Abstract

By using a gold bowtie nanoantenna at the focal plane of a plasmonic Fresnel zone plate lens, we numerically demonstrate that the focused beam spot can be strongly confined in a three-dimensional (3D) region, which means the focal spot will have high axial resolution as well as high lateral resolution. According to the antenna’s resonance spectrum, the Fresnel zone plate lens is designed at the resonance wavelength of the antenna to get the right diffractive efficiency, and then the antenna will be positioned at the focal plane, so the 3D confined focal spot can be achieved with much higher intensity and much smaller spot size along both axial and transverse directions than that of a lens without using antennas.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Fu, Y. Liu, X. Zhou, Z. Xu, and F. Fang, “Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits,” Opt. Express 18, 3438–3443 (2010).
    [CrossRef]
  2. W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12  nm resolution Fresnel zone plate lens based on soft x-ray microscopy,” Opt. Express 17, 17669–17677 (2009).
    [CrossRef]
  3. Q. Cao and J. Jahns, “Comprehensive focusing analysis of various Fresnel zone plates,” J. Opt. Soc. Am. A 21, 561–571 (2004).
    [CrossRef]
  4. M. Kallane, J. Buck, S. Harm, R. Seemann, K. Rossnagel, and L. Kipp, “Focusing light with a reflection photon sieve,” Opt. Lett. 36, 2405–2407 (2011).
    [CrossRef]
  5. D. N. Black and J. C. Wiltse, “Millimeter-wave characteristics of phase-correcting Fresnel zone plates,” IEEE Trans. Microwave Theory Tech. 35, 1122–1129 (1987).
    [CrossRef]
  6. D. Feng, C. X. Zhang, and Y. H. Yang, “Comparison of subwavelength focusing properties of diffraction and Fresnel zone plate plasmonic planar lenses,” Optik 124, 4493–4497 (2013).
    [CrossRef]
  7. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [CrossRef]
  8. J. Wang, W. Zhou, E. P. Li, and D. H. Zhang, “Subwavelength focusing using plasmonic wavelength-launched zone plate lenses,” Plasmonics 6, 269–272 (2011).
    [CrossRef]
  9. Y. Fu, W. Zhou, L. E. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
    [CrossRef]
  10. H. C. Kim, H. Ko, and M. S. Cheng, “Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer,” J. Vac. Sci. Technol. B 26, 2197–2203 (2008).
    [CrossRef]
  11. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano slits with variant widths,” Opt. Express 13, 6815–6820 (2005).
    [CrossRef]
  12. H. F. Shi, C. L. Du, and X. G. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
    [CrossRef]
  13. J. Wang, F. Qin, D. H. Zhang, D. D. Li, Y. K. Wang, X. N. Shen, T. Xu, and J. H. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102, 061103 (2013).
    [CrossRef]
  14. D. Feng and C. X. Zhang, “Optical focusing by planar lenses based on nano-scale metallic slits in visible range,” Phys. Procedia 22, 428–434 (2011).
    [CrossRef]
  15. P. M. Uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [CrossRef]
  16. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
    [CrossRef]
  17. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
    [CrossRef]
  18. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap dependent optical coupling of single ‘Bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
    [CrossRef]
  19. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
    [CrossRef]
  20. G. Bi, L. Wang, L. Ling, Y. Yokota, Y. Nishijima, K. Ueno, H. Misawa, and J. R. Qiu, “Optical properties of gold nano-bowtie structures,” Opt. Commun. 294, 213–217 (2013).
    [CrossRef]
  21. F. J. González, J. Alda, B. Ilic, and G. D. Boreman, “Infrared antennas coupled to lithographic Fresnel zone plate lenses,” Appl. Opt. 43, 6067–6073 (2004).
    [CrossRef]
  22. W. L. Stutzman and A. A. Thiele, Antenna Theory and Design (Wiley, 1996).
  23. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef]
  24. E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84, 3–9 (2006).
    [CrossRef]
  25. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  26. P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
    [CrossRef]
  27. J. M. Bendickson, E. N. Glytsis, and T. K. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998).
    [CrossRef]

2013

D. Feng, C. X. Zhang, and Y. H. Yang, “Comparison of subwavelength focusing properties of diffraction and Fresnel zone plate plasmonic planar lenses,” Optik 124, 4493–4497 (2013).
[CrossRef]

J. Wang, F. Qin, D. H. Zhang, D. D. Li, Y. K. Wang, X. N. Shen, T. Xu, and J. H. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102, 061103 (2013).
[CrossRef]

G. Bi, L. Wang, L. Ling, Y. Yokota, Y. Nishijima, K. Ueno, H. Misawa, and J. R. Qiu, “Optical properties of gold nano-bowtie structures,” Opt. Commun. 294, 213–217 (2013).
[CrossRef]

2012

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef]

2011

M. Kallane, J. Buck, S. Harm, R. Seemann, K. Rossnagel, and L. Kipp, “Focusing light with a reflection photon sieve,” Opt. Lett. 36, 2405–2407 (2011).
[CrossRef]

D. Feng and C. X. Zhang, “Optical focusing by planar lenses based on nano-scale metallic slits in visible range,” Phys. Procedia 22, 428–434 (2011).
[CrossRef]

J. Wang, W. Zhou, E. P. Li, and D. H. Zhang, “Subwavelength focusing using plasmonic wavelength-launched zone plate lenses,” Plasmonics 6, 269–272 (2011).
[CrossRef]

2010

2009

2008

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
[CrossRef]

H. C. Kim, H. Ko, and M. S. Cheng, “Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer,” J. Vac. Sci. Technol. B 26, 2197–2203 (2008).
[CrossRef]

2007

H. F. Shi, C. L. Du, and X. G. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

2006

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84, 3–9 (2006).
[CrossRef]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

2005

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

P. M. Uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano slits with variant widths,” Opt. Express 13, 6815–6820 (2005).
[CrossRef]

2004

2003

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

1998

1987

D. N. Black and J. C. Wiltse, “Millimeter-wave characteristics of phase-correcting Fresnel zone plates,” IEEE Trans. Microwave Theory Tech. 35, 1122–1129 (1987).
[CrossRef]

Aizpurua, J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Alda, J.

Anderson, E. H.

Bendickson, J. M.

Bi, G.

G. Bi, L. Wang, L. Ling, Y. Yokota, Y. Nishijima, K. Ueno, H. Misawa, and J. R. Qiu, “Optical properties of gold nano-bowtie structures,” Opt. Commun. 294, 213–217 (2013).
[CrossRef]

Biagioni, P.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef]

Black, D. N.

D. N. Black and J. C. Wiltse, “Millimeter-wave characteristics of phase-correcting Fresnel zone plates,” IEEE Trans. Microwave Theory Tech. 35, 1122–1129 (1987).
[CrossRef]

Boreman, G. D.

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Buck, J.

Cao, Q.

Chao, W.

Cheng, M. S.

H. C. Kim, H. Ko, and M. S. Cheng, “Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer,” J. Vac. Sci. Technol. B 26, 2197–2203 (2008).
[CrossRef]

Dong, X. C.

Du, C. L.

H. F. Shi, C. L. Du, and X. G. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano slits with variant widths,” Opt. Express 13, 6815–6820 (2005).
[CrossRef]

Eisler, H. J.

P. M. Uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Fang, F.

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Feng, D.

D. Feng, C. X. Zhang, and Y. H. Yang, “Comparison of subwavelength focusing properties of diffraction and Fresnel zone plate plasmonic planar lenses,” Optik 124, 4493–4497 (2013).
[CrossRef]

D. Feng and C. X. Zhang, “Optical focusing by planar lenses based on nano-scale metallic slits in visible range,” Phys. Procedia 22, 428–434 (2011).
[CrossRef]

Fischer, H.

Fischer, P.

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap dependent optical coupling of single ‘Bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[CrossRef]

Fu, Y.

Y. Fu, Y. Liu, X. Zhou, Z. Xu, and F. Fang, “Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits,” Opt. Express 18, 3438–3443 (2010).
[CrossRef]

Y. Fu, W. Zhou, L. E. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

Gao, H. T.

Garcia de Abajo, F. J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Gaylord, T. K.

Glytsis, E. N.

González, F. J.

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Harm, S.

Hecht, B.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef]

P. M. Uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Huang, J. S.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef]

Ilic, B.

Jahns, J.

Jin, E. X.

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84, 3–9 (2006).
[CrossRef]

Jin, R.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

Kall, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Kallane, M.

Kim, H. C.

H. C. Kim, H. Ko, and M. S. Cheng, “Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer,” J. Vac. Sci. Technol. B 26, 2197–2203 (2008).
[CrossRef]

Kim, J.

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap dependent optical coupling of single ‘Bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[CrossRef]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Kipp, L.

Ko, H.

H. C. Kim, H. Ko, and M. S. Cheng, “Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer,” J. Vac. Sci. Technol. B 26, 2197–2203 (2008).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Li, D. D.

J. Wang, F. Qin, D. H. Zhang, D. D. Li, Y. K. Wang, X. N. Shen, T. Xu, and J. H. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102, 061103 (2013).
[CrossRef]

Li, E. P.

J. Wang, W. Zhou, E. P. Li, and D. H. Zhang, “Subwavelength focusing using plasmonic wavelength-launched zone plate lenses,” Plasmonics 6, 269–272 (2011).
[CrossRef]

Lim, L. E.

Y. Fu, W. Zhou, L. E. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

Ling, L.

G. Bi, L. Wang, L. Ling, Y. Yokota, Y. Nishijima, K. Ueno, H. Misawa, and J. R. Qiu, “Optical properties of gold nano-bowtie structures,” Opt. Commun. 294, 213–217 (2013).
[CrossRef]

Liu, Y.

Luo, X. G.

Y. Fu, W. Zhou, L. E. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

H. F. Shi, C. L. Du, and X. G. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano slits with variant widths,” Opt. Express 13, 6815–6820 (2005).
[CrossRef]

Martin, O. J. F.

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
[CrossRef]

P. M. Uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Mirkin, C. A.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

Misawa, H.

G. Bi, L. Wang, L. Ling, Y. Yokota, Y. Nishijima, K. Ueno, H. Misawa, and J. R. Qiu, “Optical properties of gold nano-bowtie structures,” Opt. Commun. 294, 213–217 (2013).
[CrossRef]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap dependent optical coupling of single ‘Bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[CrossRef]

Nishijima, Y.

G. Bi, L. Wang, L. Ling, Y. Yokota, Y. Nishijima, K. Ueno, H. Misawa, and J. R. Qiu, “Optical properties of gold nano-bowtie structures,” Opt. Commun. 294, 213–217 (2013).
[CrossRef]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Pohl, D. W.

P. M. Uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Qin, F.

J. Wang, F. Qin, D. H. Zhang, D. D. Li, Y. K. Wang, X. N. Shen, T. Xu, and J. H. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102, 061103 (2013).
[CrossRef]

Qiu, J. R.

G. Bi, L. Wang, L. Ling, Y. Yokota, Y. Nishijima, K. Ueno, H. Misawa, and J. R. Qiu, “Optical properties of gold nano-bowtie structures,” Opt. Commun. 294, 213–217 (2013).
[CrossRef]

Rekawa, S.

Rossnagel, K.

Schatz, G. C.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap dependent optical coupling of single ‘Bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[CrossRef]

Seemann, R.

Shen, X. N.

J. Wang, F. Qin, D. H. Zhang, D. D. Li, Y. K. Wang, X. N. Shen, T. Xu, and J. H. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102, 061103 (2013).
[CrossRef]

Sherry, L. J.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

Shi, H. F.

H. F. Shi, C. L. Du, and X. G. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano slits with variant widths,” Opt. Express 13, 6815–6820 (2005).
[CrossRef]

Stutzman, W. L.

W. L. Stutzman and A. A. Thiele, Antenna Theory and Design (Wiley, 1996).

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap dependent optical coupling of single ‘Bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[CrossRef]

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Teng, J. H.

J. Wang, F. Qin, D. H. Zhang, D. D. Li, Y. K. Wang, X. N. Shen, T. Xu, and J. H. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102, 061103 (2013).
[CrossRef]

Thiele, A. A.

W. L. Stutzman and A. A. Thiele, Antenna Theory and Design (Wiley, 1996).

Ueno, K.

G. Bi, L. Wang, L. Ling, Y. Yokota, Y. Nishijima, K. Ueno, H. Misawa, and J. R. Qiu, “Optical properties of gold nano-bowtie structures,” Opt. Commun. 294, 213–217 (2013).
[CrossRef]

Uhlschlegel, P. M.

P. M. Uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

VanDuyne, R. P.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

Wang, C. T.

Wang, J.

J. Wang, F. Qin, D. H. Zhang, D. D. Li, Y. K. Wang, X. N. Shen, T. Xu, and J. H. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102, 061103 (2013).
[CrossRef]

J. Wang, W. Zhou, E. P. Li, and D. H. Zhang, “Subwavelength focusing using plasmonic wavelength-launched zone plate lenses,” Plasmonics 6, 269–272 (2011).
[CrossRef]

Wang, L.

G. Bi, L. Wang, L. Ling, Y. Yokota, Y. Nishijima, K. Ueno, H. Misawa, and J. R. Qiu, “Optical properties of gold nano-bowtie structures,” Opt. Commun. 294, 213–217 (2013).
[CrossRef]

Wang, Y. K.

J. Wang, F. Qin, D. H. Zhang, D. D. Li, Y. K. Wang, X. N. Shen, T. Xu, and J. H. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102, 061103 (2013).
[CrossRef]

Wiltse, J. C.

D. N. Black and J. C. Wiltse, “Millimeter-wave characteristics of phase-correcting Fresnel zone plates,” IEEE Trans. Microwave Theory Tech. 35, 1122–1129 (1987).
[CrossRef]

Xu, T.

J. Wang, F. Qin, D. H. Zhang, D. D. Li, Y. K. Wang, X. N. Shen, T. Xu, and J. H. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102, 061103 (2013).
[CrossRef]

Xu, X.

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84, 3–9 (2006).
[CrossRef]

Xu, Z.

Yang, Y. H.

D. Feng, C. X. Zhang, and Y. H. Yang, “Comparison of subwavelength focusing properties of diffraction and Fresnel zone plate plasmonic planar lenses,” Optik 124, 4493–4497 (2013).
[CrossRef]

Yokota, Y.

G. Bi, L. Wang, L. Ling, Y. Yokota, Y. Nishijima, K. Ueno, H. Misawa, and J. R. Qiu, “Optical properties of gold nano-bowtie structures,” Opt. Commun. 294, 213–217 (2013).
[CrossRef]

Zhang, C. X.

D. Feng, C. X. Zhang, and Y. H. Yang, “Comparison of subwavelength focusing properties of diffraction and Fresnel zone plate plasmonic planar lenses,” Optik 124, 4493–4497 (2013).
[CrossRef]

D. Feng and C. X. Zhang, “Optical focusing by planar lenses based on nano-scale metallic slits in visible range,” Phys. Procedia 22, 428–434 (2011).
[CrossRef]

Zhang, D. H.

J. Wang, F. Qin, D. H. Zhang, D. D. Li, Y. K. Wang, X. N. Shen, T. Xu, and J. H. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102, 061103 (2013).
[CrossRef]

J. Wang, W. Zhou, E. P. Li, and D. H. Zhang, “Subwavelength focusing using plasmonic wavelength-launched zone plate lenses,” Plasmonics 6, 269–272 (2011).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Zhou, W.

J. Wang, W. Zhou, E. P. Li, and D. H. Zhang, “Subwavelength focusing using plasmonic wavelength-launched zone plate lenses,” Plasmonics 6, 269–272 (2011).
[CrossRef]

Y. Fu, W. Zhou, L. E. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

Zhou, X.

Appl. Opt.

Appl. Phys. B

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84, 3–9 (2006).
[CrossRef]

Appl. Phys. Lett.

Y. Fu, W. Zhou, L. E. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

H. F. Shi, C. L. Du, and X. G. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

J. Wang, F. Qin, D. H. Zhang, D. D. Li, Y. K. Wang, X. N. Shen, T. Xu, and J. H. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102, 061103 (2013).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

D. N. Black and J. C. Wiltse, “Millimeter-wave characteristics of phase-correcting Fresnel zone plates,” IEEE Trans. Microwave Theory Tech. 35, 1122–1129 (1987).
[CrossRef]

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

H. C. Kim, H. Ko, and M. S. Cheng, “Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer,” J. Vac. Sci. Technol. B 26, 2197–2203 (2008).
[CrossRef]

Nano Lett.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap dependent optical coupling of single ‘Bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[CrossRef]

Opt. Commun.

G. Bi, L. Wang, L. Ling, Y. Yokota, Y. Nishijima, K. Ueno, H. Misawa, and J. R. Qiu, “Optical properties of gold nano-bowtie structures,” Opt. Commun. 294, 213–217 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Optik

D. Feng, C. X. Zhang, and Y. H. Yang, “Comparison of subwavelength focusing properties of diffraction and Fresnel zone plate plasmonic planar lenses,” Optik 124, 4493–4497 (2013).
[CrossRef]

Phys. Procedia

D. Feng and C. X. Zhang, “Optical focusing by planar lenses based on nano-scale metallic slits in visible range,” Phys. Procedia 22, 428–434 (2011).
[CrossRef]

Phys. Rev. Lett.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Plasmonics

J. Wang, W. Zhou, E. P. Li, and D. H. Zhang, “Subwavelength focusing using plasmonic wavelength-launched zone plate lenses,” Plasmonics 6, 269–272 (2011).
[CrossRef]

Rep. Prog. Phys.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef]

Science

P. M. Uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Other

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

W. L. Stutzman and A. A. Thiele, Antenna Theory and Design (Wiley, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Geometry of the investigated bowtie antenna.

Fig. 2.
Fig. 2.

Configuration of the 3D confinement of the focal spot of the plasmonic FZPL using a bowtie nanoantenna. (a) Stereoscopic diagram of the investigated system. (b) Cross-sectional view along the x plane.

Fig. 3.
Fig. 3.

(a) Field intensity spectra for three individual metallic BAs, with the incident illumination polarized to the x axis; the gap sizes are 30, 40, and 50 nm, respectively. (b) xy map of the field intensity in the plane through the middle of the BA at the resonance wavelength (gap size 30 nm, resonance wavelength 1131 nm; the white lines in the figure are boundaries of the BA).

Fig. 4.
Fig. 4.

(a) Field intensity distribution for the plasmonic FZPL in the yz plane; yellow–gray rectangular blocks in the figure are the cross section of the FZPL. (b) Field intensity distribution for the FZPL in the xy plane (z=2.33μm). (c) Axial field distribution along the z(x=y=0) direction. (d) Lateral field intensity distributions at the focal plane along the x (blue line) and y (black line) directions for the FZPL.

Fig. 5.
Fig. 5.

(a) xy map of the confined focal field intensity in the plane through the middle of the BA at the resonance wavelength. (b) Axial field intensity distribution in the yz plane. (c) Lateral field intensity distributions at the focal plane along the x (blue line) and y (black line) directions. (d) Axial field distribution along the z(x=y=0) direction.

Tables (1)

Tables Icon

Table 1. Tuning Width of Zones of the FZPL in Order From Inner to Outera

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=1ωp2ω(ω+ir),
rn=nλf+n2λ2/4,

Metrics