Abstract

To provide a credible model for light detection and ranging (LiDAR) target classification, the focus of this study is on the relationship between intensity data of LiDAR and the bidirectional reflectance distribution function (BRDF). An integration method based on the built-in-lab coaxial laser detection system was advanced. A kind of intermediary BRDF model advanced by Schlick was introduced into the integration method, considering diffuse and specular backscattering characteristics of the surface. A group of measurement campaigns were carried out to investigate the influence of the incident angle and detection range on the measured intensity data. Two extracted parameters r and Sλ are influenced by different surface features, which illustrate the surface features of the distribution and magnitude of reflected energy, respectively. The combination of two parameters can be used to describe the surface characteristics for target classification in a more plausible way.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Y. Liu, “Airborne LiDAR for DEM generation: some critical issues,” Prog. Phys. Geogr. 32, 31–49 (2008).
  2. A. Shaker and N. El-Ashmawy, “Land cover information extraction using lidar data,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS) (ISPRS, 2012), Vol. XXXIX, pp. 167–172.
  3. B. Jutzi and H. Gross, “Normalization of LiDAR intensity data based on range and surface incidence angle,” in Proceedings of ISPRS, Laserscanning Workshop (ISPRS, 2009), pp. 213–218.
  4. Y. F. Wang, J. Z. Zhang, A. Roncat, C. Kunzer, and W. Wagner, “Regularizing method for the determination of the backscatter cross section in lidar data,” J. Opt. Soc. Am. A 26, 1071–1079 (2009).
    [CrossRef]
  5. B. Höfle and N. Pfeifer, “Correction of laser scanning intensity data: data and model-driven approaches,” ISPRS J. Photogramm. Remote Sens. 62, 415–433 (2007).
    [CrossRef]
  6. A. Vain and S. Kaasalainen, “Correcting airborne laser scanning intensity data,” in Laser Scanning, Theory and Applications, C. C. Wang, ed. (InTech, 2011), pp. 49–60.
  7. W. Wagner, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65, 505–513 (2010).
    [CrossRef]
  8. W. Lucht, C. B. Schaaf, and A. H. Strahler, “An algorithm for the retrieval of albedo from space using semiempirical BRDF models,” IEEE Trans. Geosci. Remote Sens. 38, 977–998 (2000).
    [CrossRef]
  9. Z. M. Tong and X. Y. Chen, “Speckle contrast for superposed speckle patterns created by rotating the orientation of laser polarization,” J. Opt. Soc. Am. A 29, 2074–2079 (2012).
    [CrossRef]
  10. R. Montes and C. Ureña, “An overview of BRDF models,” .
  11. B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
    [CrossRef]
  12. J. F. Blinn, “Models of light reflection for computer synthesized pictures,” in SIGGRAPH’77: Proceedings of the 4th Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1997), pp. 192–198.
  13. K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. 57, 1105–1114 (1967).
    [CrossRef]
  14. R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24 (1982).
    [CrossRef]
  15. K. Nishino and S. Lombardi, “Directional statistics-based reflectance model for isotropic bidirectional reflectance distribution functions,” J. Opt. Soc. Am. A 28, 8–18 (2011).
    [CrossRef]
  16. B. G. Hoover and V. L. Gamiz, “Coherence solution for bidirectional reflectance distributions of surfaces with wavelength-scale statistics,” J. Opt. Soc. Am. A 23, 314–328 (2006).
    [CrossRef]
  17. C. Schlick, “An inexpensive BRDF model for physically-based rendering,” Comput. Graph. Forum 13, 233–246 (1994).
    [CrossRef]
  18. X. Li, L. Ma, and L. Xu, “Empirical modeling for non-Lambertian reflectance based on full-waveform laser detection,” Opt. Eng. 52, 116110 (2013).
    [CrossRef]
  19. R. M. Soldado, An Importance Sampling Method for Arbitrary BRDFs Used in Global Illumination Applications (University of Granada, 2008).
  20. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsgerb, and T. Limperis, Geometrical Considerations and Nomenclature for Reflectance (National Bureau of Standards, U.S. Department of Commerce, 1977).
  21. C. Schlick, “A survey of shading and reflectance models,” Comput. Graph. Forum 13, 121–131 (1994).
    [CrossRef]
  22. M. Oren and S. K. Nayar, “Generalization of Lambert’s reflectance model,” in Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1994), pp. 239–246.
  23. A. Kukko, S. Kaasalainen, and P. Litkey, “Effect of incidence angle on laser scanner intensity and surface data,” Appl. Opt. 47, 986–992 (2008).
    [CrossRef]
  24. J. Qiu, J. Zhang, L. H. Liu, P.-F. Hsu, and L. J. Liu, “Reflective properties of randomly rough surfaces under large incidence angles,” J. Opt. Soc. Am. A 31, 1251–1258 (2014).
    [CrossRef]
  25. J. S. Wei, Q. Wang, J. F. Sun, and J. Gao, “Experimental study on object reflection of imaging laser radar,” in Academic International Symposium on Optoelectronics and Microelectronics Technology (IEEE, 2011), pp. 179–182.
  26. A. Pesci and G. Teza, “Effects of surface irregularities on intensity data from laser scanning: an experimental approach,” Ann. Geophys. 51, 839–848 (2008).
  27. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surface (Artech House, 1987).

2014

2013

X. Li, L. Ma, and L. Xu, “Empirical modeling for non-Lambertian reflectance based on full-waveform laser detection,” Opt. Eng. 52, 116110 (2013).
[CrossRef]

2012

2011

2010

W. Wagner, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65, 505–513 (2010).
[CrossRef]

2009

2008

A. Pesci and G. Teza, “Effects of surface irregularities on intensity data from laser scanning: an experimental approach,” Ann. Geophys. 51, 839–848 (2008).

A. Kukko, S. Kaasalainen, and P. Litkey, “Effect of incidence angle on laser scanner intensity and surface data,” Appl. Opt. 47, 986–992 (2008).
[CrossRef]

X. Y. Liu, “Airborne LiDAR for DEM generation: some critical issues,” Prog. Phys. Geogr. 32, 31–49 (2008).

2007

B. Höfle and N. Pfeifer, “Correction of laser scanning intensity data: data and model-driven approaches,” ISPRS J. Photogramm. Remote Sens. 62, 415–433 (2007).
[CrossRef]

2006

2000

W. Lucht, C. B. Schaaf, and A. H. Strahler, “An algorithm for the retrieval of albedo from space using semiempirical BRDF models,” IEEE Trans. Geosci. Remote Sens. 38, 977–998 (2000).
[CrossRef]

1994

C. Schlick, “An inexpensive BRDF model for physically-based rendering,” Comput. Graph. Forum 13, 233–246 (1994).
[CrossRef]

C. Schlick, “A survey of shading and reflectance models,” Comput. Graph. Forum 13, 121–131 (1994).
[CrossRef]

1982

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24 (1982).
[CrossRef]

1975

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[CrossRef]

1967

Beckmann, P.

P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surface (Artech House, 1987).

Blinn, J. F.

J. F. Blinn, “Models of light reflection for computer synthesized pictures,” in SIGGRAPH’77: Proceedings of the 4th Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1997), pp. 192–198.

Chen, X. Y.

Cook, R. L.

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24 (1982).
[CrossRef]

El-Ashmawy, N.

A. Shaker and N. El-Ashmawy, “Land cover information extraction using lidar data,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS) (ISPRS, 2012), Vol. XXXIX, pp. 167–172.

Gamiz, V. L.

Gao, J.

J. S. Wei, Q. Wang, J. F. Sun, and J. Gao, “Experimental study on object reflection of imaging laser radar,” in Academic International Symposium on Optoelectronics and Microelectronics Technology (IEEE, 2011), pp. 179–182.

Ginsgerb, I. W.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsgerb, and T. Limperis, Geometrical Considerations and Nomenclature for Reflectance (National Bureau of Standards, U.S. Department of Commerce, 1977).

Gross, H.

B. Jutzi and H. Gross, “Normalization of LiDAR intensity data based on range and surface incidence angle,” in Proceedings of ISPRS, Laserscanning Workshop (ISPRS, 2009), pp. 213–218.

Höfle, B.

B. Höfle and N. Pfeifer, “Correction of laser scanning intensity data: data and model-driven approaches,” ISPRS J. Photogramm. Remote Sens. 62, 415–433 (2007).
[CrossRef]

Hoover, B. G.

Hsia, J. J.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsgerb, and T. Limperis, Geometrical Considerations and Nomenclature for Reflectance (National Bureau of Standards, U.S. Department of Commerce, 1977).

Hsu, P.-F.

Jutzi, B.

B. Jutzi and H. Gross, “Normalization of LiDAR intensity data based on range and surface incidence angle,” in Proceedings of ISPRS, Laserscanning Workshop (ISPRS, 2009), pp. 213–218.

Kaasalainen, S.

A. Kukko, S. Kaasalainen, and P. Litkey, “Effect of incidence angle on laser scanner intensity and surface data,” Appl. Opt. 47, 986–992 (2008).
[CrossRef]

A. Vain and S. Kaasalainen, “Correcting airborne laser scanning intensity data,” in Laser Scanning, Theory and Applications, C. C. Wang, ed. (InTech, 2011), pp. 49–60.

Kukko, A.

Kunzer, C.

Li, X.

X. Li, L. Ma, and L. Xu, “Empirical modeling for non-Lambertian reflectance based on full-waveform laser detection,” Opt. Eng. 52, 116110 (2013).
[CrossRef]

Limperis, T.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsgerb, and T. Limperis, Geometrical Considerations and Nomenclature for Reflectance (National Bureau of Standards, U.S. Department of Commerce, 1977).

Litkey, P.

Liu, L. H.

Liu, L. J.

Liu, X. Y.

X. Y. Liu, “Airborne LiDAR for DEM generation: some critical issues,” Prog. Phys. Geogr. 32, 31–49 (2008).

Lombardi, S.

Lucht, W.

W. Lucht, C. B. Schaaf, and A. H. Strahler, “An algorithm for the retrieval of albedo from space using semiempirical BRDF models,” IEEE Trans. Geosci. Remote Sens. 38, 977–998 (2000).
[CrossRef]

Ma, L.

X. Li, L. Ma, and L. Xu, “Empirical modeling for non-Lambertian reflectance based on full-waveform laser detection,” Opt. Eng. 52, 116110 (2013).
[CrossRef]

Montes, R.

R. Montes and C. Ureña, “An overview of BRDF models,” .

Nayar, S. K.

M. Oren and S. K. Nayar, “Generalization of Lambert’s reflectance model,” in Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1994), pp. 239–246.

Nicodemus, F. E.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsgerb, and T. Limperis, Geometrical Considerations and Nomenclature for Reflectance (National Bureau of Standards, U.S. Department of Commerce, 1977).

Nishino, K.

Oren, M.

M. Oren and S. K. Nayar, “Generalization of Lambert’s reflectance model,” in Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1994), pp. 239–246.

Pesci, A.

A. Pesci and G. Teza, “Effects of surface irregularities on intensity data from laser scanning: an experimental approach,” Ann. Geophys. 51, 839–848 (2008).

Pfeifer, N.

B. Höfle and N. Pfeifer, “Correction of laser scanning intensity data: data and model-driven approaches,” ISPRS J. Photogramm. Remote Sens. 62, 415–433 (2007).
[CrossRef]

Phong, B. T.

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[CrossRef]

Qiu, J.

Richmond, J. C.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsgerb, and T. Limperis, Geometrical Considerations and Nomenclature for Reflectance (National Bureau of Standards, U.S. Department of Commerce, 1977).

Roncat, A.

Schaaf, C. B.

W. Lucht, C. B. Schaaf, and A. H. Strahler, “An algorithm for the retrieval of albedo from space using semiempirical BRDF models,” IEEE Trans. Geosci. Remote Sens. 38, 977–998 (2000).
[CrossRef]

Schlick, C.

C. Schlick, “A survey of shading and reflectance models,” Comput. Graph. Forum 13, 121–131 (1994).
[CrossRef]

C. Schlick, “An inexpensive BRDF model for physically-based rendering,” Comput. Graph. Forum 13, 233–246 (1994).
[CrossRef]

Shaker, A.

A. Shaker and N. El-Ashmawy, “Land cover information extraction using lidar data,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS) (ISPRS, 2012), Vol. XXXIX, pp. 167–172.

Soldado, R. M.

R. M. Soldado, An Importance Sampling Method for Arbitrary BRDFs Used in Global Illumination Applications (University of Granada, 2008).

Sparrow, E. M.

Spizzichino, A.

P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surface (Artech House, 1987).

Strahler, A. H.

W. Lucht, C. B. Schaaf, and A. H. Strahler, “An algorithm for the retrieval of albedo from space using semiempirical BRDF models,” IEEE Trans. Geosci. Remote Sens. 38, 977–998 (2000).
[CrossRef]

Sun, J. F.

J. S. Wei, Q. Wang, J. F. Sun, and J. Gao, “Experimental study on object reflection of imaging laser radar,” in Academic International Symposium on Optoelectronics and Microelectronics Technology (IEEE, 2011), pp. 179–182.

Teza, G.

A. Pesci and G. Teza, “Effects of surface irregularities on intensity data from laser scanning: an experimental approach,” Ann. Geophys. 51, 839–848 (2008).

Tong, Z. M.

Torrance, K. E.

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24 (1982).
[CrossRef]

K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. 57, 1105–1114 (1967).
[CrossRef]

Ureña, C.

R. Montes and C. Ureña, “An overview of BRDF models,” .

Vain, A.

A. Vain and S. Kaasalainen, “Correcting airborne laser scanning intensity data,” in Laser Scanning, Theory and Applications, C. C. Wang, ed. (InTech, 2011), pp. 49–60.

Wagner, W.

W. Wagner, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65, 505–513 (2010).
[CrossRef]

Y. F. Wang, J. Z. Zhang, A. Roncat, C. Kunzer, and W. Wagner, “Regularizing method for the determination of the backscatter cross section in lidar data,” J. Opt. Soc. Am. A 26, 1071–1079 (2009).
[CrossRef]

Wang, Q.

J. S. Wei, Q. Wang, J. F. Sun, and J. Gao, “Experimental study on object reflection of imaging laser radar,” in Academic International Symposium on Optoelectronics and Microelectronics Technology (IEEE, 2011), pp. 179–182.

Wang, Y. F.

Wei, J. S.

J. S. Wei, Q. Wang, J. F. Sun, and J. Gao, “Experimental study on object reflection of imaging laser radar,” in Academic International Symposium on Optoelectronics and Microelectronics Technology (IEEE, 2011), pp. 179–182.

Xu, L.

X. Li, L. Ma, and L. Xu, “Empirical modeling for non-Lambertian reflectance based on full-waveform laser detection,” Opt. Eng. 52, 116110 (2013).
[CrossRef]

Zhang, J.

Zhang, J. Z.

ACM Trans. Graph.

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24 (1982).
[CrossRef]

Ann. Geophys.

A. Pesci and G. Teza, “Effects of surface irregularities on intensity data from laser scanning: an experimental approach,” Ann. Geophys. 51, 839–848 (2008).

Appl. Opt.

Commun. ACM

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[CrossRef]

Comput. Graph. Forum

C. Schlick, “A survey of shading and reflectance models,” Comput. Graph. Forum 13, 121–131 (1994).
[CrossRef]

C. Schlick, “An inexpensive BRDF model for physically-based rendering,” Comput. Graph. Forum 13, 233–246 (1994).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

W. Lucht, C. B. Schaaf, and A. H. Strahler, “An algorithm for the retrieval of albedo from space using semiempirical BRDF models,” IEEE Trans. Geosci. Remote Sens. 38, 977–998 (2000).
[CrossRef]

ISPRS J. Photogramm. Remote Sens.

W. Wagner, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65, 505–513 (2010).
[CrossRef]

B. Höfle and N. Pfeifer, “Correction of laser scanning intensity data: data and model-driven approaches,” ISPRS J. Photogramm. Remote Sens. 62, 415–433 (2007).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Eng.

X. Li, L. Ma, and L. Xu, “Empirical modeling for non-Lambertian reflectance based on full-waveform laser detection,” Opt. Eng. 52, 116110 (2013).
[CrossRef]

Prog. Phys. Geogr.

X. Y. Liu, “Airborne LiDAR for DEM generation: some critical issues,” Prog. Phys. Geogr. 32, 31–49 (2008).

Other

A. Shaker and N. El-Ashmawy, “Land cover information extraction using lidar data,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS) (ISPRS, 2012), Vol. XXXIX, pp. 167–172.

B. Jutzi and H. Gross, “Normalization of LiDAR intensity data based on range and surface incidence angle,” in Proceedings of ISPRS, Laserscanning Workshop (ISPRS, 2009), pp. 213–218.

A. Vain and S. Kaasalainen, “Correcting airborne laser scanning intensity data,” in Laser Scanning, Theory and Applications, C. C. Wang, ed. (InTech, 2011), pp. 49–60.

R. M. Soldado, An Importance Sampling Method for Arbitrary BRDFs Used in Global Illumination Applications (University of Granada, 2008).

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsgerb, and T. Limperis, Geometrical Considerations and Nomenclature for Reflectance (National Bureau of Standards, U.S. Department of Commerce, 1977).

M. Oren and S. K. Nayar, “Generalization of Lambert’s reflectance model,” in Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1994), pp. 239–246.

R. Montes and C. Ureña, “An overview of BRDF models,” .

J. F. Blinn, “Models of light reflection for computer synthesized pictures,” in SIGGRAPH’77: Proceedings of the 4th Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1997), pp. 192–198.

J. S. Wei, Q. Wang, J. F. Sun, and J. Gao, “Experimental study on object reflection of imaging laser radar,” in Academic International Symposium on Optoelectronics and Microelectronics Technology (IEEE, 2011), pp. 179–182.

P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surface (Artech House, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Coaxial full-waveform LiDAR system.

Fig. 2.
Fig. 2.

Geometry and parameters involved in energy calculation.

Fig. 3.
Fig. 3.

Reflected raw waveforms and filtered waveforms of four targets.

Fig. 4.
Fig. 4.

Estimated energy of waveforms detected from four targets.

Fig. 5.
Fig. 5.

Curve fitting of Lam model and CS model for four targets in different conditions. Gray dash-dot lines represent curve fitting using the Lam model, and other colorful dashed lines denote curve fitting using the CS model.

Fig. 6.
Fig. 6.

Slope direction D(αfac) of four targets in polar coordinates.

Fig. 7.
Fig. 7.

CS-model-based energy distribution in hemisphere space at a detection range of 100 mm.

Tables (2)

Tables Icon

Table 1. Fitting Results of Lam Model (Up) and CS Model (Down)

Tables Icon

Table 2. Fitting Parameters r(a,b,c) and Sλ of CS Model and ρd of Lam Model

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

f=L0Ei.
L0=dPrA·dΩ·cosθ0.
Ei=PtA/cosθi.
dPr=Pt·f·cos2θrota·dΩ.
Pr=ΩPt·f·cos2θrota·dΩ.
dΩ=dAr(R/cos(φoutθrota))2.
dAr=rcir·(R/cos(φoutθrota))dφout=2πR2(sin(φoutθrota)/cos2(φoutθrota))dφout.
dΩ=2πsin(φoutθrota)dφout.
Pr=2π·Pt·θrotaθrota+βlens2f·sin(φoutθrota)·cos2θrotadφout,
βlens=2·tan(Dlens2R).
Pr=2π·Pt·θrotaθrota+arctan(Dlens2R)f·sin(φoutθrota)·cos2θrotadφout.
φout=2αfacθrota.
Pr=4πPtθrotaθrota+12arctan(Dlens2R)fsin(2(αfacθrota))cos2θrotadαfac.
f=Sλ·[aπ+b·G(θrota)G(2αfacθrota)4πcosθrotacos(2αfacθrota)D(αfac)A(ω)+b·1G(θrota)G(2αfacθrota)4πcosθrotacos(2αfacθrota)+ccosθrotaδ(φout)].
G(x)=cos(x)rrcos(x)+cos(x),
D(αfac)=r(1+rcos2αfaccos2αfac)2.
{a=0b=4r(1r)c=(12r)2(r0.5){a=(12r)2b=4r(1r)c=0(r>0.5).
f=ρdπ,

Metrics