Abstract

The flash-lag effect is a visual illusion where a moving image is perceived to be advanced in its spatial location relative to a flashed image. Multiple studies have shown that the flash-lag effect can be enhanced by increasing the uncertainty of the moving and/or flashed images. However, little is known about the effect of task-irrelevant visual objects on the flash-lag effect. We were interested to see whether a task-irrelevant spatial landmark might reduce uncertainty and hence reduce the flash-lag effect. We placed a fixed bar between moving and flashed bars while measuring the flash-lag effect in six participants. For most participants, the fixed bar substantially truncated the flash-lag effect. The effect was maximal when the fixed bar was aligned with the flashed bar and decreased when the fixed bar was positioned more peripherally. A second experiment with two participants used a smaller fixed bar; the smaller bar had less truncation effect in one participant, while the other participant showed similar truncation regardless of the fixed bar size. Our results support models that place the locus of the flash-lag effect in higher-order brain areas, e.g., the parietal lobe.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. MacKay, “Perceptual stability of a stroboscopically lit visual field containing self-luminous objects,” Nature 181, 507–508 (1958).
    [CrossRef]
  2. R. Nijhawan, “Motion extrapolation in catching,” Nature 370, 256–257 (1994).
    [CrossRef]
  3. R. Nijhawan, “Visual prediction: psychophysics and neurophysiology of compensation for time delays,” Behav. Brain Sci. 31, 179–198; discussion 198–239 (2008).
  4. T. L. Hubbard, “The flash-lag effect and related mislocalizations: findings, properties, and theories,” Psychol. Bull. 140, 308–338 (2014).
    [CrossRef]
  5. D. Whitney and I. Murakami, “Latency difference, not spatial extrapolation,” Nat. Neurosci. 1, 656–657 (1998).
    [CrossRef]
  6. D. Whitney, I. Murakami, and P. Cavanagh, “Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli,” Vis. Res. 40, 137–149 (2000).
    [CrossRef]
  7. R. Kanai, B. R. Sheth, and S. Shimojo, “Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization,” Vis. Res. 44, 2605–2619 (2004).
    [CrossRef]
  8. M. V. Baldo and S. A. Klein, “Extrapolation or attention shift?” Nature 378, 565–566 (1995).
    [CrossRef]
  9. M. V. C. Baldo, A. H. Kihara, J. Namba, and S. A. Klein, “Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli,” Perception 31, 17–30 (2002).
    [CrossRef]
  10. M. V. C. Baldo and J. Namba, “The attentional modulation of the flash-lag effect,” Braz. J. Med. Biol. Res. 35, 969–972 (2002).
    [CrossRef]
  11. D. Vreven and P. Verghese, “Predictability and the dynamics of position processing in the flash-lag effect,” Perception 34, 31–44 (2005).
    [CrossRef]
  12. Y. X. Fu, Y. Shen, and Y. Dan, “Motion-induced perceptual extrapolation of blurred visual targets,” J. Neurosci. 21, RC172 (2001).
  13. G. W. Maus and R. Nijhawan, “Forward displacements of fading objects in motion: the role of transient signals in perceiving position,” Vis. Res. 46, 4375–4381 (2006).
    [CrossRef]
  14. G. W. Maus and R. Nijhawan, “Going, going, gone: localizing abrupt offsets of moving objects,” J. Exp. Psychol. A 35, 611–626 (2009).
    [CrossRef]
  15. E. Brenner, R. J. van Beers, G. Rotman, and J. B. Smeets, “Motion extrapolation is not responsible for the flash-lag effect,” Vis. Res. 40, 1645–1648 (2000).
    [CrossRef]
  16. G. Rotman, E. Brenner, and J. B. J. Smeets, “Spatial but not temporal cueing influences the mislocalisation of a target flashed during smooth pursuit,” Perception 31, 1195–1203 (2002).
    [CrossRef]
  17. J. Namba and M. V. C. Baldo, “The modulation of the flash-lag effect by voluntary attention,” Perception 33, 621–631 (2004).
    [CrossRef]
  18. D. Sarich, M. Chappell, and C. Burgess, “Dividing attention in the flash-lag illusion,” Vis. Res. 47, 544–547 (2007).
    [CrossRef]
  19. A. Gauch and D. Kerzel, “Contributions of visible persistence and perceptual set to the flash-lag effect: focusing on flash onset abolishes the illusion,” Vis. Res. 49, 2983–2991 (2009).
    [CrossRef]
  20. S. Shiori, K. Yamamoto, H. Oshida, and K. Matsubara, “Measuring attention using flash-lag effect,” J. Vis. 10(10):10, 1–13 (2010).
    [CrossRef]
  21. B. Khurana, K. Watanabe, and R. Nijhawan, “The role of attention in motion extrapolation: are moving objects “corrected” or flashed objects attentionally delayed?” Perception 29, 675–692 (2000).
    [CrossRef]
  22. J. I. Gold and M. N. Shadlen, “The neural basis of decision making,” Annu. Rev. Neurosci. 30, 535–574 (2007).
    [CrossRef]
  23. T. D. Hanks, M. E. Mazurek, R. Kiani, E. Hopp, and M. N. Shadlen, “Elapsed decision time affects the weighting of prior probability in a perceptual decision task,” J. Neurosci. 31, 6339–6352 (2011).
    [CrossRef]
  24. S. Mateef and J. Hohnsbein, “Perceptual latencies are shorter for motion towards the fovea than away,” Vis. Res. 28, 711–719 (1988).
    [CrossRef]
  25. E. Brenner, R. J. van Beers, G. Rotman, and J. B. J. Smeets, “The role of uncertainty in the systematic spatial mislocalization of moving objects,” J. Exp. Psychol. Hum. Percept. Perform. 32, 811–825 (2006).
    [CrossRef]
  26. Z. Shi and R. Nijhawan, “Behavioral significance of motion direction causes anisotropic flash-lag, flash-drag, flash-repulsion, and movement-mislocalization effects,” J. Vis. 8(7):24, 1–14 (2008).
    [CrossRef]
  27. A. Maiche, R. Budelli, and L. Gómez-Sena, “Spatial facilitation is involved in flash-lag effect,” Vis. Res. 47, 1655–1661 (2007).
    [CrossRef]
  28. T. L. Hubbard and S. E. Ruppel, “Representational momentum and the landmark attraction effect,” Can. J. Exp. Psychol. 53, 242–256 (1999).
    [CrossRef]
  29. T. L. Hubbard, A. M. Kumar, and C. L. Carp, “Effects of spatial cueing on representational momentum,” J. Exp. Psychol. Learn. Mem. Cogn. 35, 666–677 (2009).
    [CrossRef]
  30. D. H. Brainard, “The psychophysics toolbox,” Spat. Vis. 10, 433–436 (1997).
    [CrossRef]
  31. D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spat. Vis. 10, 437–442 (1997).
    [CrossRef]
  32. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University, 1992).
  33. B. Krekelberg and M. Lappe, “Neuronal latencies and the position of moving objects,” Trends Neurosci. 24, 335–339 (2001).
    [CrossRef]
  34. G. W. Maus, J. Ward, R. Nijhawan, and D. Whitney, “The perceived position of moving objects: transcranial magnetic stimulation of area MT+ reduces the flash-lag effect,” Cereb. Cortex 23, 241–247 (2013).
    [CrossRef]
  35. C. Gilbert, “Laminar differences in receptive field properties of cells in cat primary visual cortex,” J. Physiol. 268, 391–421 (1977).
  36. J. Movshon, I. Thompson, and J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex,” J. Physiol. 283, 53–77 (1978).
  37. A. Das and C. D. Gilbert, “Topography of contextual modulations mediated by short-range interactions in primary visual cortex,” Nature 399, 655–661 (1999).
    [CrossRef]
  38. J. R. Cavanaugh, W. Bair, and J. A. Movshon, “Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons,” J. Neurophysiol. 88, 2530–2546 (2002).
    [CrossRef]
  39. D. Fitzpatrick, “Seeing beyond the receptive field in primary visual cortex,” Curr. Opin. Neurobiol. 10, 438–443 (2000).
    [CrossRef]
  40. P. C. Knox, “The reduction of the effect of the Müller-Lyer illusion saccade amplitude by classic adaptation,” Perception 1, 95–102 (2010).
    [CrossRef]
  41. T. L. Hubbard and M. A. Motes, “An effect of context on whether memory for initial position exhibits a Fröhlich effect or an onset repulsion effect,” Q. J. Exp. Psychol. A 58, 961–979 (2005).
    [CrossRef]
  42. T. L. Hubbard, “Do the flash-lag effect and representational momentum involve similar extrapolations?” Front. Psychol. 4, 290 (2013).
    [CrossRef]
  43. M. J. Berry, I. H. Brivanlou, T. A. Jordan, and M. Meister, “Anticipation of moving stimuli by the retina,” Nature 398, 334–338 (1999).
    [CrossRef]
  44. D. J. Heeger, G. M. Boynton, J. B. Demb, E. Seidemann, and W. T. Newsome, “Motion opponency in visual cortex,” J. Neurosci. 19, 7162–7174 (1999).
  45. H. Jones, K. Grieve, W. Wang, and A. Sillito, “Surround suppression in primate V1,” J. Neurophysiol. 86, 2011–2028 (2001).
  46. A. Mikami, W. Newsome, and R. Wurtz, “Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT,” J. Neurophysiol. 55, 1308–1327 (1986).
  47. H. Rodman and T. Albright, “Coding of visual stimulus velocity in area MT of the macaque,” Vis. Res. 27, 2035–2048 (1987).
    [CrossRef]
  48. R. Snowden and S. Treue, “The response of area MT and V1 neurons to transparent motion,” J. Neurosci. 11, 2768–2785 (1991).
  49. N. Qian and R. Andersen, “Transparent motion perception as detection of unbalanced motion signals. II. Physiology,” J. Neurosci. 14, 7367–7380 (1994).
  50. E. Simoncelli and D. Heeger, “A model of neuronal responses in visual area MT,” Vis. Res. 38, 743–761 (1998).
    [CrossRef]
  51. B. A. Dosher and Z.-L. Lu, “Mechanisms of perceptual learning,” Vis. Res. 39, 3197–3221 (1999).
    [CrossRef]
  52. C. Gilbert, M. Sigman, and R. Crist, “The neural basis of perceptual learning,” Neuron 31, 681–697 (2001).
    [CrossRef]
  53. M. Ahissar and S. Hochstein, “The reverse hierarchy theory of visual perceptual learning,” Trends Cogn. Sci. 8, 457–464 (2004).
    [CrossRef]

2014 (1)

T. L. Hubbard, “The flash-lag effect and related mislocalizations: findings, properties, and theories,” Psychol. Bull. 140, 308–338 (2014).
[CrossRef]

2013 (2)

G. W. Maus, J. Ward, R. Nijhawan, and D. Whitney, “The perceived position of moving objects: transcranial magnetic stimulation of area MT+ reduces the flash-lag effect,” Cereb. Cortex 23, 241–247 (2013).
[CrossRef]

T. L. Hubbard, “Do the flash-lag effect and representational momentum involve similar extrapolations?” Front. Psychol. 4, 290 (2013).
[CrossRef]

2011 (1)

T. D. Hanks, M. E. Mazurek, R. Kiani, E. Hopp, and M. N. Shadlen, “Elapsed decision time affects the weighting of prior probability in a perceptual decision task,” J. Neurosci. 31, 6339–6352 (2011).
[CrossRef]

2010 (2)

S. Shiori, K. Yamamoto, H. Oshida, and K. Matsubara, “Measuring attention using flash-lag effect,” J. Vis. 10(10):10, 1–13 (2010).
[CrossRef]

P. C. Knox, “The reduction of the effect of the Müller-Lyer illusion saccade amplitude by classic adaptation,” Perception 1, 95–102 (2010).
[CrossRef]

2009 (3)

A. Gauch and D. Kerzel, “Contributions of visible persistence and perceptual set to the flash-lag effect: focusing on flash onset abolishes the illusion,” Vis. Res. 49, 2983–2991 (2009).
[CrossRef]

T. L. Hubbard, A. M. Kumar, and C. L. Carp, “Effects of spatial cueing on representational momentum,” J. Exp. Psychol. Learn. Mem. Cogn. 35, 666–677 (2009).
[CrossRef]

G. W. Maus and R. Nijhawan, “Going, going, gone: localizing abrupt offsets of moving objects,” J. Exp. Psychol. A 35, 611–626 (2009).
[CrossRef]

2008 (2)

R. Nijhawan, “Visual prediction: psychophysics and neurophysiology of compensation for time delays,” Behav. Brain Sci. 31, 179–198; discussion 198–239 (2008).

Z. Shi and R. Nijhawan, “Behavioral significance of motion direction causes anisotropic flash-lag, flash-drag, flash-repulsion, and movement-mislocalization effects,” J. Vis. 8(7):24, 1–14 (2008).
[CrossRef]

2007 (3)

A. Maiche, R. Budelli, and L. Gómez-Sena, “Spatial facilitation is involved in flash-lag effect,” Vis. Res. 47, 1655–1661 (2007).
[CrossRef]

J. I. Gold and M. N. Shadlen, “The neural basis of decision making,” Annu. Rev. Neurosci. 30, 535–574 (2007).
[CrossRef]

D. Sarich, M. Chappell, and C. Burgess, “Dividing attention in the flash-lag illusion,” Vis. Res. 47, 544–547 (2007).
[CrossRef]

2006 (2)

E. Brenner, R. J. van Beers, G. Rotman, and J. B. J. Smeets, “The role of uncertainty in the systematic spatial mislocalization of moving objects,” J. Exp. Psychol. Hum. Percept. Perform. 32, 811–825 (2006).
[CrossRef]

G. W. Maus and R. Nijhawan, “Forward displacements of fading objects in motion: the role of transient signals in perceiving position,” Vis. Res. 46, 4375–4381 (2006).
[CrossRef]

2005 (2)

D. Vreven and P. Verghese, “Predictability and the dynamics of position processing in the flash-lag effect,” Perception 34, 31–44 (2005).
[CrossRef]

T. L. Hubbard and M. A. Motes, “An effect of context on whether memory for initial position exhibits a Fröhlich effect or an onset repulsion effect,” Q. J. Exp. Psychol. A 58, 961–979 (2005).
[CrossRef]

2004 (3)

M. Ahissar and S. Hochstein, “The reverse hierarchy theory of visual perceptual learning,” Trends Cogn. Sci. 8, 457–464 (2004).
[CrossRef]

R. Kanai, B. R. Sheth, and S. Shimojo, “Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization,” Vis. Res. 44, 2605–2619 (2004).
[CrossRef]

J. Namba and M. V. C. Baldo, “The modulation of the flash-lag effect by voluntary attention,” Perception 33, 621–631 (2004).
[CrossRef]

2002 (4)

M. V. C. Baldo, A. H. Kihara, J. Namba, and S. A. Klein, “Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli,” Perception 31, 17–30 (2002).
[CrossRef]

M. V. C. Baldo and J. Namba, “The attentional modulation of the flash-lag effect,” Braz. J. Med. Biol. Res. 35, 969–972 (2002).
[CrossRef]

G. Rotman, E. Brenner, and J. B. J. Smeets, “Spatial but not temporal cueing influences the mislocalisation of a target flashed during smooth pursuit,” Perception 31, 1195–1203 (2002).
[CrossRef]

J. R. Cavanaugh, W. Bair, and J. A. Movshon, “Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons,” J. Neurophysiol. 88, 2530–2546 (2002).
[CrossRef]

2001 (4)

H. Jones, K. Grieve, W. Wang, and A. Sillito, “Surround suppression in primate V1,” J. Neurophysiol. 86, 2011–2028 (2001).

C. Gilbert, M. Sigman, and R. Crist, “The neural basis of perceptual learning,” Neuron 31, 681–697 (2001).
[CrossRef]

Y. X. Fu, Y. Shen, and Y. Dan, “Motion-induced perceptual extrapolation of blurred visual targets,” J. Neurosci. 21, RC172 (2001).

B. Krekelberg and M. Lappe, “Neuronal latencies and the position of moving objects,” Trends Neurosci. 24, 335–339 (2001).
[CrossRef]

2000 (4)

B. Khurana, K. Watanabe, and R. Nijhawan, “The role of attention in motion extrapolation: are moving objects “corrected” or flashed objects attentionally delayed?” Perception 29, 675–692 (2000).
[CrossRef]

E. Brenner, R. J. van Beers, G. Rotman, and J. B. Smeets, “Motion extrapolation is not responsible for the flash-lag effect,” Vis. Res. 40, 1645–1648 (2000).
[CrossRef]

D. Whitney, I. Murakami, and P. Cavanagh, “Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli,” Vis. Res. 40, 137–149 (2000).
[CrossRef]

D. Fitzpatrick, “Seeing beyond the receptive field in primary visual cortex,” Curr. Opin. Neurobiol. 10, 438–443 (2000).
[CrossRef]

1999 (5)

A. Das and C. D. Gilbert, “Topography of contextual modulations mediated by short-range interactions in primary visual cortex,” Nature 399, 655–661 (1999).
[CrossRef]

M. J. Berry, I. H. Brivanlou, T. A. Jordan, and M. Meister, “Anticipation of moving stimuli by the retina,” Nature 398, 334–338 (1999).
[CrossRef]

D. J. Heeger, G. M. Boynton, J. B. Demb, E. Seidemann, and W. T. Newsome, “Motion opponency in visual cortex,” J. Neurosci. 19, 7162–7174 (1999).

B. A. Dosher and Z.-L. Lu, “Mechanisms of perceptual learning,” Vis. Res. 39, 3197–3221 (1999).
[CrossRef]

T. L. Hubbard and S. E. Ruppel, “Representational momentum and the landmark attraction effect,” Can. J. Exp. Psychol. 53, 242–256 (1999).
[CrossRef]

1998 (2)

D. Whitney and I. Murakami, “Latency difference, not spatial extrapolation,” Nat. Neurosci. 1, 656–657 (1998).
[CrossRef]

E. Simoncelli and D. Heeger, “A model of neuronal responses in visual area MT,” Vis. Res. 38, 743–761 (1998).
[CrossRef]

1997 (2)

D. H. Brainard, “The psychophysics toolbox,” Spat. Vis. 10, 433–436 (1997).
[CrossRef]

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spat. Vis. 10, 437–442 (1997).
[CrossRef]

1995 (1)

M. V. Baldo and S. A. Klein, “Extrapolation or attention shift?” Nature 378, 565–566 (1995).
[CrossRef]

1994 (2)

R. Nijhawan, “Motion extrapolation in catching,” Nature 370, 256–257 (1994).
[CrossRef]

N. Qian and R. Andersen, “Transparent motion perception as detection of unbalanced motion signals. II. Physiology,” J. Neurosci. 14, 7367–7380 (1994).

1991 (1)

R. Snowden and S. Treue, “The response of area MT and V1 neurons to transparent motion,” J. Neurosci. 11, 2768–2785 (1991).

1988 (1)

S. Mateef and J. Hohnsbein, “Perceptual latencies are shorter for motion towards the fovea than away,” Vis. Res. 28, 711–719 (1988).
[CrossRef]

1987 (1)

H. Rodman and T. Albright, “Coding of visual stimulus velocity in area MT of the macaque,” Vis. Res. 27, 2035–2048 (1987).
[CrossRef]

1986 (1)

A. Mikami, W. Newsome, and R. Wurtz, “Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT,” J. Neurophysiol. 55, 1308–1327 (1986).

1978 (1)

J. Movshon, I. Thompson, and J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex,” J. Physiol. 283, 53–77 (1978).

1977 (1)

C. Gilbert, “Laminar differences in receptive field properties of cells in cat primary visual cortex,” J. Physiol. 268, 391–421 (1977).

1958 (1)

D. M. MacKay, “Perceptual stability of a stroboscopically lit visual field containing self-luminous objects,” Nature 181, 507–508 (1958).
[CrossRef]

Ahissar, M.

M. Ahissar and S. Hochstein, “The reverse hierarchy theory of visual perceptual learning,” Trends Cogn. Sci. 8, 457–464 (2004).
[CrossRef]

Albright, T.

H. Rodman and T. Albright, “Coding of visual stimulus velocity in area MT of the macaque,” Vis. Res. 27, 2035–2048 (1987).
[CrossRef]

Andersen, R.

N. Qian and R. Andersen, “Transparent motion perception as detection of unbalanced motion signals. II. Physiology,” J. Neurosci. 14, 7367–7380 (1994).

Bair, W.

J. R. Cavanaugh, W. Bair, and J. A. Movshon, “Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons,” J. Neurophysiol. 88, 2530–2546 (2002).
[CrossRef]

Baldo, M. V.

M. V. Baldo and S. A. Klein, “Extrapolation or attention shift?” Nature 378, 565–566 (1995).
[CrossRef]

Baldo, M. V. C.

J. Namba and M. V. C. Baldo, “The modulation of the flash-lag effect by voluntary attention,” Perception 33, 621–631 (2004).
[CrossRef]

M. V. C. Baldo and J. Namba, “The attentional modulation of the flash-lag effect,” Braz. J. Med. Biol. Res. 35, 969–972 (2002).
[CrossRef]

M. V. C. Baldo, A. H. Kihara, J. Namba, and S. A. Klein, “Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli,” Perception 31, 17–30 (2002).
[CrossRef]

Berry, M. J.

M. J. Berry, I. H. Brivanlou, T. A. Jordan, and M. Meister, “Anticipation of moving stimuli by the retina,” Nature 398, 334–338 (1999).
[CrossRef]

Boynton, G. M.

D. J. Heeger, G. M. Boynton, J. B. Demb, E. Seidemann, and W. T. Newsome, “Motion opponency in visual cortex,” J. Neurosci. 19, 7162–7174 (1999).

Brainard, D. H.

D. H. Brainard, “The psychophysics toolbox,” Spat. Vis. 10, 433–436 (1997).
[CrossRef]

Brenner, E.

E. Brenner, R. J. van Beers, G. Rotman, and J. B. J. Smeets, “The role of uncertainty in the systematic spatial mislocalization of moving objects,” J. Exp. Psychol. Hum. Percept. Perform. 32, 811–825 (2006).
[CrossRef]

G. Rotman, E. Brenner, and J. B. J. Smeets, “Spatial but not temporal cueing influences the mislocalisation of a target flashed during smooth pursuit,” Perception 31, 1195–1203 (2002).
[CrossRef]

E. Brenner, R. J. van Beers, G. Rotman, and J. B. Smeets, “Motion extrapolation is not responsible for the flash-lag effect,” Vis. Res. 40, 1645–1648 (2000).
[CrossRef]

Brivanlou, I. H.

M. J. Berry, I. H. Brivanlou, T. A. Jordan, and M. Meister, “Anticipation of moving stimuli by the retina,” Nature 398, 334–338 (1999).
[CrossRef]

Budelli, R.

A. Maiche, R. Budelli, and L. Gómez-Sena, “Spatial facilitation is involved in flash-lag effect,” Vis. Res. 47, 1655–1661 (2007).
[CrossRef]

Burgess, C.

D. Sarich, M. Chappell, and C. Burgess, “Dividing attention in the flash-lag illusion,” Vis. Res. 47, 544–547 (2007).
[CrossRef]

Carp, C. L.

T. L. Hubbard, A. M. Kumar, and C. L. Carp, “Effects of spatial cueing on representational momentum,” J. Exp. Psychol. Learn. Mem. Cogn. 35, 666–677 (2009).
[CrossRef]

Cavanagh, P.

D. Whitney, I. Murakami, and P. Cavanagh, “Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli,” Vis. Res. 40, 137–149 (2000).
[CrossRef]

Cavanaugh, J. R.

J. R. Cavanaugh, W. Bair, and J. A. Movshon, “Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons,” J. Neurophysiol. 88, 2530–2546 (2002).
[CrossRef]

Chappell, M.

D. Sarich, M. Chappell, and C. Burgess, “Dividing attention in the flash-lag illusion,” Vis. Res. 47, 544–547 (2007).
[CrossRef]

Crist, R.

C. Gilbert, M. Sigman, and R. Crist, “The neural basis of perceptual learning,” Neuron 31, 681–697 (2001).
[CrossRef]

Dan, Y.

Y. X. Fu, Y. Shen, and Y. Dan, “Motion-induced perceptual extrapolation of blurred visual targets,” J. Neurosci. 21, RC172 (2001).

Das, A.

A. Das and C. D. Gilbert, “Topography of contextual modulations mediated by short-range interactions in primary visual cortex,” Nature 399, 655–661 (1999).
[CrossRef]

Demb, J. B.

D. J. Heeger, G. M. Boynton, J. B. Demb, E. Seidemann, and W. T. Newsome, “Motion opponency in visual cortex,” J. Neurosci. 19, 7162–7174 (1999).

Dosher, B. A.

B. A. Dosher and Z.-L. Lu, “Mechanisms of perceptual learning,” Vis. Res. 39, 3197–3221 (1999).
[CrossRef]

Fitzpatrick, D.

D. Fitzpatrick, “Seeing beyond the receptive field in primary visual cortex,” Curr. Opin. Neurobiol. 10, 438–443 (2000).
[CrossRef]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University, 1992).

Fu, Y. X.

Y. X. Fu, Y. Shen, and Y. Dan, “Motion-induced perceptual extrapolation of blurred visual targets,” J. Neurosci. 21, RC172 (2001).

Gauch, A.

A. Gauch and D. Kerzel, “Contributions of visible persistence and perceptual set to the flash-lag effect: focusing on flash onset abolishes the illusion,” Vis. Res. 49, 2983–2991 (2009).
[CrossRef]

Gilbert, C.

C. Gilbert, M. Sigman, and R. Crist, “The neural basis of perceptual learning,” Neuron 31, 681–697 (2001).
[CrossRef]

C. Gilbert, “Laminar differences in receptive field properties of cells in cat primary visual cortex,” J. Physiol. 268, 391–421 (1977).

Gilbert, C. D.

A. Das and C. D. Gilbert, “Topography of contextual modulations mediated by short-range interactions in primary visual cortex,” Nature 399, 655–661 (1999).
[CrossRef]

Gold, J. I.

J. I. Gold and M. N. Shadlen, “The neural basis of decision making,” Annu. Rev. Neurosci. 30, 535–574 (2007).
[CrossRef]

Gómez-Sena, L.

A. Maiche, R. Budelli, and L. Gómez-Sena, “Spatial facilitation is involved in flash-lag effect,” Vis. Res. 47, 1655–1661 (2007).
[CrossRef]

Grieve, K.

H. Jones, K. Grieve, W. Wang, and A. Sillito, “Surround suppression in primate V1,” J. Neurophysiol. 86, 2011–2028 (2001).

Hanks, T. D.

T. D. Hanks, M. E. Mazurek, R. Kiani, E. Hopp, and M. N. Shadlen, “Elapsed decision time affects the weighting of prior probability in a perceptual decision task,” J. Neurosci. 31, 6339–6352 (2011).
[CrossRef]

Heeger, D.

E. Simoncelli and D. Heeger, “A model of neuronal responses in visual area MT,” Vis. Res. 38, 743–761 (1998).
[CrossRef]

Heeger, D. J.

D. J. Heeger, G. M. Boynton, J. B. Demb, E. Seidemann, and W. T. Newsome, “Motion opponency in visual cortex,” J. Neurosci. 19, 7162–7174 (1999).

Hochstein, S.

M. Ahissar and S. Hochstein, “The reverse hierarchy theory of visual perceptual learning,” Trends Cogn. Sci. 8, 457–464 (2004).
[CrossRef]

Hohnsbein, J.

S. Mateef and J. Hohnsbein, “Perceptual latencies are shorter for motion towards the fovea than away,” Vis. Res. 28, 711–719 (1988).
[CrossRef]

Hopp, E.

T. D. Hanks, M. E. Mazurek, R. Kiani, E. Hopp, and M. N. Shadlen, “Elapsed decision time affects the weighting of prior probability in a perceptual decision task,” J. Neurosci. 31, 6339–6352 (2011).
[CrossRef]

Hubbard, T. L.

T. L. Hubbard, “The flash-lag effect and related mislocalizations: findings, properties, and theories,” Psychol. Bull. 140, 308–338 (2014).
[CrossRef]

T. L. Hubbard, “Do the flash-lag effect and representational momentum involve similar extrapolations?” Front. Psychol. 4, 290 (2013).
[CrossRef]

T. L. Hubbard, A. M. Kumar, and C. L. Carp, “Effects of spatial cueing on representational momentum,” J. Exp. Psychol. Learn. Mem. Cogn. 35, 666–677 (2009).
[CrossRef]

T. L. Hubbard and M. A. Motes, “An effect of context on whether memory for initial position exhibits a Fröhlich effect or an onset repulsion effect,” Q. J. Exp. Psychol. A 58, 961–979 (2005).
[CrossRef]

T. L. Hubbard and S. E. Ruppel, “Representational momentum and the landmark attraction effect,” Can. J. Exp. Psychol. 53, 242–256 (1999).
[CrossRef]

Jones, H.

H. Jones, K. Grieve, W. Wang, and A. Sillito, “Surround suppression in primate V1,” J. Neurophysiol. 86, 2011–2028 (2001).

Jordan, T. A.

M. J. Berry, I. H. Brivanlou, T. A. Jordan, and M. Meister, “Anticipation of moving stimuli by the retina,” Nature 398, 334–338 (1999).
[CrossRef]

Kanai, R.

R. Kanai, B. R. Sheth, and S. Shimojo, “Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization,” Vis. Res. 44, 2605–2619 (2004).
[CrossRef]

Kerzel, D.

A. Gauch and D. Kerzel, “Contributions of visible persistence and perceptual set to the flash-lag effect: focusing on flash onset abolishes the illusion,” Vis. Res. 49, 2983–2991 (2009).
[CrossRef]

Khurana, B.

B. Khurana, K. Watanabe, and R. Nijhawan, “The role of attention in motion extrapolation: are moving objects “corrected” or flashed objects attentionally delayed?” Perception 29, 675–692 (2000).
[CrossRef]

Kiani, R.

T. D. Hanks, M. E. Mazurek, R. Kiani, E. Hopp, and M. N. Shadlen, “Elapsed decision time affects the weighting of prior probability in a perceptual decision task,” J. Neurosci. 31, 6339–6352 (2011).
[CrossRef]

Kihara, A. H.

M. V. C. Baldo, A. H. Kihara, J. Namba, and S. A. Klein, “Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli,” Perception 31, 17–30 (2002).
[CrossRef]

Klein, S. A.

M. V. C. Baldo, A. H. Kihara, J. Namba, and S. A. Klein, “Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli,” Perception 31, 17–30 (2002).
[CrossRef]

M. V. Baldo and S. A. Klein, “Extrapolation or attention shift?” Nature 378, 565–566 (1995).
[CrossRef]

Knox, P. C.

P. C. Knox, “The reduction of the effect of the Müller-Lyer illusion saccade amplitude by classic adaptation,” Perception 1, 95–102 (2010).
[CrossRef]

Krekelberg, B.

B. Krekelberg and M. Lappe, “Neuronal latencies and the position of moving objects,” Trends Neurosci. 24, 335–339 (2001).
[CrossRef]

Kumar, A. M.

T. L. Hubbard, A. M. Kumar, and C. L. Carp, “Effects of spatial cueing on representational momentum,” J. Exp. Psychol. Learn. Mem. Cogn. 35, 666–677 (2009).
[CrossRef]

Lappe, M.

B. Krekelberg and M. Lappe, “Neuronal latencies and the position of moving objects,” Trends Neurosci. 24, 335–339 (2001).
[CrossRef]

Lu, Z.-L.

B. A. Dosher and Z.-L. Lu, “Mechanisms of perceptual learning,” Vis. Res. 39, 3197–3221 (1999).
[CrossRef]

MacKay, D. M.

D. M. MacKay, “Perceptual stability of a stroboscopically lit visual field containing self-luminous objects,” Nature 181, 507–508 (1958).
[CrossRef]

Maiche, A.

A. Maiche, R. Budelli, and L. Gómez-Sena, “Spatial facilitation is involved in flash-lag effect,” Vis. Res. 47, 1655–1661 (2007).
[CrossRef]

Mateef, S.

S. Mateef and J. Hohnsbein, “Perceptual latencies are shorter for motion towards the fovea than away,” Vis. Res. 28, 711–719 (1988).
[CrossRef]

Matsubara, K.

S. Shiori, K. Yamamoto, H. Oshida, and K. Matsubara, “Measuring attention using flash-lag effect,” J. Vis. 10(10):10, 1–13 (2010).
[CrossRef]

Maus, G. W.

G. W. Maus, J. Ward, R. Nijhawan, and D. Whitney, “The perceived position of moving objects: transcranial magnetic stimulation of area MT+ reduces the flash-lag effect,” Cereb. Cortex 23, 241–247 (2013).
[CrossRef]

G. W. Maus and R. Nijhawan, “Going, going, gone: localizing abrupt offsets of moving objects,” J. Exp. Psychol. A 35, 611–626 (2009).
[CrossRef]

G. W. Maus and R. Nijhawan, “Forward displacements of fading objects in motion: the role of transient signals in perceiving position,” Vis. Res. 46, 4375–4381 (2006).
[CrossRef]

Mazurek, M. E.

T. D. Hanks, M. E. Mazurek, R. Kiani, E. Hopp, and M. N. Shadlen, “Elapsed decision time affects the weighting of prior probability in a perceptual decision task,” J. Neurosci. 31, 6339–6352 (2011).
[CrossRef]

Meister, M.

M. J. Berry, I. H. Brivanlou, T. A. Jordan, and M. Meister, “Anticipation of moving stimuli by the retina,” Nature 398, 334–338 (1999).
[CrossRef]

Mikami, A.

A. Mikami, W. Newsome, and R. Wurtz, “Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT,” J. Neurophysiol. 55, 1308–1327 (1986).

Motes, M. A.

T. L. Hubbard and M. A. Motes, “An effect of context on whether memory for initial position exhibits a Fröhlich effect or an onset repulsion effect,” Q. J. Exp. Psychol. A 58, 961–979 (2005).
[CrossRef]

Movshon, J.

J. Movshon, I. Thompson, and J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex,” J. Physiol. 283, 53–77 (1978).

Movshon, J. A.

J. R. Cavanaugh, W. Bair, and J. A. Movshon, “Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons,” J. Neurophysiol. 88, 2530–2546 (2002).
[CrossRef]

Murakami, I.

D. Whitney, I. Murakami, and P. Cavanagh, “Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli,” Vis. Res. 40, 137–149 (2000).
[CrossRef]

D. Whitney and I. Murakami, “Latency difference, not spatial extrapolation,” Nat. Neurosci. 1, 656–657 (1998).
[CrossRef]

Namba, J.

J. Namba and M. V. C. Baldo, “The modulation of the flash-lag effect by voluntary attention,” Perception 33, 621–631 (2004).
[CrossRef]

M. V. C. Baldo and J. Namba, “The attentional modulation of the flash-lag effect,” Braz. J. Med. Biol. Res. 35, 969–972 (2002).
[CrossRef]

M. V. C. Baldo, A. H. Kihara, J. Namba, and S. A. Klein, “Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli,” Perception 31, 17–30 (2002).
[CrossRef]

Newsome, W.

A. Mikami, W. Newsome, and R. Wurtz, “Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT,” J. Neurophysiol. 55, 1308–1327 (1986).

Newsome, W. T.

D. J. Heeger, G. M. Boynton, J. B. Demb, E. Seidemann, and W. T. Newsome, “Motion opponency in visual cortex,” J. Neurosci. 19, 7162–7174 (1999).

Nijhawan, R.

G. W. Maus, J. Ward, R. Nijhawan, and D. Whitney, “The perceived position of moving objects: transcranial magnetic stimulation of area MT+ reduces the flash-lag effect,” Cereb. Cortex 23, 241–247 (2013).
[CrossRef]

G. W. Maus and R. Nijhawan, “Going, going, gone: localizing abrupt offsets of moving objects,” J. Exp. Psychol. A 35, 611–626 (2009).
[CrossRef]

R. Nijhawan, “Visual prediction: psychophysics and neurophysiology of compensation for time delays,” Behav. Brain Sci. 31, 179–198; discussion 198–239 (2008).

Z. Shi and R. Nijhawan, “Behavioral significance of motion direction causes anisotropic flash-lag, flash-drag, flash-repulsion, and movement-mislocalization effects,” J. Vis. 8(7):24, 1–14 (2008).
[CrossRef]

G. W. Maus and R. Nijhawan, “Forward displacements of fading objects in motion: the role of transient signals in perceiving position,” Vis. Res. 46, 4375–4381 (2006).
[CrossRef]

B. Khurana, K. Watanabe, and R. Nijhawan, “The role of attention in motion extrapolation: are moving objects “corrected” or flashed objects attentionally delayed?” Perception 29, 675–692 (2000).
[CrossRef]

R. Nijhawan, “Motion extrapolation in catching,” Nature 370, 256–257 (1994).
[CrossRef]

Oshida, H.

S. Shiori, K. Yamamoto, H. Oshida, and K. Matsubara, “Measuring attention using flash-lag effect,” J. Vis. 10(10):10, 1–13 (2010).
[CrossRef]

Pelli, D. G.

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spat. Vis. 10, 437–442 (1997).
[CrossRef]

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University, 1992).

Qian, N.

N. Qian and R. Andersen, “Transparent motion perception as detection of unbalanced motion signals. II. Physiology,” J. Neurosci. 14, 7367–7380 (1994).

Rodman, H.

H. Rodman and T. Albright, “Coding of visual stimulus velocity in area MT of the macaque,” Vis. Res. 27, 2035–2048 (1987).
[CrossRef]

Rotman, G.

E. Brenner, R. J. van Beers, G. Rotman, and J. B. J. Smeets, “The role of uncertainty in the systematic spatial mislocalization of moving objects,” J. Exp. Psychol. Hum. Percept. Perform. 32, 811–825 (2006).
[CrossRef]

G. Rotman, E. Brenner, and J. B. J. Smeets, “Spatial but not temporal cueing influences the mislocalisation of a target flashed during smooth pursuit,” Perception 31, 1195–1203 (2002).
[CrossRef]

E. Brenner, R. J. van Beers, G. Rotman, and J. B. Smeets, “Motion extrapolation is not responsible for the flash-lag effect,” Vis. Res. 40, 1645–1648 (2000).
[CrossRef]

Ruppel, S. E.

T. L. Hubbard and S. E. Ruppel, “Representational momentum and the landmark attraction effect,” Can. J. Exp. Psychol. 53, 242–256 (1999).
[CrossRef]

Sarich, D.

D. Sarich, M. Chappell, and C. Burgess, “Dividing attention in the flash-lag illusion,” Vis. Res. 47, 544–547 (2007).
[CrossRef]

Seidemann, E.

D. J. Heeger, G. M. Boynton, J. B. Demb, E. Seidemann, and W. T. Newsome, “Motion opponency in visual cortex,” J. Neurosci. 19, 7162–7174 (1999).

Shadlen, M. N.

T. D. Hanks, M. E. Mazurek, R. Kiani, E. Hopp, and M. N. Shadlen, “Elapsed decision time affects the weighting of prior probability in a perceptual decision task,” J. Neurosci. 31, 6339–6352 (2011).
[CrossRef]

J. I. Gold and M. N. Shadlen, “The neural basis of decision making,” Annu. Rev. Neurosci. 30, 535–574 (2007).
[CrossRef]

Shen, Y.

Y. X. Fu, Y. Shen, and Y. Dan, “Motion-induced perceptual extrapolation of blurred visual targets,” J. Neurosci. 21, RC172 (2001).

Sheth, B. R.

R. Kanai, B. R. Sheth, and S. Shimojo, “Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization,” Vis. Res. 44, 2605–2619 (2004).
[CrossRef]

Shi, Z.

Z. Shi and R. Nijhawan, “Behavioral significance of motion direction causes anisotropic flash-lag, flash-drag, flash-repulsion, and movement-mislocalization effects,” J. Vis. 8(7):24, 1–14 (2008).
[CrossRef]

Shimojo, S.

R. Kanai, B. R. Sheth, and S. Shimojo, “Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization,” Vis. Res. 44, 2605–2619 (2004).
[CrossRef]

Shiori, S.

S. Shiori, K. Yamamoto, H. Oshida, and K. Matsubara, “Measuring attention using flash-lag effect,” J. Vis. 10(10):10, 1–13 (2010).
[CrossRef]

Sigman, M.

C. Gilbert, M. Sigman, and R. Crist, “The neural basis of perceptual learning,” Neuron 31, 681–697 (2001).
[CrossRef]

Sillito, A.

H. Jones, K. Grieve, W. Wang, and A. Sillito, “Surround suppression in primate V1,” J. Neurophysiol. 86, 2011–2028 (2001).

Simoncelli, E.

E. Simoncelli and D. Heeger, “A model of neuronal responses in visual area MT,” Vis. Res. 38, 743–761 (1998).
[CrossRef]

Smeets, J. B.

E. Brenner, R. J. van Beers, G. Rotman, and J. B. Smeets, “Motion extrapolation is not responsible for the flash-lag effect,” Vis. Res. 40, 1645–1648 (2000).
[CrossRef]

Smeets, J. B. J.

E. Brenner, R. J. van Beers, G. Rotman, and J. B. J. Smeets, “The role of uncertainty in the systematic spatial mislocalization of moving objects,” J. Exp. Psychol. Hum. Percept. Perform. 32, 811–825 (2006).
[CrossRef]

G. Rotman, E. Brenner, and J. B. J. Smeets, “Spatial but not temporal cueing influences the mislocalisation of a target flashed during smooth pursuit,” Perception 31, 1195–1203 (2002).
[CrossRef]

Snowden, R.

R. Snowden and S. Treue, “The response of area MT and V1 neurons to transparent motion,” J. Neurosci. 11, 2768–2785 (1991).

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University, 1992).

Thompson, I.

J. Movshon, I. Thompson, and J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex,” J. Physiol. 283, 53–77 (1978).

Tolhurst, J.

J. Movshon, I. Thompson, and J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex,” J. Physiol. 283, 53–77 (1978).

Treue, S.

R. Snowden and S. Treue, “The response of area MT and V1 neurons to transparent motion,” J. Neurosci. 11, 2768–2785 (1991).

van Beers, R. J.

E. Brenner, R. J. van Beers, G. Rotman, and J. B. J. Smeets, “The role of uncertainty in the systematic spatial mislocalization of moving objects,” J. Exp. Psychol. Hum. Percept. Perform. 32, 811–825 (2006).
[CrossRef]

E. Brenner, R. J. van Beers, G. Rotman, and J. B. Smeets, “Motion extrapolation is not responsible for the flash-lag effect,” Vis. Res. 40, 1645–1648 (2000).
[CrossRef]

Verghese, P.

D. Vreven and P. Verghese, “Predictability and the dynamics of position processing in the flash-lag effect,” Perception 34, 31–44 (2005).
[CrossRef]

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University, 1992).

Vreven, D.

D. Vreven and P. Verghese, “Predictability and the dynamics of position processing in the flash-lag effect,” Perception 34, 31–44 (2005).
[CrossRef]

Wang, W.

H. Jones, K. Grieve, W. Wang, and A. Sillito, “Surround suppression in primate V1,” J. Neurophysiol. 86, 2011–2028 (2001).

Ward, J.

G. W. Maus, J. Ward, R. Nijhawan, and D. Whitney, “The perceived position of moving objects: transcranial magnetic stimulation of area MT+ reduces the flash-lag effect,” Cereb. Cortex 23, 241–247 (2013).
[CrossRef]

Watanabe, K.

B. Khurana, K. Watanabe, and R. Nijhawan, “The role of attention in motion extrapolation: are moving objects “corrected” or flashed objects attentionally delayed?” Perception 29, 675–692 (2000).
[CrossRef]

Whitney, D.

G. W. Maus, J. Ward, R. Nijhawan, and D. Whitney, “The perceived position of moving objects: transcranial magnetic stimulation of area MT+ reduces the flash-lag effect,” Cereb. Cortex 23, 241–247 (2013).
[CrossRef]

D. Whitney, I. Murakami, and P. Cavanagh, “Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli,” Vis. Res. 40, 137–149 (2000).
[CrossRef]

D. Whitney and I. Murakami, “Latency difference, not spatial extrapolation,” Nat. Neurosci. 1, 656–657 (1998).
[CrossRef]

Wurtz, R.

A. Mikami, W. Newsome, and R. Wurtz, “Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT,” J. Neurophysiol. 55, 1308–1327 (1986).

Yamamoto, K.

S. Shiori, K. Yamamoto, H. Oshida, and K. Matsubara, “Measuring attention using flash-lag effect,” J. Vis. 10(10):10, 1–13 (2010).
[CrossRef]

Annu. Rev. Neurosci. (1)

J. I. Gold and M. N. Shadlen, “The neural basis of decision making,” Annu. Rev. Neurosci. 30, 535–574 (2007).
[CrossRef]

Behav. Brain Sci. (1)

R. Nijhawan, “Visual prediction: psychophysics and neurophysiology of compensation for time delays,” Behav. Brain Sci. 31, 179–198; discussion 198–239 (2008).

Braz. J. Med. Biol. Res. (1)

M. V. C. Baldo and J. Namba, “The attentional modulation of the flash-lag effect,” Braz. J. Med. Biol. Res. 35, 969–972 (2002).
[CrossRef]

Can. J. Exp. Psychol. (1)

T. L. Hubbard and S. E. Ruppel, “Representational momentum and the landmark attraction effect,” Can. J. Exp. Psychol. 53, 242–256 (1999).
[CrossRef]

Cereb. Cortex (1)

G. W. Maus, J. Ward, R. Nijhawan, and D. Whitney, “The perceived position of moving objects: transcranial magnetic stimulation of area MT+ reduces the flash-lag effect,” Cereb. Cortex 23, 241–247 (2013).
[CrossRef]

Curr. Opin. Neurobiol. (1)

D. Fitzpatrick, “Seeing beyond the receptive field in primary visual cortex,” Curr. Opin. Neurobiol. 10, 438–443 (2000).
[CrossRef]

Front. Psychol. (1)

T. L. Hubbard, “Do the flash-lag effect and representational momentum involve similar extrapolations?” Front. Psychol. 4, 290 (2013).
[CrossRef]

J. Exp. Psychol. A (1)

G. W. Maus and R. Nijhawan, “Going, going, gone: localizing abrupt offsets of moving objects,” J. Exp. Psychol. A 35, 611–626 (2009).
[CrossRef]

J. Exp. Psychol. Hum. Percept. Perform. (1)

E. Brenner, R. J. van Beers, G. Rotman, and J. B. J. Smeets, “The role of uncertainty in the systematic spatial mislocalization of moving objects,” J. Exp. Psychol. Hum. Percept. Perform. 32, 811–825 (2006).
[CrossRef]

J. Exp. Psychol. Learn. Mem. Cogn. (1)

T. L. Hubbard, A. M. Kumar, and C. L. Carp, “Effects of spatial cueing on representational momentum,” J. Exp. Psychol. Learn. Mem. Cogn. 35, 666–677 (2009).
[CrossRef]

J. Neurophysiol. (3)

H. Jones, K. Grieve, W. Wang, and A. Sillito, “Surround suppression in primate V1,” J. Neurophysiol. 86, 2011–2028 (2001).

A. Mikami, W. Newsome, and R. Wurtz, “Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT,” J. Neurophysiol. 55, 1308–1327 (1986).

J. R. Cavanaugh, W. Bair, and J. A. Movshon, “Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons,” J. Neurophysiol. 88, 2530–2546 (2002).
[CrossRef]

J. Neurosci. (5)

R. Snowden and S. Treue, “The response of area MT and V1 neurons to transparent motion,” J. Neurosci. 11, 2768–2785 (1991).

N. Qian and R. Andersen, “Transparent motion perception as detection of unbalanced motion signals. II. Physiology,” J. Neurosci. 14, 7367–7380 (1994).

D. J. Heeger, G. M. Boynton, J. B. Demb, E. Seidemann, and W. T. Newsome, “Motion opponency in visual cortex,” J. Neurosci. 19, 7162–7174 (1999).

T. D. Hanks, M. E. Mazurek, R. Kiani, E. Hopp, and M. N. Shadlen, “Elapsed decision time affects the weighting of prior probability in a perceptual decision task,” J. Neurosci. 31, 6339–6352 (2011).
[CrossRef]

Y. X. Fu, Y. Shen, and Y. Dan, “Motion-induced perceptual extrapolation of blurred visual targets,” J. Neurosci. 21, RC172 (2001).

J. Physiol. (2)

C. Gilbert, “Laminar differences in receptive field properties of cells in cat primary visual cortex,” J. Physiol. 268, 391–421 (1977).

J. Movshon, I. Thompson, and J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex,” J. Physiol. 283, 53–77 (1978).

J. Vis. (2)

Z. Shi and R. Nijhawan, “Behavioral significance of motion direction causes anisotropic flash-lag, flash-drag, flash-repulsion, and movement-mislocalization effects,” J. Vis. 8(7):24, 1–14 (2008).
[CrossRef]

S. Shiori, K. Yamamoto, H. Oshida, and K. Matsubara, “Measuring attention using flash-lag effect,” J. Vis. 10(10):10, 1–13 (2010).
[CrossRef]

Nat. Neurosci. (1)

D. Whitney and I. Murakami, “Latency difference, not spatial extrapolation,” Nat. Neurosci. 1, 656–657 (1998).
[CrossRef]

Nature (5)

M. V. Baldo and S. A. Klein, “Extrapolation or attention shift?” Nature 378, 565–566 (1995).
[CrossRef]

D. M. MacKay, “Perceptual stability of a stroboscopically lit visual field containing self-luminous objects,” Nature 181, 507–508 (1958).
[CrossRef]

R. Nijhawan, “Motion extrapolation in catching,” Nature 370, 256–257 (1994).
[CrossRef]

A. Das and C. D. Gilbert, “Topography of contextual modulations mediated by short-range interactions in primary visual cortex,” Nature 399, 655–661 (1999).
[CrossRef]

M. J. Berry, I. H. Brivanlou, T. A. Jordan, and M. Meister, “Anticipation of moving stimuli by the retina,” Nature 398, 334–338 (1999).
[CrossRef]

Neuron (1)

C. Gilbert, M. Sigman, and R. Crist, “The neural basis of perceptual learning,” Neuron 31, 681–697 (2001).
[CrossRef]

Perception (6)

P. C. Knox, “The reduction of the effect of the Müller-Lyer illusion saccade amplitude by classic adaptation,” Perception 1, 95–102 (2010).
[CrossRef]

B. Khurana, K. Watanabe, and R. Nijhawan, “The role of attention in motion extrapolation: are moving objects “corrected” or flashed objects attentionally delayed?” Perception 29, 675–692 (2000).
[CrossRef]

M. V. C. Baldo, A. H. Kihara, J. Namba, and S. A. Klein, “Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli,” Perception 31, 17–30 (2002).
[CrossRef]

D. Vreven and P. Verghese, “Predictability and the dynamics of position processing in the flash-lag effect,” Perception 34, 31–44 (2005).
[CrossRef]

G. Rotman, E. Brenner, and J. B. J. Smeets, “Spatial but not temporal cueing influences the mislocalisation of a target flashed during smooth pursuit,” Perception 31, 1195–1203 (2002).
[CrossRef]

J. Namba and M. V. C. Baldo, “The modulation of the flash-lag effect by voluntary attention,” Perception 33, 621–631 (2004).
[CrossRef]

Psychol. Bull. (1)

T. L. Hubbard, “The flash-lag effect and related mislocalizations: findings, properties, and theories,” Psychol. Bull. 140, 308–338 (2014).
[CrossRef]

Q. J. Exp. Psychol. A (1)

T. L. Hubbard and M. A. Motes, “An effect of context on whether memory for initial position exhibits a Fröhlich effect or an onset repulsion effect,” Q. J. Exp. Psychol. A 58, 961–979 (2005).
[CrossRef]

Spat. Vis. (2)

D. H. Brainard, “The psychophysics toolbox,” Spat. Vis. 10, 433–436 (1997).
[CrossRef]

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spat. Vis. 10, 437–442 (1997).
[CrossRef]

Trends Cogn. Sci. (1)

M. Ahissar and S. Hochstein, “The reverse hierarchy theory of visual perceptual learning,” Trends Cogn. Sci. 8, 457–464 (2004).
[CrossRef]

Trends Neurosci. (1)

B. Krekelberg and M. Lappe, “Neuronal latencies and the position of moving objects,” Trends Neurosci. 24, 335–339 (2001).
[CrossRef]

Vis. Res. (11)

H. Rodman and T. Albright, “Coding of visual stimulus velocity in area MT of the macaque,” Vis. Res. 27, 2035–2048 (1987).
[CrossRef]

E. Simoncelli and D. Heeger, “A model of neuronal responses in visual area MT,” Vis. Res. 38, 743–761 (1998).
[CrossRef]

B. A. Dosher and Z.-L. Lu, “Mechanisms of perceptual learning,” Vis. Res. 39, 3197–3221 (1999).
[CrossRef]

E. Brenner, R. J. van Beers, G. Rotman, and J. B. Smeets, “Motion extrapolation is not responsible for the flash-lag effect,” Vis. Res. 40, 1645–1648 (2000).
[CrossRef]

A. Maiche, R. Budelli, and L. Gómez-Sena, “Spatial facilitation is involved in flash-lag effect,” Vis. Res. 47, 1655–1661 (2007).
[CrossRef]

S. Mateef and J. Hohnsbein, “Perceptual latencies are shorter for motion towards the fovea than away,” Vis. Res. 28, 711–719 (1988).
[CrossRef]

D. Whitney, I. Murakami, and P. Cavanagh, “Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli,” Vis. Res. 40, 137–149 (2000).
[CrossRef]

R. Kanai, B. R. Sheth, and S. Shimojo, “Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization,” Vis. Res. 44, 2605–2619 (2004).
[CrossRef]

D. Sarich, M. Chappell, and C. Burgess, “Dividing attention in the flash-lag illusion,” Vis. Res. 47, 544–547 (2007).
[CrossRef]

A. Gauch and D. Kerzel, “Contributions of visible persistence and perceptual set to the flash-lag effect: focusing on flash onset abolishes the illusion,” Vis. Res. 49, 2983–2991 (2009).
[CrossRef]

G. W. Maus and R. Nijhawan, “Forward displacements of fading objects in motion: the role of transient signals in perceiving position,” Vis. Res. 46, 4375–4381 (2006).
[CrossRef]

Other (1)

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The flash-lag effect. The top portion of the figure (“Actual”) shows the stimuli as they physically appear on the screen. The bottom portion of the figure (“Perceived”) shows what a viewer typically perceives.

Fig. 2.
Fig. 2.

Visual stimuli used to measure the flash-lag effect. (a) Objects shown during the task. (b) Four examples of different trial conditions. Numbers give the horizontal positions of the fixed bar. Three conditions with different fixed bar positions are shown, as well as the control condition with no fixed bar. (c) Depictions of objects shown in Experiment 1 and Experiment 2. In Experiment 1, the fixed bar was always the same size (a “long” fixed bar). In Experiment 2, each trial had one of two fixed bar sizes, either a “short” fixed bar (top portion) or a “long” fixed bar (bottom portion); these two trial types were randomly interleaved.

Fig. 3.
Fig. 3.

Adjustment task used to measure participants’ flash-lag effect. a: The actual position of the moving bar. p: the perceived location of the moving bar. (a) This row depicts three frames from a single sweep of the moving bar with the flashed bar appearing early in the sweep. The participant would perceive the flashed bar appearing too early and would adjust the flashed bar appearance to a later frame. (b) Another single sweep of the moving bar. In this case the participant would perceive the flashed bar as appearing too late and would adjust the flashed bar appearance to an earlier frame. (c) The flashed bar is perceived to be vertically aligned with the moving bar, and the participant now reports “trial complete.” The difference between the actual position of the moving bar and the flashed bar is now recorded as the measured flash-lag effect (referred to as FLE in the paper). A positive FLE indicates that the moving bar is perceived to the right of its actual position (as shown in the figure); a negative FLE indicates that the moving bar is perceived to the left of its actual position (not shown).

Fig. 4.
Fig. 4.

Results in Experiment 1 from six participants. Points show mean FLE values, bars show ±1 SEM. “CTRL” indicates the control condition (no fixed bar). Five participants (MM, JP, 015, 017, 028) show a significant effect of fixed bar position (ANOVA), and their effect is quantified with a Gaussian fit (thick lines; see Methods), which yields a Depth and Offset measure for each response curve. Asterisks indicate values that are significantly different from zero (two-tailed T-test, α=0.05). Participant 022 showed no effect of fixed bar position and thus the data were not fit with a Gaussian curve. Participant 028 showed a significant effect of fixed bar position; however, this participant’s data was grossly different from the Gaussian pattern and thus Depth and Offset are not reported.

Fig. 5.
Fig. 5.

Results in Experiment 2 from two participants. Points show mean FLE values, bars show ±1 SEM. Gray shows results using the short fixed bar, black shows results using the long fixed bar. Each response curve was fit with a Gaussian function (thick lines). Each fit yields a Depth and Offset measure; asterisks indicate values that are individually different from zero (two-tailed T-test). Additionally, the Depth and Offset values were compared between short and long fixed bars in each participant using a two-tailed two-sample T-test (comparisons indicated by arrows); asterisks indicate significant differences between short and long fixed bar responses (α=0.05), n.s. indicates a difference that is not statistically significant.

Fig. 6.
Fig. 6.

Effects of overexposure. Points show mean FLE values, bars show ±1 SEM. Each row shows results of a participant who performed the task over a long period of time; data for each are broken into “early” and “late” phases. Note that in panels using data from Experiment 2 [(a) and (f)], only trials using the “long” fixed bar are shown. (a) Participant 028 “early”: Experiment 2. (b) Participant 028 “late”: Experiment 1. (c) Participant JP “early”: Experiment 1. (d) Participant JP “late”: Experiment 1. (e) Participant 015 “early”: Experiment 1. (f) Participant 015 “late”: Experiment 2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FLE=Depth×exp((FB-Offset)22×Width2)+Baseline.

Metrics