J. Opt. Soc. Am. A 9, 796–803 (1992).

[CrossRef]

J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794–1802 (2002).

[CrossRef]

F. Wang and Y. Cai, “Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics,” J. Opt. Soc. Am. A 24, 1937–1944 (2007).

[CrossRef]

Y. Gu and G. Gbur, “Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence,” J. Opt. Soc. Am. A 27, 2621–2629 (2010).

[CrossRef]

Z. Tong and O. Korotkova, “Electromagnetic nonuniformly correlated beam,” J. Opt. Soc. Am. A 29, 2154–2158 (2012).

[CrossRef]

O. Korotkova, S. Sahin, and E. Shchepakina, “Multi-Gaussian Schell-model beams,” J. Opt. Soc. Am. A 29, 2159–2164 (2012).

[CrossRef]

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012).

[CrossRef]

Y. Cai and F. Wang, “Tensor method for treating the propagation of scalar and electromagnetic Gaussian Schell-model beams: a review,” Open Opt. J. 4, 1–20 (2010).

A. T. Friberg and R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun 41, 383–387 (1982).

[CrossRef]

F. Gori and G. Guattari, “Modal expansion for J0-correlated Schell-model sources,” Opt. Commun. 64, 311–316 (1987).

[CrossRef]

C. Palma, R. Borghi, and G. Cincotti, “Beams originated by J0-correlated Schell-model planar sources,” Opt. Commun. 125, 113–121 (1996).

[CrossRef]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, “Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Commun. 305, 57–65 (2013).

[CrossRef]

A. Belendez, L. Carretero, and A. Fimia, “The use of partially coherent light to reduce the efficiency of silver halide noise gratings,” Opt. Commun. 98, 236–240 (1993).

[CrossRef]

E. Wolf and E. Collett, “Partially coherent sources which produce the same far-field intensity distribution as a laser,” Opt. Commun. 25, 293–296 (1978).

[CrossRef]

F. Gori, “Collet–Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980).

[CrossRef]

P. de Santis, F. Gori, G. Guattari, and C. Palma, “An example of a Collett–Wolf source,” Opt. Commun. 29, 256–260 (1979).

[CrossRef]

Z. Wang, Q. Lin, and Y. Wang, “Control of atomic rotation by elliptical hollow beam carrying zero angular momentum,” Opt. Commun. 240, 357–362 (2004).

[CrossRef]

J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11, 1137–1143 (2003).

[CrossRef]

G. Wu, F. Wang, and Y. Cai, “Coherence and polarization properties of a radially polarized beam with variable spatial coherence,” Opt. Express 20, 28301–28318 (2012).

[CrossRef]

Y. Dong, Y. Cai, C. Zhao, and M. Yao, “Statistics properties of a cylindrical vector partially coherent beam,” Opt. Express 19, 5979–5992 (2011).

[CrossRef]

C. Zhao, Y. Cai, and O. Korotkova, “Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams,” Opt. Express 17, 21472–21487 (2009).

[CrossRef]

Y. Cai and U. Peschel, “Second-harmonic generation by an astigmatic partially coherent beam,” Opt. Express 15, 15480–15492 (2007).

[CrossRef]

Z. Mei, E. Shchepakin, and O. Korotkova, “Electromagnetic non-uniformly correlated beams in turbulent atmosphere,” Opt. Express 21, 17512–17519 (2013).

[CrossRef]

Y. Zhan and D. Zhao, “Scattering of multi-Gaussian Schell-model beams on a random medium,” Opt. Express 21, 24781–24792 (2013).

[CrossRef]

S. Zhu, X. Zhu, L. Liu, F. Wang, and Y. Cai, “Theoretical and experimental studies of the spectral changes of a polychromatic partially coherent radially polarized beam,” Opt. Express 21, 27682–27696 (2013).

[CrossRef]

C. Ding, O. Korotkova, Y. Zhang, and L. Pan, “Cosine-Gaussian correlated Schell-model pulsed beams,” Opt. Express 22, 931–942 (2014).

[CrossRef]

R. Chen, L. Liu, S. Zhu, G. Wu, F. Wang, and Y. Cai, “Statistical properties of a Laguerre–Gaussian Schell-model beam in turbulent atmosphere,” Opt. Express 22, 1871–1883 (2014).

[CrossRef]

Y. Chen, F. Wang, C. Zhao, and Y. Cai, “Experimental demonstration of a Laguerre–Gaussian correlated Schell-model vortex beam,” Opt. Express 22, 5826–5838 (2014).

[CrossRef]

C. Zhao, Y. Cai, X. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17, 1753–1765 (2009).

[CrossRef]

Y. Chen, L. Liu, F. Wang, C. Zhao, and Y. Cai, “Elliptical Laguerre–Gaussian correlated Schell-model beam,” Opt. Express 22, 13975–13987 (2014).

[CrossRef]

S. Du, Y. Yuan, C. Liang, and Y. Cai, “Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere,” Opt. Laser Technol. 50, 14–19 (2013).

[CrossRef]

J. Cang, P. Xiu, and X. Liu, “Propagation of Laguerre–Gaussian and Bessel–Gaussian Schell-model beams through paraxial optical system in turbulent atmosphere,” Opt. Laser Technol. 54, 35–41 (2013).

[CrossRef]

H. Lajunen and T. Saastamoinen, “Non-uniformly correlated partially coherent pulses,” Opt. Lett. 21, 190–195 (2013).

F. Gori, “Matrix treatment for partially polarized partially coherent beams,” Opt. Lett. 23, 241–243 (1998).

[CrossRef]

Y. Cai, X. Lu, and Q. Lin, “Hollow Gaussian beam and its propagation properties,” Opt. Lett. 28, 1084–1086 (2003).

[CrossRef]

G. Gbur and T. D. Visse, “Can spatial coherence effects produce a local minimum of intensity at focus?” Opt. Lett. 28, 1627–1629 (2003).

[CrossRef]

C. Zhao, Y. Cai, F. Wang, X. Lu, and Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33, 1389–1391 (2008).

[CrossRef]

F. Wang and Y. Cai, “Experimental generation of a partially coherent flat-topped beam,” Opt. Lett. 33, 1795–1797 (2008).

[CrossRef]

F. Gori, M. Santarsiero, and R. Borghi, “Modal expansion for J0-correlated electromagnetic sources,” Opt. Lett. 33, 1857–1859 (2008).

[CrossRef]

J. Lancis, V. Torres-Company, E. Silvestre, and P. Andrés, “Space–time analogy for partially coherent plane-wave-type pulses,” Opt. Lett. 30, 2973–2975 (2005).

[CrossRef]

Q. Lin and Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams,” Opt. Lett. 27, 216–218 (2002).

[CrossRef]

F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32, 3531–3533 (2007).

[CrossRef]

R. Martínez-Herrero, P. M. Mejías, and F. Gori, “Genuine cross-spectral densities and pseudo-modal expansions,” Opt. Lett. 34, 1399–1401 (2009).

[CrossRef]

R. Martínez-Herrero and P. M. Mejías, “Elementary-field expansions of genuine cross-spectral density matrices,” Opt. Lett. 34, 2303–2305 (2009).

[CrossRef]

P. Xu, X. He, J. Wang, and M. Zhan, “Trapping a single atom in a blue detuned optical bottle beam trap,” Opt. Lett. 35, 2164–2166 (2010).

[CrossRef]

S. B. Raghunathan, T. van Dijk, E. J. G. Peterman, and T. D. Visser, “Experimental demonstration of an intensity minimum at the focus of a laser beam created by spatial coherence: application to the optical trapping of dielectric particles,” Opt. Lett. 35, 4166–4168 (2010).

[CrossRef]

C. Ding, Y. Cai, O. Korotkova, Y. Zhang, and L. Pan, “Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse,” Opt. Lett. 36, 517–519 (2011).

[CrossRef]

C. Zhao and Y. Cai, “Trapping two types of particles using a focused partially coherent elegant Laguerre–Gaussian beam,” Opt. Lett. 36, 2251–2253 (2011).

[CrossRef]

F. Wang, G. Wu, X. Liu, S. Zhu, and Y. Cai, “Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source,” Opt. Lett. 36, 2722–2724 (2011).

[CrossRef]

H. Lajunen and T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36, 4104–4106 (2011).

[CrossRef]

S. Sahin and O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37, 2970–2972 (2012).

[CrossRef]

Z. Tong and O. Korotkova, “Non-uniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37, 3240–3242 (2012).

[CrossRef]

Z. Mei and O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38, 91–93 (2013).

[CrossRef]

Y. Gu and G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38, 1395–1397 (2013).

[CrossRef]

F. Wang, X. Liu, Y. Yuan, and Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38, 1814–1816 (2013).

[CrossRef]

Z. Mei and O. Korotkova, “Cosine-Gaussian Schell-model sources,” Opt. Lett. 38, 2578–2580 (2013).

[CrossRef]

Y. Chen and Y. Cai, “Generation of a controllable optical cage by focusing a Laguerre–Gaussian correlated Schell-model beam,” Opt. Lett. 39, 2549–2552 (2014).

[CrossRef]

X. Liu, F. Wang, C. Wei, and Y. Cai, “Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam,” Opt. Lett. 39, 3336–3339 (2014).

[CrossRef]

C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39, 769–772 (2014).

[CrossRef]

X. Liu, Y. Shen, L. Liu, F. Wang, and Y. Cai, “Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam,” Opt. Lett. 38, 5323–5326 (2013).

[CrossRef]

O. Korotkova, “Random sources for rectangularly-shaped far fields,” Opt. Lett. 39, 64–67 (2014).

[CrossRef]

C. Ding, Y. Cai, Y. Zhang, H. Wang, Z. Zhao, and L. Pan, “Stochastic electromagnetic plane-wave pulse with non-uniform correlation distribution,” Phys. Lett. A 377, 1563–1565 (2013).

[CrossRef]

Y. Zhang, L. Liu, C. Zhao, and Y. Cai, “Multi-Gaussian Schell-model vortex beam,” Phys. Lett. A 378, 750–754 (2014).

[CrossRef]

Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, and O. Korotkova, “Generation and propagation of a partially coherent vector beam with special correlation functions,” Phys. Rev. A 89, 013801 (2014).

[CrossRef]

Y. Zhang, B. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).

[CrossRef]

M. S. Zubairy and J. K. McIver, “Second-harmonic generation by a partially coherent beam,” Phys. Rev. A 36, 202–206 (1987).

[CrossRef]

Y. Dong, F. Wang, C. Zhao, and Y. Cai, “Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam,” Phys. Rev. A 86, 013840 (2012).

[CrossRef]

J. Zhang, Z. Wang, B. Cheng, Q. Wang, B. Wu, X. Shen, L. Zheng, Y. Xu, and Q. Lin, “Atom cooling by partially spatially coherent lasers,” Phys. Rev. A 88, 023416 (2013).

[CrossRef]

Y. Cai and S. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).

[CrossRef]

T. E. Gureyev, D. M. Paganin, A. W. Stevenson, S. C. Mayo, and S. W. Wilkins, “Generalized eikonal of partially coherent beams and its use in quantitative imaging,” Phys. Rev. Lett. 93, 068103 (2004).

[CrossRef]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).

[CrossRef]

G. R. M. Robb and W. J. Firth, “Collective atomic recoil lasing with a partially coherent pump,” Phys. Rev. Lett. 99, 253601 (2007).

[CrossRef]

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104, 173902 (2010).

[CrossRef]

Y. Cai, “Generation of various partially coherent beams and their propagation properties in turbulent atmosphere: a review,” Proc. SPIE 7924, 792402 (2011).

[CrossRef]

Y. Cai, F. Wang, C. Zhao, S. Zhu, G. Wu, and Y. Dong, “Partially coherent vector beams: from theory to experiment,” in Vectorial Optical Fields: Fundamentals and Applications, Q. Zhen, ed. (World Scientific, 2013), Chap. 7, pp. 221–273.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).