Abstract

Based on the concept of the scattering cancellation technique, we propose a nonideal ultrathin mantle cloak that can efficiently suppress the total scattering cross sections of an electrically large conducting cylinder (over one free-space wavelength). The cloaking mechanism is investigated in depth based on the Mie scattering theory and is simultaneously interpreted from the perspective of far-field bistatic scattering and near-field distributions. We remark that, unlike the perfect transformation-optics-based cloak, this nonideal cloaking technique is mainly designed to minimize simultaneously several scattering multipoles of a relatively large geometry around considerably broad bandwidth. Numerical simulations and experimental results show that the antiscattering ability of the metasurface gives rise to excellent total scattering reduction of the electrically large cylinder and remarkable electric-field restoration around the cloak. The outstanding cloaking performance together with the good features of and ultralow profile, flexibility, and easy fabrication predict promising applications in the microwave frequencies.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
    [CrossRef]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef]
  3. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [CrossRef]
  4. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [CrossRef]
  5. R. Liu, C. Ji, J. Mock, J. Chin, T. Cui, and D. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
    [CrossRef]
  6. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).
  7. W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98, 204101 (2011).
    [CrossRef]
  8. P. Zhang, Y. Jin, and S. L. He, “Cloaking an object on a dielectric half-space,” Opt. Express 16, 3161–3166 (2008).
    [CrossRef]
  9. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
    [CrossRef]
  10. S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103, 103905 (2009).
    [CrossRef]
  11. N. Kundtz, D. Gaultney, and D. R. Smith, “Scattering cross-section of a transformation optics-based metamaterial cloak,” New J. Phys. 12, 043039 (2010).
    [CrossRef]
  12. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
    [CrossRef]
  13. C. A. Valagiannopoulos and P. Alitalo, “Electromagnetic cloaking of cylindrical objects by multilayer or uniform dielectric claddings,” Phys. Rev. B 85, 115402 (2012).
    [CrossRef]
  14. W. X. Jiang, H. F. Ma, Q. A. Cheng, and T. J. Cui, “Virtual conversion from metal object to dielectric object using metamaterials,” Opt. Express 18, 11276–11281 (2010).
    [CrossRef]
  15. T. J. Cui, D. R. Smith, and R. Liu, Metamaterials—Theory, Design, and Applications (Springer, 2009).
  16. Y. N. Guo, S. B. Liu, X. Zhao, S. Y. Wang, and C. Chen, “Shrinking device realized by using layered structures of homogeneous isotropic materials,” Chin. Phys. B 21, 064101 (2012).
    [CrossRef]
  17. F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “DC electric invisibility cloak,” Phys. Rev. Lett. 109, 053902 (2012).
    [CrossRef]
  18. W. X. Jiang, C. Y. Luo, Z. L. Mei, and T. J. Cui, “An ultrathin but nearly perfect direct current electric cloak,” Appl. Phys. Lett. 102, 014102 (2013).
    [CrossRef]
  19. Z. L. Mei, Y. S. Liu, F. Yang, and T. J. Cui, “A DC carpet cloak based on resistor networks,” Opt. Express 20, 25758–25765 (2012).
    [CrossRef]
  20. S. Narayana and Y. Sato, “DC magnetic cloak,” Adv. Mater. 24, 71–74 (2012).
    [CrossRef]
  21. Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).
  22. D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
    [CrossRef]
  23. X. Wang and E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102, 113506 (2013).
    [CrossRef]
  24. M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express 21, 12592–12603 (2013).
    [CrossRef]
  25. D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
    [CrossRef]
  26. D. P. Gaillot, C. Croenne, and D. Lippens, “An all-dielectric route for terahertz cloaking,” Opt. Express 16, 3986–3992 (2008).
    [CrossRef]
  27. J. J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express 19, 8625–8631 (2011).
    [CrossRef]
  28. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
    [CrossRef]
  29. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
    [CrossRef]
  30. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
    [CrossRef]
  31. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
    [CrossRef]
  32. H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17, 19947–19959 (2009).
    [CrossRef]
  33. P. Alitalo and S. A. Tretyakov, “Broadband electromagnetic cloaking realized with transmission-line and waveguiding structures,” Proc. IEEE 99, 1646–1659 (2011).
    [CrossRef]
  34. A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80, 245115 (2009).
    [CrossRef]
  35. M. Silveirinha and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
    [CrossRef]
  36. Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, and A. Alù, “Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. Phys. 112, 034907 (2012).
    [CrossRef]
  37. P. Y. Chen and A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84, 205110 (2011).
    [CrossRef]
  38. S. Liu, H. X. Xu, H. C. Zhang, and T. J. Cui, “Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface,” Opt. Express 22, 13403–13417 (2014).
    [CrossRef]
  39. J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, and X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antennas Propag. 61, 748–754 (2013).
    [CrossRef]
  40. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989), Chap. 8.
  41. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th ed. (Dover, 1972).
  42. C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
    [CrossRef]
  43. P.-Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111, 233001 (2013).
    [CrossRef]
  44. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  45. J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Dainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
    [CrossRef]
  46. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).
  47. M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” Trans. Antenn. Propag. 55, 3630–3638 (2007).
  48. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
    [CrossRef]

2014 (1)

2013 (8)

M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express 21, 12592–12603 (2013).
[CrossRef]

W. X. Jiang, C. Y. Luo, Z. L. Mei, and T. J. Cui, “An ultrathin but nearly perfect direct current electric cloak,” Appl. Phys. Lett. 102, 014102 (2013).
[CrossRef]

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).

X. Wang and E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102, 113506 (2013).
[CrossRef]

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, and X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antennas Propag. 61, 748–754 (2013).
[CrossRef]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[CrossRef]

P.-Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111, 233001 (2013).
[CrossRef]

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Dainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
[CrossRef]

2012 (8)

D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
[CrossRef]

Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, and A. Alù, “Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. Phys. 112, 034907 (2012).
[CrossRef]

D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
[CrossRef]

S. Narayana and Y. Sato, “DC magnetic cloak,” Adv. Mater. 24, 71–74 (2012).
[CrossRef]

C. A. Valagiannopoulos and P. Alitalo, “Electromagnetic cloaking of cylindrical objects by multilayer or uniform dielectric claddings,” Phys. Rev. B 85, 115402 (2012).
[CrossRef]

Y. N. Guo, S. B. Liu, X. Zhao, S. Y. Wang, and C. Chen, “Shrinking device realized by using layered structures of homogeneous isotropic materials,” Chin. Phys. B 21, 064101 (2012).
[CrossRef]

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “DC electric invisibility cloak,” Phys. Rev. Lett. 109, 053902 (2012).
[CrossRef]

Z. L. Mei, Y. S. Liu, F. Yang, and T. J. Cui, “A DC carpet cloak based on resistor networks,” Opt. Express 20, 25758–25765 (2012).
[CrossRef]

2011 (7)

J. J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express 19, 8625–8631 (2011).
[CrossRef]

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98, 204101 (2011).
[CrossRef]

P. Y. Chen and A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84, 205110 (2011).
[CrossRef]

P. Alitalo and S. A. Tretyakov, “Broadband electromagnetic cloaking realized with transmission-line and waveguiding structures,” Proc. IEEE 99, 1646–1659 (2011).
[CrossRef]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

2010 (4)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).

N. Kundtz, D. Gaultney, and D. R. Smith, “Scattering cross-section of a transformation optics-based metamaterial cloak,” New J. Phys. 12, 043039 (2010).
[CrossRef]

W. X. Jiang, H. F. Ma, Q. A. Cheng, and T. J. Cui, “Virtual conversion from metal object to dielectric object using metamaterials,” Opt. Express 18, 11276–11281 (2010).
[CrossRef]

2009 (7)

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[CrossRef]

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103, 103905 (2009).
[CrossRef]

R. Liu, C. Ji, J. Mock, J. Chin, T. Cui, and D. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80, 245115 (2009).
[CrossRef]

M. Silveirinha and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[CrossRef]

H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17, 19947–19959 (2009).
[CrossRef]

2008 (3)

P. Zhang, Y. Jin, and S. L. He, “Cloaking an object on a dielectric half-space,” Opt. Express 16, 3161–3166 (2008).
[CrossRef]

D. P. Gaillot, C. Croenne, and D. Lippens, “An all-dielectric route for terahertz cloaking,” Opt. Express 16, 3986–3992 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef]

2007 (1)

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” Trans. Antenn. Propag. 55, 3630–3638 (2007).

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef]

2005 (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Alitalo, P.

C. A. Valagiannopoulos and P. Alitalo, “Electromagnetic cloaking of cylindrical objects by multilayer or uniform dielectric claddings,” Phys. Rev. B 85, 115402 (2012).
[CrossRef]

P. Alitalo and S. A. Tretyakov, “Broadband electromagnetic cloaking realized with transmission-line and waveguiding structures,” Proc. IEEE 99, 1646–1659 (2011).
[CrossRef]

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103, 103905 (2009).
[CrossRef]

Alù, A.

P.-Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111, 233001 (2013).
[CrossRef]

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Dainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
[CrossRef]

D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
[CrossRef]

Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, and A. Alù, “Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. Phys. 112, 034907 (2012).
[CrossRef]

P. Y. Chen and A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84, 205110 (2011).
[CrossRef]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[CrossRef]

A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80, 245115 (2009).
[CrossRef]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Argyropoulos, C.

P.-Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111, 233001 (2013).
[CrossRef]

Bagci, H.

Balanis, C. A.

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989), Chap. 8.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).

Barbastathis, G.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef]

Chen, C.

Y. N. Guo, S. B. Liu, X. Zhao, S. Y. Wang, and C. Chen, “Shrinking device realized by using layered structures of homogeneous isotropic materials,” Chin. Phys. B 21, 064101 (2012).
[CrossRef]

Chen, P. Y.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Dainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
[CrossRef]

Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, and A. Alù, “Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. Phys. 112, 034907 (2012).
[CrossRef]

P. Y. Chen and A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84, 205110 (2011).
[CrossRef]

Chen, P.-Y.

P.-Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111, 233001 (2013).
[CrossRef]

Chen, X.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef]

Cheng, Q.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98, 204101 (2011).
[CrossRef]

Cheng, Q. A.

Chin, J.

R. Liu, C. Ji, J. Mock, J. Chin, T. Cui, and D. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef]

Croenne, C.

Cui, T.

R. Liu, C. Ji, J. Mock, J. Chin, T. Cui, and D. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef]

Cui, T. J.

S. Liu, H. X. Xu, H. C. Zhang, and T. J. Cui, “Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface,” Opt. Express 22, 13403–13417 (2014).
[CrossRef]

W. X. Jiang, C. Y. Luo, Z. L. Mei, and T. J. Cui, “An ultrathin but nearly perfect direct current electric cloak,” Appl. Phys. Lett. 102, 014102 (2013).
[CrossRef]

Z. L. Mei, Y. S. Liu, F. Yang, and T. J. Cui, “A DC carpet cloak based on resistor networks,” Opt. Express 20, 25758–25765 (2012).
[CrossRef]

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “DC electric invisibility cloak,” Phys. Rev. Lett. 109, 053902 (2012).
[CrossRef]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98, 204101 (2011).
[CrossRef]

W. X. Jiang, H. F. Ma, Q. A. Cheng, and T. J. Cui, “Virtual conversion from metal object to dielectric object using metamaterials,” Opt. Express 18, 11276–11281 (2010).
[CrossRef]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).

H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17, 19947–19959 (2009).
[CrossRef]

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials—Theory, Design, and Applications (Springer, 2009).

Cummer, S.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Dainwater, D.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Dainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
[CrossRef]

Ederra, I.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” Trans. Antenn. Propag. 55, 3630–3638 (2007).

Edwards, B.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[CrossRef]

Engheta, N.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[CrossRef]

M. Silveirinha and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[CrossRef]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef]

Farhat, M.

Gaillot, D. P.

Gaultney, D.

N. Kundtz, D. Gaultney, and D. R. Smith, “Scattering cross-section of a transformation optics-based metamaterial cloak,” New J. Phys. 12, 043039 (2010).
[CrossRef]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef]

Gonzalo, R.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” Trans. Antenn. Propag. 55, 3630–3638 (2007).

Grbic, A.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[CrossRef]

Gu, J. Q.

D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
[CrossRef]

Guo, Y. N.

Y. N. Guo, S. B. Liu, X. Zhao, S. Y. Wang, and C. Chen, “Shrinking device realized by using layered structures of homogeneous isotropic materials,” Chin. Phys. B 21, 064101 (2012).
[CrossRef]

Han, J. G.

D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
[CrossRef]

He, S. L.

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).

P. Zhang, Y. Jin, and S. L. He, “Cloaking an object on a dielectric half-space,” Opt. Express 16, 3161–3166 (2008).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Iriarte, J. C.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” Trans. Antenn. Propag. 55, 3630–3638 (2007).

Ji, C.

R. Liu, C. Ji, J. Mock, J. Chin, T. Cui, and D. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef]

Jiang, K.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef]

Jiang, W.

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).

Jiang, W. X.

W. X. Jiang, C. Y. Luo, Z. L. Mei, and T. J. Cui, “An ultrathin but nearly perfect direct current electric cloak,” Appl. Phys. Lett. 102, 014102 (2013).
[CrossRef]

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98, 204101 (2011).
[CrossRef]

W. X. Jiang, H. F. Ma, Q. A. Cheng, and T. J. Cui, “Virtual conversion from metal object to dielectric object using metamaterials,” Opt. Express 18, 11276–11281 (2010).
[CrossRef]

H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17, 19947–19959 (2009).
[CrossRef]

Jin, T. Y.

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “DC electric invisibility cloak,” Phys. Rev. Lett. 109, 053902 (2012).
[CrossRef]

Jin, Y.

Justice, B.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Kerkhoff, A.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Dainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
[CrossRef]

D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
[CrossRef]

Kundtz, N.

N. Kundtz, D. Gaultney, and D. R. Smith, “Scattering cross-section of a transformation optics-based metamaterial cloak,” New J. Phys. 12, 043039 (2010).
[CrossRef]

Lan, L.

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef]

Li, H.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Li, Y.

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, and X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antennas Propag. 61, 748–754 (2013).
[CrossRef]

Liang, D. C.

D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
[CrossRef]

Lippens, D.

Liu, L.

Liu, R.

R. Liu, C. Ji, J. Mock, J. Chin, T. Cui, and D. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef]

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials—Theory, Design, and Applications (Springer, 2009).

Liu, S.

Liu, S. B.

Y. N. Guo, S. B. Liu, X. Zhao, S. Y. Wang, and C. Chen, “Shrinking device realized by using layered structures of homogeneous isotropic materials,” Chin. Phys. B 21, 064101 (2012).
[CrossRef]

Liu, X.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

Liu, Y. C.

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).

Liu, Y. S.

Luo, C. Y.

W. X. Jiang, C. Y. Luo, Z. L. Mei, and T. J. Cui, “An ultrathin but nearly perfect direct current electric cloak,” Appl. Phys. Lett. 102, 014102 (2013).
[CrossRef]

Luo, Y.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef]

J. J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express 19, 8625–8631 (2011).
[CrossRef]

Luukkonen, O.

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103, 103905 (2009).
[CrossRef]

Ma, H.

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, and X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antennas Propag. 61, 748–754 (2013).
[CrossRef]

Ma, H. F.

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98, 204101 (2011).
[CrossRef]

W. X. Jiang, H. F. Ma, Q. A. Cheng, and T. J. Cui, “Virtual conversion from metal object to dielectric object using metamaterials,” Opt. Express 18, 11276–11281 (2010).
[CrossRef]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).

H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17, 19947–19959 (2009).
[CrossRef]

Ma, Y. G.

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).

Maagt, P. D.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” Trans. Antenn. Propag. 55, 3630–3638 (2007).

Mei, Z. L.

W. X. Jiang, C. Y. Luo, Z. L. Mei, and T. J. Cui, “An ultrathin but nearly perfect direct current electric cloak,” Appl. Phys. Lett. 102, 014102 (2013).
[CrossRef]

Z. L. Mei, Y. S. Liu, F. Yang, and T. J. Cui, “A DC carpet cloak based on resistor networks,” Opt. Express 20, 25758–25765 (2012).
[CrossRef]

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “DC electric invisibility cloak,” Phys. Rev. Lett. 109, 053902 (2012).
[CrossRef]

Melin, K.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Dainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
[CrossRef]

D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
[CrossRef]

Mock, J.

R. Liu, C. Ji, J. Mock, J. Chin, T. Cui, and D. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef]

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Moreno, G.

D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
[CrossRef]

Mortensen, N. A.

Narayana, S.

S. Narayana and Y. Sato, “DC magnetic cloak,” Adv. Mater. 24, 71–74 (2012).
[CrossRef]

Ong, C. K.

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).

Padooru, Y. R.

Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, and A. Alù, “Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. Phys. 112, 034907 (2012).
[CrossRef]

Paquay, M.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” Trans. Antenn. Propag. 55, 3630–3638 (2007).

Pendry, J.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Pendry, J. B.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[CrossRef]

Qu, S.

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, and X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antennas Propag. 61, 748–754 (2013).
[CrossRef]

Rainwater, D.

D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
[CrossRef]

Rockstuhl, C.

Sato, Y.

S. Narayana and Y. Sato, “DC magnetic cloak,” Adv. Mater. 24, 71–74 (2012).
[CrossRef]

Schurig, D.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Semouchkina, E.

X. Wang and E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102, 113506 (2013).
[CrossRef]

Shen, X. P.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

Silveirinha, M.

M. Silveirinha and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[CrossRef]

Silveirinha, M. G.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[CrossRef]

Simovski, C.

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103, 103905 (2009).
[CrossRef]

Smith, D.

R. Liu, C. Ji, J. Mock, J. Chin, T. Cui, and D. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef]

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Smith, D. R.

N. Kundtz, D. Gaultney, and D. R. Smith, “Scattering cross-section of a transformation optics-based metamaterial cloak,” New J. Phys. 12, 043039 (2010).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials—Theory, Design, and Applications (Springer, 2009).

Soric, J.

D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
[CrossRef]

Soric, J. C.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Dainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
[CrossRef]

Starr, A.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef]

Tretyakov, S.

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103, 103905 (2009).
[CrossRef]

Tretyakov, S. A.

P. Alitalo and S. A. Tretyakov, “Broadband electromagnetic cloaking realized with transmission-line and waveguiding structures,” Proc. IEEE 99, 1646–1659 (2011).
[CrossRef]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef]

Valagiannopoulos, C. A.

C. A. Valagiannopoulos and P. Alitalo, “Electromagnetic cloaking of cylindrical objects by multilayer or uniform dielectric claddings,” Phys. Rev. B 85, 115402 (2012).
[CrossRef]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef]

Wang, J.

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, and X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antennas Propag. 61, 748–754 (2013).
[CrossRef]

Wang, S. Y.

Y. N. Guo, S. B. Liu, X. Zhao, S. Y. Wang, and C. Chen, “Shrinking device realized by using layered structures of homogeneous isotropic materials,” Chin. Phys. B 21, 064101 (2012).
[CrossRef]

Wang, X.

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, and X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antennas Propag. 61, 748–754 (2013).
[CrossRef]

X. Wang and E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102, 113506 (2013).
[CrossRef]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef]

Wu, T. T.

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).

Xu, H. X.

Xu, Z.

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, and X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antennas Propag. 61, 748–754 (2013).
[CrossRef]

Yakovlev, A. B.

Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, and A. Alù, “Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. Phys. 112, 034907 (2012).
[CrossRef]

Yang, F.

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “DC electric invisibility cloak,” Phys. Rev. Lett. 109, 053902 (2012).
[CrossRef]

Z. L. Mei, Y. S. Liu, F. Yang, and T. J. Cui, “A DC carpet cloak based on resistor networks,” Opt. Express 20, 25758–25765 (2012).
[CrossRef]

Yang, X. M.

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98, 204101 (2011).
[CrossRef]

H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17, 19947–19959 (2009).
[CrossRef]

Yang, Y. M.

D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
[CrossRef]

Yuan, L. H.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef]

Zhang, B.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

Zhang, H. C.

Zhang, J.

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, and X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antennas Propag. 61, 748–754 (2013).
[CrossRef]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef]

Zhang, J. J.

Zhang, P.

Zhang, S.

D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
[CrossRef]

J. J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express 19, 8625–8631 (2011).
[CrossRef]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef]

Zhang, W. L.

D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
[CrossRef]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef]

Zhao, X.

Y. N. Guo, S. B. Liu, X. Zhao, S. Y. Wang, and C. Chen, “Shrinking device realized by using layered structures of homogeneous isotropic materials,” Chin. Phys. B 21, 064101 (2012).
[CrossRef]

Zhou, B.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

Zhou, X. Y.

Adv. Mater. (2)

S. Narayana and Y. Sato, “DC magnetic cloak,” Adv. Mater. 24, 71–74 (2012).
[CrossRef]

D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
[CrossRef]

Appl. Phys. Lett. (3)

W. X. Jiang, C. Y. Luo, Z. L. Mei, and T. J. Cui, “An ultrathin but nearly perfect direct current electric cloak,” Appl. Phys. Lett. 102, 014102 (2013).
[CrossRef]

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98, 204101 (2011).
[CrossRef]

X. Wang and E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102, 113506 (2013).
[CrossRef]

Chin. Phys. B (1)

Y. N. Guo, S. B. Liu, X. Zhao, S. Y. Wang, and C. Chen, “Shrinking device realized by using layered structures of homogeneous isotropic materials,” Chin. Phys. B 21, 064101 (2012).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, and X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antennas Propag. 61, 748–754 (2013).
[CrossRef]

J. Appl. Phys. (2)

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, and A. Alù, “Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. Phys. 112, 034907 (2012).
[CrossRef]

Nat. Commun. (2)

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).

Nat. Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef]

New J. Phys. (3)

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Dainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
[CrossRef]

N. Kundtz, D. Gaultney, and D. R. Smith, “Scattering cross-section of a transformation optics-based metamaterial cloak,” New J. Phys. 12, 043039 (2010).
[CrossRef]

D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14, 013054 (2012).
[CrossRef]

Opt. Express (8)

Phys. Rev. B (3)

C. A. Valagiannopoulos and P. Alitalo, “Electromagnetic cloaking of cylindrical objects by multilayer or uniform dielectric claddings,” Phys. Rev. B 85, 115402 (2012).
[CrossRef]

P. Y. Chen and A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84, 205110 (2011).
[CrossRef]

A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80, 245115 (2009).
[CrossRef]

Phys. Rev. E (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Phys. Rev. Lett. (7)

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[CrossRef]

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103, 103905 (2009).
[CrossRef]

F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “DC electric invisibility cloak,” Phys. Rev. Lett. 109, 053902 (2012).
[CrossRef]

M. Silveirinha and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[CrossRef]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[CrossRef]

P.-Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111, 233001 (2013).
[CrossRef]

Proc. IEEE (1)

P. Alitalo and S. A. Tretyakov, “Broadband electromagnetic cloaking realized with transmission-line and waveguiding structures,” Proc. IEEE 99, 1646–1659 (2011).
[CrossRef]

Sci. Rep. (1)

Y. G. Ma, Y. C. Liu, L. Lan, T. T. Wu, W. Jiang, C. K. Ong, and S. L. He, “First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping,” Sci. Rep. 3, 2182 (2013).

Science (5)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef]

R. Liu, C. Ji, J. Mock, J. Chin, T. Cui, and D. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef]

Trans. Antenn. Propag. (1)

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” Trans. Antenn. Propag. 55, 3630–3638 (2007).

Other (5)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989), Chap. 8.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th ed. (Dover, 1972).

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials—Theory, Design, and Applications (Springer, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Overall view of a conducting cylinder covered by the proposed mantle cloak, which is illuminated by TM-polarized plane waves at normal incidence. The permittivity and the loss tangent of the substrate are ε=3 and δ=0.002, respectively. The metal is selected to be copper. (b) Perspective view of a slice of the whole model. (c) Illustration of a planar unit cell of the mantle cloak. (d) Diagrammatic sketch of the cross section of the configuration of the mantle cloak.

Fig. 2.
Fig. 2.

(a) Normalized amplitude of the Mie scattering term cnTM versus order n when the object is illuminated by TM-polarized plane waves at normal incidence at 3.6 GHz. (b) Number of orders of the effective scattering term of a conducting cylinder as a function of the electrical size.

Fig. 3.
Fig. 3.

(a) Analytically calculated surface reactances required to nullify C0TM to C4TM from 1 to 5 GHz for the configuration shown in Fig. 1 (2a=100mm, 2ac=105mm). (b) Variation of the surface reactances required for the minimization of C0TM, C1TM, C2TM, C3TM, and C4TM for different gaps (ac=1.01a, 1.05a, 1.1a, and 1.2a) between the cloak and the cylinder at 3 GHz.

Fig. 4.
Fig. 4.

Simulated surface reactances when the frequency ranges from 1 to 5 GHz for different values of d.

Fig. 5.
Fig. 5.

Simulated scattering gains for two different groups of geometrical parameters in the frequency range from 1 to 5 GHz.

Fig. 6.
Fig. 6.

Simulated electric-field (Ez) distributions in the azimuthal plane under normal incidence of TM-polarized waves for two different cases. (a) The bare cylinder at 3 GHz and (b) the bare cylinder at 4.2 GHz. (c) The cloaked object at 3 GHz with a=5.2mm and (d) the cloaked object at 4.2 GHz with a=2.6mm.

Fig. 7.
Fig. 7.

(a) Experimental setup for the measurement of bistatic scattering in the microwave chamber, which includes the transmitting and receiving double-ridge horn antennas. (b) Zoomed-in view of the fabricated sample of the flexible mantle cloak composed of arrays of interdigital shaped unit cells.

Fig. 8.
Fig. 8.

Measured scattering gains for four different angles between the transmitting and receiving antennas in the azimuthal plane: 45°, 90°, 150°, and 180°.

Tables (1)

Tables Icon

Table 1. Reductions of the First Five Scattering Terms of a 100 mm Diameter Conducting Cylinder with Mantle Cloaks (ac=1.05a) of 70 and 90ohm Surface Reactancesa

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Etan={z^E0n=in[anTMJn(kcρ)+bnTMYn(kcρ)]einφa<ρ<acz^E0n=in[Jn(k0ρ)+cnTMHn(1)(k0ρ)]einφρ>ac,
cnTM=UnTMVnTM,
UnTM=|Jn(kca)Yn(kca)0Jn(kcac)Yn(kcac)Jn(k0ac)Jn(kcac)+iωZsεckcJ(kcac)Yn(kcac)+iωZsεckcYn(kcac)iωZsε0k0Jn(k0ac)|
VnTM=|Jn(kca)Yn(kca)0Jn(kcac)Yn(kcac)Hn(k0ac)Jn(kcac)+iωZsεckcJ(kcac)Yn(kcac)+iωZsεckcYn(kcac)iωZsε0k0Hn(k0ac)|.
Zsn=i|Jn(kca)Yn(kca)0Jn(kcac)Yn(kcac)Jn(k0ac)Jn(kcac)Yn(kcac)0|/|Jn(kca)Yn(kca)0Jn(kcac)Yn(kcac)Jn(k0ac)1ηcJn(kcac)1ηcYn(kcac)1ηcJn(k0ac)|=i1ηcJn(kca)Yn(kcac)Yn(kca)Jn(kcac)Jn(kca)Yn(kcac)Jn(kcac)Yn(kca)1η0Jn(k0ac)Jn(k0ac).
Zsn=i1ηcnkcac1η0nk0ac1ηcJn(kca)Yn+1(kcac)Yn(kca)Jn+1(kcac)Jn(kca)Yn(kcac)Jn(kcac)Yn(kca)+1η0Jn+1(k0ac)Jn(k0ac).
Zsn=i1η0Jn+1(k0ac)Jn(k0ac)1ηcJn(kca)Yn+1(kcac)Yn(kca)Jn+1(kcac)Jn(kca)Yn(kcac)Jn(kcac)Yn(kca).
Zs=η(1+S21+S11)2(1S21S11),
σ=(4π)3Rt2Rr2GtGrλ02|S21,TS21,B|2,

Metrics