Abstract

In this work we address, first, the optical force on a magnetodielectric particle on a flat dielectric surface due to an evanescent Bessel beam and, second, the effects on the force of multiple scattering with the substrate. For the first question we find analytical solutions showing that due to the interference of the excited electric and magnetic particle dipoles, the vertical force unusually pushes the object out from the plane. The incident wavelength rules whether or not the illumination constitutes an optical trap. As for the second problem, we make a 2D study with a single evanescent plane wave, and we present the Kerker conditions (so far established for spheres) for magnetodielectric cylinders, showing that in p polarization these conditions are practically reproduced by the latter particles and are associated to minima of the horizontal and vertical forces.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772–774 (1992).
    [CrossRef]
  2. E. Almaas and I. Brevik, “Radiation forces on a micrometer-sized sphere in an evanescent field,” J. Opt. Soc. Am. B 12, 2429–2438 (1995).
    [CrossRef]
  3. J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, “Modeling photonic force microscopy with metallic particles under plasmon eigenmode excitation,” Phys. Rev. B 65, 115402 (2002).
    [CrossRef]
  4. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88, 123601 (2002).
    [CrossRef]
  5. A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32, 1156–1158 (2007).
    [CrossRef]
  6. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
    [CrossRef]
  7. J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
    [CrossRef]
  8. A. Novitsky, C. W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
    [CrossRef]
  9. S. Sukhov and A. Dogariu, “Negative nonconservative forces: optical ‘tractor beams’ for arbitrary objects,” Phys. Rev. Lett. 107, 203602 (2011).
    [CrossRef]
  10. A. Novitsky, C.-W. Qiu, and A. Lavrinenko, “Material-independent and size-independent tractor beams for dipole objects,” Phys. Rev. Lett. 109, 023902 (2012).
    [CrossRef]
  11. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18, 11428–11443 (2010).
    [CrossRef]
  12. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
    [CrossRef]
  13. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [CrossRef]
  14. M. Nieto-Vesperinas and J. J. Saenz, “Optical forces from an evanescent wave on a magnetodielectric small particle,” Opt. Lett. 35, 4078–4080 (2010).
    [CrossRef]
  15. J. R. Arias-González and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A 20, 1201–1209 (2003).
    [CrossRef]
  16. W.-P. Zang, Y. Yang, Z.-Y. Zhao, and J.-G. Tian, “The effects of multiple scattering to optical forces on a sphere in an evanescent field,” Opt. Express 21, 12373–12384 (2013).
    [CrossRef]
  17. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
    [CrossRef]
  18. K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
    [CrossRef]
  19. M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28, 54–60 (2011).
    [CrossRef]
  20. J. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
    [CrossRef]
  21. D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
    [CrossRef]
  22. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [CrossRef]
  23. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
    [CrossRef]
  24. M. Kerker, D.-S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73, 765–767 (1983).
    [CrossRef]
  25. A. V. Novitsky and L. M. Barkovsky, “Total internal reflection of vector Bessel beams: Imbert–Fedorov shift and intensity transformation,” J. Opt. A Pure Appl. Opt. 10, 075006 (2008).
    [CrossRef]
  26. S. Ruschin and A. Leizer, “Evanescent Bessel beams,” J. Opt. Soc. Am. A 15, 1139–1143 (1998).
    [CrossRef]
  27. J. M. Auñón, C. W. Qiu, and M. Nieto-Vesperinas, “Tailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source,” Phys. Rev. A 88, 043817 (2013).
    [CrossRef]
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  29. J. M. Auñón and M. Nieto-Vesperinas, “Photonic forces in the near field of statistically homogeneous fluctuating sources,” Phys. Rev. A 85, 053828 (2012).
    [CrossRef]
  30. P. C. Chaumet and M. Nieto-Vesperinas, “Electromagnetic force on a metallic particle in the presence of a dielectric surface,” Phys. Rev. B 62, 11185–11191 (2000).
    [CrossRef]
  31. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (World Science, 2006).
  32. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  33. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  34. F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Optical forces on cylinders near subwavelength slits: effects of extraordinary transmission and excitation of Mie resonances,” Opt. Express 20, 13368–13389 (2012).
    [CrossRef]
  35. A. Yaghjian, “Electric dyadic Green’s functions in the source region,” Proc. IEEE 68, 248–263 (1980).
    [CrossRef]
  36. A. Lakhtakia, “Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields,” Int. J. Mod. Phys. C 03, 583–603 (1992).
    [CrossRef]
  37. A. Madrazo, M. NietoVesperinas, and N. Garcia, “Exact calculation of Maxwell equations for a tip-metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
    [CrossRef]
  38. A. Garcia-Martin, J. A. Torres, J. J. Saenz, and M. Nieto-Vesperinas, “Intensity distribution of transmitted waves in surface corrugated waveguides,” Phys. Rev. Lett. 80, 4165–4168 (1998).
    [CrossRef]
  39. P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000).
    [CrossRef]

2013 (2)

W.-P. Zang, Y. Yang, Z.-Y. Zhao, and J.-G. Tian, “The effects of multiple scattering to optical forces on a sphere in an evanescent field,” Opt. Express 21, 12373–12384 (2013).
[CrossRef]

J. M. Auñón, C. W. Qiu, and M. Nieto-Vesperinas, “Tailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source,” Phys. Rev. A 88, 043817 (2013).
[CrossRef]

2012 (5)

J. M. Auñón and M. Nieto-Vesperinas, “Photonic forces in the near field of statistically homogeneous fluctuating sources,” Phys. Rev. A 85, 053828 (2012).
[CrossRef]

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Optical forces on cylinders near subwavelength slits: effects of extraordinary transmission and excitation of Mie resonances,” Opt. Express 20, 13368–13389 (2012).
[CrossRef]

J. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[CrossRef]

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

A. Novitsky, C.-W. Qiu, and A. Lavrinenko, “Material-independent and size-independent tractor beams for dipole objects,” Phys. Rev. Lett. 109, 023902 (2012).
[CrossRef]

2011 (5)

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[CrossRef]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[CrossRef]

A. Novitsky, C. W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
[CrossRef]

S. Sukhov and A. Dogariu, “Negative nonconservative forces: optical ‘tractor beams’ for arbitrary objects,” Phys. Rev. Lett. 107, 203602 (2011).
[CrossRef]

M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28, 54–60 (2011).
[CrossRef]

2010 (2)

2009 (1)

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef]

2008 (1)

A. V. Novitsky and L. M. Barkovsky, “Total internal reflection of vector Bessel beams: Imbert–Fedorov shift and intensity transformation,” J. Opt. A Pure Appl. Opt. 10, 075006 (2008).
[CrossRef]

2007 (2)

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef]

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32, 1156–1158 (2007).
[CrossRef]

2006 (1)

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef]

2003 (2)

2002 (2)

J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, “Modeling photonic force microscopy with metallic particles under plasmon eigenmode excitation,” Phys. Rev. B 65, 115402 (2002).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88, 123601 (2002).
[CrossRef]

2000 (2)

P. C. Chaumet and M. Nieto-Vesperinas, “Electromagnetic force on a metallic particle in the presence of a dielectric surface,” Phys. Rev. B 62, 11185–11191 (2000).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000).
[CrossRef]

1998 (2)

A. Garcia-Martin, J. A. Torres, J. J. Saenz, and M. Nieto-Vesperinas, “Intensity distribution of transmitted waves in surface corrugated waveguides,” Phys. Rev. Lett. 80, 4165–4168 (1998).
[CrossRef]

S. Ruschin and A. Leizer, “Evanescent Bessel beams,” J. Opt. Soc. Am. A 15, 1139–1143 (1998).
[CrossRef]

1996 (1)

A. Madrazo, M. NietoVesperinas, and N. Garcia, “Exact calculation of Maxwell equations for a tip-metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
[CrossRef]

1995 (1)

1992 (2)

S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772–774 (1992).
[CrossRef]

A. Lakhtakia, “Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields,” Int. J. Mod. Phys. C 03, 583–603 (1992).
[CrossRef]

1987 (2)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[CrossRef]

1983 (1)

1980 (1)

A. Yaghjian, “Electric dyadic Green’s functions in the source region,” Proc. IEEE 68, 248–263 (1980).
[CrossRef]

Aizpurua, J.

Albella, P.

J. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[CrossRef]

Almaas, E.

Arias-González, J. R.

J. R. Arias-González and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A 20, 1201–1209 (2003).
[CrossRef]

J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, “Modeling photonic force microscopy with metallic particles under plasmon eigenmode excitation,” Phys. Rev. B 65, 115402 (2002).
[CrossRef]

Auñón, J. M.

J. M. Auñón, C. W. Qiu, and M. Nieto-Vesperinas, “Tailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source,” Phys. Rev. A 88, 043817 (2013).
[CrossRef]

J. M. Auñón and M. Nieto-Vesperinas, “Photonic forces in the near field of statistically homogeneous fluctuating sources,” Phys. Rev. A 85, 053828 (2012).
[CrossRef]

Badenes, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef]

Barkovsky, L. M.

A. V. Novitsky and L. M. Barkovsky, “Total internal reflection of vector Bessel beams: Imbert–Fedorov shift and intensity transformation,” J. Opt. A Pure Appl. Opt. 10, 075006 (2008).
[CrossRef]

Belov, P. A.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Brevik, I.

Cabuz, A. I.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef]

Cassagne, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef]

Centeno, E.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef]

Chan, C. T.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[CrossRef]

Chantada, L.

Chaumet, P. C.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88, 123601 (2002).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, “Electromagnetic force on a metallic particle in the presence of a dielectric surface,” Phys. Rev. B 62, 11185–11191 (2000).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000).
[CrossRef]

Chen, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef]

Chen, J.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[CrossRef]

Dogariu, A.

S. Sukhov and A. Dogariu, “Negative nonconservative forces: optical ‘tractor beams’ for arbitrary objects,” Phys. Rev. Lett. 107, 203602 (2011).
[CrossRef]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[CrossRef]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Eyraud, C.

J. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[CrossRef]

Felbacq, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef]

Filonov, D. S.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

Froufe-Pérez, L.

J. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[CrossRef]

Froufe-Pérez, L. S.

Garcia, N.

A. Madrazo, M. NietoVesperinas, and N. Garcia, “Exact calculation of Maxwell equations for a tip-metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
[CrossRef]

García-Cámara, B.

J. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[CrossRef]

García-Etxarri, A.

Garcia-Martin, A.

A. Garcia-Martin, J. A. Torres, J. J. Saenz, and M. Nieto-Vesperinas, “Intensity distribution of transmitted waves in surface corrugated waveguides,” Phys. Rev. Lett. 80, 4165–4168 (1998).
[CrossRef]

Geffrin, J.

J. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[CrossRef]

Giles, C. L.

Gomez-Medina, R.

Gómez-Medina, R.

J. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[CrossRef]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[CrossRef]

M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18, 11428–11443 (2010).
[CrossRef]

González, F.

J. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef]

Grzegorczyk, T. M.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef]

Guizal, B.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Kapitanova, P. V.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

Kawata, S.

Kerker, M.

Kivshar, Y. S.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

Kong, J. A.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef]

Krasnok, A. E.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

Lakhtakia, A.

A. Lakhtakia, “Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields,” Int. J. Mod. Phys. C 03, 583–603 (1992).
[CrossRef]

Lavrinenko, A.

A. Novitsky, C.-W. Qiu, and A. Lavrinenko, “Material-independent and size-independent tractor beams for dipole objects,” Phys. Rev. Lett. 109, 023902 (2012).
[CrossRef]

Leizer, A.

Lester, M.

J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, “Modeling photonic force microscopy with metallic particles under plasmon eigenmode excitation,” Phys. Rev. B 65, 115402 (2002).
[CrossRef]

Lin, Z.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[CrossRef]

Litman, A.

J. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[CrossRef]

López, C.

Madrazo, A.

A. Madrazo, M. NietoVesperinas, and N. Garcia, “Exact calculation of Maxwell equations for a tip-metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Moreno, F.

J. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[CrossRef]

Nenasheva, E. A.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

Ng, J.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[CrossRef]

NietoVesperinas, M.

A. Madrazo, M. NietoVesperinas, and N. Garcia, “Exact calculation of Maxwell equations for a tip-metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
[CrossRef]

Nieto-Vesperinas, M.

J. M. Auñón, C. W. Qiu, and M. Nieto-Vesperinas, “Tailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source,” Phys. Rev. A 88, 043817 (2013).
[CrossRef]

J. M. Auñón and M. Nieto-Vesperinas, “Photonic forces in the near field of statistically homogeneous fluctuating sources,” Phys. Rev. A 85, 053828 (2012).
[CrossRef]

J. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[CrossRef]

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Optical forces on cylinders near subwavelength slits: effects of extraordinary transmission and excitation of Mie resonances,” Opt. Express 20, 13368–13389 (2012).
[CrossRef]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[CrossRef]

M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28, 54–60 (2011).
[CrossRef]

M. Nieto-Vesperinas and J. J. Saenz, “Optical forces from an evanescent wave on a magnetodielectric small particle,” Opt. Lett. 35, 4078–4080 (2010).
[CrossRef]

M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18, 11428–11443 (2010).
[CrossRef]

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32, 1156–1158 (2007).
[CrossRef]

J. R. Arias-González and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A 20, 1201–1209 (2003).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88, 123601 (2002).
[CrossRef]

J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, “Modeling photonic force microscopy with metallic particles under plasmon eigenmode excitation,” Phys. Rev. B 65, 115402 (2002).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, “Electromagnetic force on a metallic particle in the presence of a dielectric surface,” Phys. Rev. B 62, 11185–11191 (2000).
[CrossRef]

A. Garcia-Martin, J. A. Torres, J. J. Saenz, and M. Nieto-Vesperinas, “Intensity distribution of transmitted waves in surface corrugated waveguides,” Phys. Rev. Lett. 80, 4165–4168 (1998).
[CrossRef]

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (World Science, 2006).

Novitsky, A.

A. Novitsky, C.-W. Qiu, and A. Lavrinenko, “Material-independent and size-independent tractor beams for dipole objects,” Phys. Rev. Lett. 109, 023902 (2012).
[CrossRef]

A. Novitsky, C. W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
[CrossRef]

Novitsky, A. V.

A. V. Novitsky and L. M. Barkovsky, “Total internal reflection of vector Bessel beams: Imbert–Fedorov shift and intensity transformation,” J. Opt. A Pure Appl. Opt. 10, 075006 (2008).
[CrossRef]

Peng, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef]

Petrov, D.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef]

Qiu, C. W.

J. M. Auñón, C. W. Qiu, and M. Nieto-Vesperinas, “Tailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source,” Phys. Rev. A 88, 043817 (2013).
[CrossRef]

A. Novitsky, C. W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
[CrossRef]

Qiu, C.-W.

A. Novitsky, C.-W. Qiu, and A. Lavrinenko, “Material-independent and size-independent tractor beams for dipole objects,” Phys. Rev. Lett. 109, 023902 (2012).
[CrossRef]

Quidant, R.

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32, 1156–1158 (2007).
[CrossRef]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef]

Rahmani, A.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88, 123601 (2002).
[CrossRef]

Ran, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef]

Ruschin, S.

Saenz, J. J.

M. Nieto-Vesperinas and J. J. Saenz, “Optical forces from an evanescent wave on a magnetodielectric small particle,” Opt. Lett. 35, 4078–4080 (2010).
[CrossRef]

A. Garcia-Martin, J. A. Torres, J. J. Saenz, and M. Nieto-Vesperinas, “Intensity distribution of transmitted waves in surface corrugated waveguides,” Phys. Rev. Lett. 80, 4165–4168 (1998).
[CrossRef]

Sáenz, J.

J. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[CrossRef]

Sáenz, J. J.

Scheffold, F.

Slobozhanyuk, A. P.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

Sugiura, T.

Sukhov, S.

S. Sukhov and A. Dogariu, “Negative nonconservative forces: optical ‘tractor beams’ for arbitrary objects,” Phys. Rev. Lett. 107, 203602 (2011).
[CrossRef]

Tian, J.-G.

Torres, J. A.

A. Garcia-Martin, J. A. Torres, J. J. Saenz, and M. Nieto-Vesperinas, “Intensity distribution of transmitted waves in surface corrugated waveguides,” Phys. Rev. Lett. 80, 4165–4168 (1998).
[CrossRef]

Vaillon, R.

J. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[CrossRef]

Valdivia-Valero, F. J.

Volpe, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef]

Vynck, K.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef]

Wang, D.-S.

Wang, H.

A. Novitsky, C. W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
[CrossRef]

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Yaghjian, A.

A. Yaghjian, “Electric dyadic Green’s functions in the source region,” Proc. IEEE 68, 248–263 (1980).
[CrossRef]

Yang, Y.

Zang, W.-P.

Zelenina, A. S.

Zhang, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef]

Zhao, Z.-Y.

Appl. Phys. Lett. (1)

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

Int. J. Mod. Phys. C (1)

A. Lakhtakia, “Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields,” Int. J. Mod. Phys. C 03, 583–603 (1992).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

A. V. Novitsky and L. M. Barkovsky, “Total internal reflection of vector Bessel beams: Imbert–Fedorov shift and intensity transformation,” J. Opt. A Pure Appl. Opt. 10, 075006 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

J. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[CrossRef]

Nat. Photonics (1)

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[CrossRef]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. A (2)

J. M. Auñón and M. Nieto-Vesperinas, “Photonic forces in the near field of statistically homogeneous fluctuating sources,” Phys. Rev. A 85, 053828 (2012).
[CrossRef]

J. M. Auñón, C. W. Qiu, and M. Nieto-Vesperinas, “Tailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source,” Phys. Rev. A 88, 043817 (2013).
[CrossRef]

Phys. Rev. B (4)

P. C. Chaumet and M. Nieto-Vesperinas, “Electromagnetic force on a metallic particle in the presence of a dielectric surface,” Phys. Rev. B 62, 11185–11191 (2000).
[CrossRef]

J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, “Modeling photonic force microscopy with metallic particles under plasmon eigenmode excitation,” Phys. Rev. B 65, 115402 (2002).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000).
[CrossRef]

A. Madrazo, M. NietoVesperinas, and N. Garcia, “Exact calculation of Maxwell equations for a tip-metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
[CrossRef]

Phys. Rev. Lett. (9)

A. Garcia-Martin, J. A. Torres, J. J. Saenz, and M. Nieto-Vesperinas, “Intensity distribution of transmitted waves in surface corrugated waveguides,” Phys. Rev. Lett. 80, 4165–4168 (1998).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88, 123601 (2002).
[CrossRef]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef]

A. Novitsky, C. W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
[CrossRef]

S. Sukhov and A. Dogariu, “Negative nonconservative forces: optical ‘tractor beams’ for arbitrary objects,” Phys. Rev. Lett. 107, 203602 (2011).
[CrossRef]

A. Novitsky, C.-W. Qiu, and A. Lavrinenko, “Material-independent and size-independent tractor beams for dipole objects,” Phys. Rev. Lett. 109, 023902 (2012).
[CrossRef]

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[CrossRef]

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Proc. IEEE (1)

A. Yaghjian, “Electric dyadic Green’s functions in the source region,” Proc. IEEE 68, 248–263 (1980).
[CrossRef]

Other (4)

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (World Science, 2006).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical force components, in arbitrary units, normalized to exp(2βz) on a Si sphere of r0=230nm from an evanescent Bessel beam with m=0. The three horizontal rows show the electric and magnetic forces and the sum of both, respectively (the interference components Frem and Fzem are zero).

Fig. 2.
Fig. 2.

Same as Fig. 1 when m=1. The four horizontal rows show the electric, magnetic, interference, and total force for each component, respectively.

Fig. 3.
Fig. 3.

Real and imaginary parts of the electric (αe) and magnetic (αm) polarizabilities. (a) Sphere of radius r0=230nm (cf. Fig. 1(a) of [19]). (b) Cylinder of radius r0=300nm. A polarized plane wave is incident on the particles. The axis of the cylinder is along the magnetic vector. The results are normalized to r03 for the sphere and to r02 for the cylinder. The vertical broken lines indicate the first (right) and second (left) Kerker condition wavelengths.

Fig. 4.
Fig. 4.

Angular distribution of intensity scattered from a magnetodielectric dipolar sphere (left) and a cylinder under p-polarized illumination (right). The dashed lines (red, which appear multiplied by 1.52) depict the intensities at the wavelengths under which they become zero (sphere) or near zero (cylinder) in θ=π, whereas the solid (blue) lines plot the intensities at the wavelengths at which they are near zero in θ=0 both for the sphere and the cylinder.

Fig. 5.
Fig. 5.

Optical forces, in N/m, from a p-polarized evanescent plane wave created by TIR, on a Si cylinder (r0=300nm) in air, with its axis at distance d+r0 from a dielectric plane z=0 (see text). Left: lateral force Fx. Right: perpendicular force Fz. The solid and dashed lines correspond to MR and AR, respectively.

Fig. 6.
Fig. 6.

Same as in Fig. 5 for a Si cylinder with r0=50nm. Notice that the right column is one order of magnitude larger than the left column since in general, for small r0/λ, ReαeImαe.

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

E(r)=eimϕβz(Ere^r+Eϕe^ϕ+Eze^z)
H(r)=eimϕβz(Hre^r+Hϕe^ϕ+Hze^z),
Er=βqc2Jm(qr)kmq2rc1Jm(qr),
Eϕ=ikqc1Jm(qr)iβmq2rc2Jm(qr),
Ez=Jm(qr)c2,
Hr=βqc1Jm(qr)+kmq2rc2Jm(qr),
Hϕ=ikqc2Jm(qr)iβmq2rc1Jm(qr),
Hz=Jm(qr)c1.
Fre=12Re{αesErE*}=12Re{αes}e2βz(18q[(k2|c1|2+β2|c2|2)×(2mJmqr(Jm2Jm+2)+4Jm(Jm1Jm+1))+kβRe{c1c2*}(4mJmqr(Jm1Jm+1)+2Jm(Jm2Jm+2))]+|c2|2qJmJm),
Frm=12Re{αmsHrH*}=12Re{αms}e2βz(18q[(k2|c2|2+β2|c1|2)×(2mJmqr(Jm2Jm+2)+4Jm(Jm1Jm+1))kβRe{c1c2*}(4mJmqr(Jm1Jm+1)+2Jm(Jm2Jm+2))]+|c1|2qJmJm),
Frem=k43[Re{αesαms*}Re(E×H*)rIm{αesαms*}Im(E×H*)r]=k43[2βmq2rJm2Re{αesαms*}Im{c1c2*}+Im{αesαms*}×(kqJmJm(|c2|2|c1|2)+βmq2rJm2Re{c1c2*})].
αes=i32k3a1s,αms=i32k3b1s,
Fϕ=Fϕe+Fϕm+Fϕem=12Im{αes}m|E|2r+12Im{αms}m|H|2rk43Re{αesαms*}kmq2rJm2(qr)(|c1|2+|c2|2).
|E|2/e2βz=(k2|c1|2+β2|c2|2)(Jm2(qr)q2+m2Jm2(qr)q4r2)+|c2|2Jm2(qr)+4kβmq3rJm(qr)Jm(qr)Re{c1c2*},
|H|2/e2βz=(k2|c2|2+β2|c1|2)(Jm2(qr)q2+m2Jm2(qr)q4r2)+|c1|2Jm2(qr)4kβmq3rJm(qr)Jm(qr)Re{c1c2*}.
Fze=β2Re{αes}|E|2,Fzm=β2Re{αms}|H|2,
Fzem=k43[Re{αesαms*}Re(E×H*)zIm{αesαms*}Im(E×H*)z]=k43e2βz[Re{αesαms*}JmJm2mq3r(k2β2)Im{c1c2*}Im{αesαms*}((kβq2Jm2+kβm2q4r2Jm2)(|c2|2|c1|2)+JmJm22mq3r(k2β2)Re{c1c2*})].
αec=i2πk2a1,αmc=i1πk2a0.
Is(θ)|a1scosθ+b1s|2,Ic(θ)|a0c+2a1ccosθ|2,
Es(ρ,ρ0,ω)=μ0ω2Gp(ρ,ρ0,ω)p(ρ0,ω)Gm(ρ,ρ0,ω)m(ρ0,ω),
Gp(ρ,ρ0,ω)=(I+1k2)G0(ρ,ρ0,ω),
Gm(ρ,ρ0,ω)=G0(ρ,ρ0,ω)×I,
G0(ρ,ρ0,ω)=i4H0(kr),
p(0,ω)=ε0αesE0u^z,
m(0,ω)=αmsH0u^y,
αes=αe,0s1ik2α0s4,
αms=αm,0s1iαm,0sk28.
Es(ρ,ρ0,ω)=E02πkreiπ/4eikr[b0+2n=1bncos(n(πϕ))]uz,
Es=E0k24[iαesH0(kr)+αmsH1(kr)cosϕ]u^z=E02πkreiπ/4eikrik24[αesαmscosϕ]u^z.
αes=i4k2b0,αms=i8k2b1.
αe,0s=4k2J0(mx)J0(x)mJ0(mx)J0(x)J0(mx)Y0(x)mJ0(mx)Y0(x),
αm,0s=8k2J1(mx)J1(x)mJ1(mx)J1(x)J1(mx)Y1(x)mJ1(mx)Y1(x),
p(0,ω)=ε0αepE0u^y,
m(0,ω)=αmpH0u^z,
αep=αe,0p1ik2αe,0p8,
αmp=αm,0p1iαm,0pk24.
Hs(ρ,ρ0,ω)=H02πkreiπ/4eikr[a0+2n=1ancos(n(πϕ))]u^z.
Hs=H0k24[iαmpH0(kr)+αepH1(kr)cosϕ]u^z=H02πkreiπ/4eikrik24[αmpαescosϕ]u^z.
αep=i8k2a1,αmp=i4k2a0.
αe,0p=8k2mJ1(x)J1(mx)J1(x)J1(mx)mJ1(mx)Y1(x)J1(mx)Y1(x),
αm,0p=4k2mJ0(x)J0(mx)J0(x)J0(mx)mJ0(mx)Y0(x)J0(mx)Y0(x).

Metrics