Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Bit error rate of focused Gaussian beams in weak oceanic turbulence

Not Accessible

Your library or personal account may give you access

Abstract

Formulation of the on-axis scintillation index of a focused Gaussian beam in weak oceanic turbulence is derived by using the Rytov method, and using this formulation, the average bit error rate (BER) is evaluated. The scintillation indices of collimated, focused Gaussian, plane, and spherical beams are compared. The scintillation index and BER versus the average signal-to-noise ratio is found by using the log-normal distributed intensity for the collimated and focused Gaussian beams, which are exhibited for various source sizes αs, focal lengths Fs, rates of dissipation of the mean squared temperature χT, and rates of dissipation of the turbulent kinetic energy per unit mass of fluid ε. Focused beams are found to have important advantages over collimated beams. For the focused beam, as the source size increases, the scintillation index and BER decrease. When the focal length is equal to the propagation length, the BER is found to possess the smallest value. The BER is proportional to χT, but inversely proportional to ε.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence

Masoud Yousefi, Shole Golmohammady, Ahmad Mashal, and Fatemeh Dabbagh Kashani
J. Opt. Soc. Am. A 32(11) 1982-1992 (2015)

Scintillation and bit error rate analysis of a phase-locked partially coherent flat-topped array laser beam in oceanic turbulence

Masoud Yousefi, Fatemeh Dabbagh Kashani, Shole Golmohammady, and Ahmad Mashal
J. Opt. Soc. Am. A 34(12) 2126-2137 (2017)

Bit error rate of focused Gaussian beams in weak oceanic turbulence: comment

Mikhail Charnotskii
J. Opt. Soc. Am. A 32(7) 1247-1250 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved