Abstract

In order to obtain a benchmark for electromagnetic energy harvesting, we investigate the maximum absorption efficiency by a magneto-dielectric homogeneous sphere illuminated by a plane wave, and we arrive at several novel results. For electrically small spheres we show that the optimal relative permeability and permeability of materials where ϵr, μr1 is (1+i3) independent of sphere size, while that of metamaterials is (2+iδ), where the imaginary part δ decreases strongly with decreasing sphere size. For larger spheres we show that while maximum absorption efficiency occurs at the resonances of the spherical modes, there exists a wide plateau of high absorption efficiency when material intrinsic impedance is constant; in the case of free-space intrinsic impedance and electrical radius κ=1, the absorption efficiency becomes 2.8. The investigation is analytic/numerical and based on the Lorenz–Mie theory combined with the optical theorem.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Li, L. Dai, and C. Jiang, “Design of efficient plasmonic thin-film solar cells based on mode splitting,” J. Opt. Soc. Am. B 28, 1793–1797 (2011).
    [CrossRef]
  2. A. M. Ionescu and C. Hierold, “Guardian angels for a smarter life: enabling a zero-power technological platform for autonomous smart systems,” Procedia Comput. Sci. 7, 43–46 (2011).
    [CrossRef]
  3. L. Lorenz, “Lysbevægelser i og uden for en af plane lysbølger belyst kugle,” Vidensk. Selsk. Skr. 6, 1–62 (1890).
  4. G. Mie, “Optics of turbid media,” Ann. Phys. 25, 377–445 (1908).
  5. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  6. H. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  7. C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  8. R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett. 109, 243903 (2012).
    [CrossRef]
  9. Y.-L. Geng, X.-B. Wu, L.-W. Li, and B.-R. Guan, “Mie scattering by a uniaxial anisotropic sphere,” Phys. Rev. E 70, 056609 (2004).
    [CrossRef]
  10. J. R. Frisvad, N. J. Christensen, and H. W. Jensen, “Computing the scattering properties of participating media using Lorenz-Mie theory,” ACM Trans. Graph. 26, 60 (2007).
    [CrossRef]
  11. M. Kerker, D.-S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73, 765–767 (1983).
    [CrossRef]
  12. A. E. Miroshnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80, 013808 (2009).
    [CrossRef]
  13. T. J. Arruda and A. S. Martinez, “Electromagnetic energy within magnetic spheres,” J. Opt. Soc. Am. A 27, 992–1001 (2010).
    [CrossRef]
  14. M. Gustafsson, C. Sohl, and G. Kristensson, “Physical limitations on antennas of arbitrary shape,” Proc. R. Soc. A 463, 2589–2607 (2007).
    [CrossRef]
  15. C. Sohl, M. Gustafsson, and G. Kristensson, “Physical limitations on broadband scattering by heterogeneous obstacles,” J. Phys. A 40, 11165–11182 (2007).
    [CrossRef]
  16. C. Sohl, M. Gustafsson, and G. Kristensson, “Physical limitations on metamaterials: restrictions on scattering and absorption over a frequency interval,” J. Phys. D 40, 7146–7151 (2007).
    [CrossRef]
  17. D.-H. Kwon and D. Pozar, “Optimal characteristics of an arbitrary receive antenna,” IEEE Trans. Antennas Propag. 57, 3720–3727 (2009).
    [CrossRef]
  18. I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “A multipolar analysis of near-field absorption and scattering processes,” IEEE Trans. Antennas Propag. 61, 5184–5199 (2013).
    [CrossRef]
  19. I. Liberal and R. W. Ziolkowski, “Analytical and equivalent circuit models to elucidate power balance in scattering problems,” IEEE Trans. Antennas Propag. 61, 2714–2726 (2013).
    [CrossRef]
  20. P. Tuersun and X. Han, “Optical absorption analysis and optimization of gold nanoshells,” Appl. Opt. 52, 1325–1329 (2013).
    [CrossRef]
  21. T. J. Brockett, H. Rajagopalan, R. B. Laghumavarapu, D. Hufakker, and Y. Rahmat-Samii, “Electromagnetic characterization of high absorption sub-wavelength optical nanostructure photovoltaics for solar energy harvesting,” IEEE Trans. Antennas Propag. 61, 1518–1527 (2013).
    [CrossRef]
  22. S. D. Campbell and R. W. Ziolkowski, “Lightweight, flexible, polarization-insensitive, highly absorbing meta-films,” IEEE Trans. Antennas Propag. 61, 1191–1200 (2013).
    [CrossRef]
  23. Y. Ra’di and S. A. Tretyakov, “Balanced and optimal bianisotropic particles: maximizing power extracted from electromagnetic fields,” New J. Phys. 15, 053008 (2013).
    [CrossRef]
  24. J. B. Pendry, “Negative refraction,” Contemp. Phys. 45, 191–202 (2004).
    [CrossRef]
  25. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [CrossRef]
  26. R. G. Newton, “Optical theorem and beyond,” Am. J. Phys. 44, 639–642 (1976).
    [CrossRef]
  27. J. Hansen, ed., Spherical Near-Field Antenna Measurements, Vol. 26 of IEE Electromagnetic Waves Series (Peter Peregrinus, 1988).
  28. C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51, 323–327 (1983).
    [CrossRef]
  29. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 2012).
  30. R. Kastner, “High electromagnetic conductance media,” IEEE Trans. Antennas Propag. 61, 775–778 (2013).
    [CrossRef]
  31. S. I. Maslovski, P. M. Ikonen, I. Kolmakov, S. A. Tretyakov, and M. Kaunisto, “Artificial magnetic materials based on the new magnetic particle: metasolenoid,” Prog. Electromagn. Res. 54, 61–81 (2005).
    [CrossRef]
  32. P. Ikonen, S. Maslovski, C. Simovski, and S. Tretyakov, “On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas,” IEEE Trans. Antennas Propag. 54, 1654–1662 (2006).
    [CrossRef]
  33. K. Kwon and J. Choi, “Microstrip phase shifter using artificial magneto-dielectric for phased array antenna,” Microw. Opt. Technol. Lett. 55, 1868–1871 (2013).
    [CrossRef]
  34. S. K. Mandal, T. Rakshit, S. K. Ray, S. K. Mishra, P. S. R. Krishna, and A. Chandra, “Nanostructures of sr2+ doped BiFeO3 multifunctional ceramics with tunable photoluminescence and magnetic properties,” J. Phys. Condens. Matter 25, 055303 (2013).
    [CrossRef]
  35. R. Gómez-Medina, M. Nieto-Vesperinas, and J. J. Sáenz, “Nonconservative electric and magnetic optical forces on submicron dielectric particles,” Phys. Rev. A 83, 033825 (2011).
    [CrossRef]
  36. A. Garcia-Etxarri, R. Gómez-Medina, L. S. Froufe-Perez, C. Lopez, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Saenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
    [CrossRef]

2013 (9)

I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “A multipolar analysis of near-field absorption and scattering processes,” IEEE Trans. Antennas Propag. 61, 5184–5199 (2013).
[CrossRef]

I. Liberal and R. W. Ziolkowski, “Analytical and equivalent circuit models to elucidate power balance in scattering problems,” IEEE Trans. Antennas Propag. 61, 2714–2726 (2013).
[CrossRef]

T. J. Brockett, H. Rajagopalan, R. B. Laghumavarapu, D. Hufakker, and Y. Rahmat-Samii, “Electromagnetic characterization of high absorption sub-wavelength optical nanostructure photovoltaics for solar energy harvesting,” IEEE Trans. Antennas Propag. 61, 1518–1527 (2013).
[CrossRef]

S. D. Campbell and R. W. Ziolkowski, “Lightweight, flexible, polarization-insensitive, highly absorbing meta-films,” IEEE Trans. Antennas Propag. 61, 1191–1200 (2013).
[CrossRef]

Y. Ra’di and S. A. Tretyakov, “Balanced and optimal bianisotropic particles: maximizing power extracted from electromagnetic fields,” New J. Phys. 15, 053008 (2013).
[CrossRef]

R. Kastner, “High electromagnetic conductance media,” IEEE Trans. Antennas Propag. 61, 775–778 (2013).
[CrossRef]

K. Kwon and J. Choi, “Microstrip phase shifter using artificial magneto-dielectric for phased array antenna,” Microw. Opt. Technol. Lett. 55, 1868–1871 (2013).
[CrossRef]

S. K. Mandal, T. Rakshit, S. K. Ray, S. K. Mishra, P. S. R. Krishna, and A. Chandra, “Nanostructures of sr2+ doped BiFeO3 multifunctional ceramics with tunable photoluminescence and magnetic properties,” J. Phys. Condens. Matter 25, 055303 (2013).
[CrossRef]

P. Tuersun and X. Han, “Optical absorption analysis and optimization of gold nanoshells,” Appl. Opt. 52, 1325–1329 (2013).
[CrossRef]

2012 (1)

R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett. 109, 243903 (2012).
[CrossRef]

2011 (4)

A. M. Ionescu and C. Hierold, “Guardian angels for a smarter life: enabling a zero-power technological platform for autonomous smart systems,” Procedia Comput. Sci. 7, 43–46 (2011).
[CrossRef]

A. Garcia-Etxarri, R. Gómez-Medina, L. S. Froufe-Perez, C. Lopez, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Saenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[CrossRef]

T. Li, L. Dai, and C. Jiang, “Design of efficient plasmonic thin-film solar cells based on mode splitting,” J. Opt. Soc. Am. B 28, 1793–1797 (2011).
[CrossRef]

R. Gómez-Medina, M. Nieto-Vesperinas, and J. J. Sáenz, “Nonconservative electric and magnetic optical forces on submicron dielectric particles,” Phys. Rev. A 83, 033825 (2011).
[CrossRef]

2010 (1)

2009 (2)

A. E. Miroshnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80, 013808 (2009).
[CrossRef]

D.-H. Kwon and D. Pozar, “Optimal characteristics of an arbitrary receive antenna,” IEEE Trans. Antennas Propag. 57, 3720–3727 (2009).
[CrossRef]

2007 (4)

J. R. Frisvad, N. J. Christensen, and H. W. Jensen, “Computing the scattering properties of participating media using Lorenz-Mie theory,” ACM Trans. Graph. 26, 60 (2007).
[CrossRef]

M. Gustafsson, C. Sohl, and G. Kristensson, “Physical limitations on antennas of arbitrary shape,” Proc. R. Soc. A 463, 2589–2607 (2007).
[CrossRef]

C. Sohl, M. Gustafsson, and G. Kristensson, “Physical limitations on broadband scattering by heterogeneous obstacles,” J. Phys. A 40, 11165–11182 (2007).
[CrossRef]

C. Sohl, M. Gustafsson, and G. Kristensson, “Physical limitations on metamaterials: restrictions on scattering and absorption over a frequency interval,” J. Phys. D 40, 7146–7151 (2007).
[CrossRef]

2006 (1)

P. Ikonen, S. Maslovski, C. Simovski, and S. Tretyakov, “On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas,” IEEE Trans. Antennas Propag. 54, 1654–1662 (2006).
[CrossRef]

2005 (1)

S. I. Maslovski, P. M. Ikonen, I. Kolmakov, S. A. Tretyakov, and M. Kaunisto, “Artificial magnetic materials based on the new magnetic particle: metasolenoid,” Prog. Electromagn. Res. 54, 61–81 (2005).
[CrossRef]

2004 (2)

Y.-L. Geng, X.-B. Wu, L.-W. Li, and B.-R. Guan, “Mie scattering by a uniaxial anisotropic sphere,” Phys. Rev. E 70, 056609 (2004).
[CrossRef]

J. B. Pendry, “Negative refraction,” Contemp. Phys. 45, 191–202 (2004).
[CrossRef]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef]

1983 (2)

M. Kerker, D.-S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73, 765–767 (1983).
[CrossRef]

C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51, 323–327 (1983).
[CrossRef]

1976 (1)

R. G. Newton, “Optical theorem and beyond,” Am. J. Phys. 44, 639–642 (1976).
[CrossRef]

1908 (1)

G. Mie, “Optics of turbid media,” Ann. Phys. 25, 377–445 (1908).

1890 (1)

L. Lorenz, “Lysbevægelser i og uden for en af plane lysbølger belyst kugle,” Vidensk. Selsk. Skr. 6, 1–62 (1890).

Aizpurua, J.

Arruda, T. J.

Balanis, C. A.

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 2012).

Bohren, C. F.

C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51, 323–327 (1983).
[CrossRef]

C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Brockett, T. J.

T. J. Brockett, H. Rajagopalan, R. B. Laghumavarapu, D. Hufakker, and Y. Rahmat-Samii, “Electromagnetic characterization of high absorption sub-wavelength optical nanostructure photovoltaics for solar energy harvesting,” IEEE Trans. Antennas Propag. 61, 1518–1527 (2013).
[CrossRef]

Bronold, F. X.

R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett. 109, 243903 (2012).
[CrossRef]

Campbell, S. D.

S. D. Campbell and R. W. Ziolkowski, “Lightweight, flexible, polarization-insensitive, highly absorbing meta-films,” IEEE Trans. Antennas Propag. 61, 1191–1200 (2013).
[CrossRef]

Chandra, A.

S. K. Mandal, T. Rakshit, S. K. Ray, S. K. Mishra, P. S. R. Krishna, and A. Chandra, “Nanostructures of sr2+ doped BiFeO3 multifunctional ceramics with tunable photoluminescence and magnetic properties,” J. Phys. Condens. Matter 25, 055303 (2013).
[CrossRef]

Chantada, L.

Choi, J.

K. Kwon and J. Choi, “Microstrip phase shifter using artificial magneto-dielectric for phased array antenna,” Microw. Opt. Technol. Lett. 55, 1868–1871 (2013).
[CrossRef]

Christensen, N. J.

J. R. Frisvad, N. J. Christensen, and H. W. Jensen, “Computing the scattering properties of participating media using Lorenz-Mie theory,” ACM Trans. Graph. 26, 60 (2007).
[CrossRef]

Dai, L.

Ederra, I.

I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “A multipolar analysis of near-field absorption and scattering processes,” IEEE Trans. Antennas Propag. 61, 5184–5199 (2013).
[CrossRef]

Fehske, H.

R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett. 109, 243903 (2012).
[CrossRef]

Frisvad, J. R.

J. R. Frisvad, N. J. Christensen, and H. W. Jensen, “Computing the scattering properties of participating media using Lorenz-Mie theory,” ACM Trans. Graph. 26, 60 (2007).
[CrossRef]

Froufe-Perez, L. S.

Garcia-Etxarri, A.

Geng, Y.-L.

Y.-L. Geng, X.-B. Wu, L.-W. Li, and B.-R. Guan, “Mie scattering by a uniaxial anisotropic sphere,” Phys. Rev. E 70, 056609 (2004).
[CrossRef]

Giles, C. L.

Gómez-Medina, R.

Gonzalo, R.

I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “A multipolar analysis of near-field absorption and scattering processes,” IEEE Trans. Antennas Propag. 61, 5184–5199 (2013).
[CrossRef]

Guan, B.-R.

Y.-L. Geng, X.-B. Wu, L.-W. Li, and B.-R. Guan, “Mie scattering by a uniaxial anisotropic sphere,” Phys. Rev. E 70, 056609 (2004).
[CrossRef]

Gustafsson, M.

C. Sohl, M. Gustafsson, and G. Kristensson, “Physical limitations on broadband scattering by heterogeneous obstacles,” J. Phys. A 40, 11165–11182 (2007).
[CrossRef]

C. Sohl, M. Gustafsson, and G. Kristensson, “Physical limitations on metamaterials: restrictions on scattering and absorption over a frequency interval,” J. Phys. D 40, 7146–7151 (2007).
[CrossRef]

M. Gustafsson, C. Sohl, and G. Kristensson, “Physical limitations on antennas of arbitrary shape,” Proc. R. Soc. A 463, 2589–2607 (2007).
[CrossRef]

Han, X.

Heinisch, R. L.

R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett. 109, 243903 (2012).
[CrossRef]

Hierold, C.

A. M. Ionescu and C. Hierold, “Guardian angels for a smarter life: enabling a zero-power technological platform for autonomous smart systems,” Procedia Comput. Sci. 7, 43–46 (2011).
[CrossRef]

Hufakker, D.

T. J. Brockett, H. Rajagopalan, R. B. Laghumavarapu, D. Hufakker, and Y. Rahmat-Samii, “Electromagnetic characterization of high absorption sub-wavelength optical nanostructure photovoltaics for solar energy harvesting,” IEEE Trans. Antennas Propag. 61, 1518–1527 (2013).
[CrossRef]

Huffman, D.

C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Ikonen, P.

P. Ikonen, S. Maslovski, C. Simovski, and S. Tretyakov, “On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas,” IEEE Trans. Antennas Propag. 54, 1654–1662 (2006).
[CrossRef]

Ikonen, P. M.

S. I. Maslovski, P. M. Ikonen, I. Kolmakov, S. A. Tretyakov, and M. Kaunisto, “Artificial magnetic materials based on the new magnetic particle: metasolenoid,” Prog. Electromagn. Res. 54, 61–81 (2005).
[CrossRef]

Ionescu, A. M.

A. M. Ionescu and C. Hierold, “Guardian angels for a smarter life: enabling a zero-power technological platform for autonomous smart systems,” Procedia Comput. Sci. 7, 43–46 (2011).
[CrossRef]

Jensen, H. W.

J. R. Frisvad, N. J. Christensen, and H. W. Jensen, “Computing the scattering properties of participating media using Lorenz-Mie theory,” ACM Trans. Graph. 26, 60 (2007).
[CrossRef]

Jiang, C.

Kastner, R.

R. Kastner, “High electromagnetic conductance media,” IEEE Trans. Antennas Propag. 61, 775–778 (2013).
[CrossRef]

Kaunisto, M.

S. I. Maslovski, P. M. Ikonen, I. Kolmakov, S. A. Tretyakov, and M. Kaunisto, “Artificial magnetic materials based on the new magnetic particle: metasolenoid,” Prog. Electromagn. Res. 54, 61–81 (2005).
[CrossRef]

Kerker, M.

Kolmakov, I.

S. I. Maslovski, P. M. Ikonen, I. Kolmakov, S. A. Tretyakov, and M. Kaunisto, “Artificial magnetic materials based on the new magnetic particle: metasolenoid,” Prog. Electromagn. Res. 54, 61–81 (2005).
[CrossRef]

Krishna, P. S. R.

S. K. Mandal, T. Rakshit, S. K. Ray, S. K. Mishra, P. S. R. Krishna, and A. Chandra, “Nanostructures of sr2+ doped BiFeO3 multifunctional ceramics with tunable photoluminescence and magnetic properties,” J. Phys. Condens. Matter 25, 055303 (2013).
[CrossRef]

Kristensson, G.

C. Sohl, M. Gustafsson, and G. Kristensson, “Physical limitations on metamaterials: restrictions on scattering and absorption over a frequency interval,” J. Phys. D 40, 7146–7151 (2007).
[CrossRef]

C. Sohl, M. Gustafsson, and G. Kristensson, “Physical limitations on broadband scattering by heterogeneous obstacles,” J. Phys. A 40, 11165–11182 (2007).
[CrossRef]

M. Gustafsson, C. Sohl, and G. Kristensson, “Physical limitations on antennas of arbitrary shape,” Proc. R. Soc. A 463, 2589–2607 (2007).
[CrossRef]

Kwon, D.-H.

D.-H. Kwon and D. Pozar, “Optimal characteristics of an arbitrary receive antenna,” IEEE Trans. Antennas Propag. 57, 3720–3727 (2009).
[CrossRef]

Kwon, K.

K. Kwon and J. Choi, “Microstrip phase shifter using artificial magneto-dielectric for phased array antenna,” Microw. Opt. Technol. Lett. 55, 1868–1871 (2013).
[CrossRef]

Laghumavarapu, R. B.

T. J. Brockett, H. Rajagopalan, R. B. Laghumavarapu, D. Hufakker, and Y. Rahmat-Samii, “Electromagnetic characterization of high absorption sub-wavelength optical nanostructure photovoltaics for solar energy harvesting,” IEEE Trans. Antennas Propag. 61, 1518–1527 (2013).
[CrossRef]

Li, L.-W.

Y.-L. Geng, X.-B. Wu, L.-W. Li, and B.-R. Guan, “Mie scattering by a uniaxial anisotropic sphere,” Phys. Rev. E 70, 056609 (2004).
[CrossRef]

Li, T.

Liberal, I.

I. Liberal and R. W. Ziolkowski, “Analytical and equivalent circuit models to elucidate power balance in scattering problems,” IEEE Trans. Antennas Propag. 61, 2714–2726 (2013).
[CrossRef]

I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “A multipolar analysis of near-field absorption and scattering processes,” IEEE Trans. Antennas Propag. 61, 5184–5199 (2013).
[CrossRef]

Lopez, C.

Lorenz, L.

L. Lorenz, “Lysbevægelser i og uden for en af plane lysbølger belyst kugle,” Vidensk. Selsk. Skr. 6, 1–62 (1890).

Mandal, S. K.

S. K. Mandal, T. Rakshit, S. K. Ray, S. K. Mishra, P. S. R. Krishna, and A. Chandra, “Nanostructures of sr2+ doped BiFeO3 multifunctional ceramics with tunable photoluminescence and magnetic properties,” J. Phys. Condens. Matter 25, 055303 (2013).
[CrossRef]

Martinez, A. S.

Maslovski, S.

P. Ikonen, S. Maslovski, C. Simovski, and S. Tretyakov, “On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas,” IEEE Trans. Antennas Propag. 54, 1654–1662 (2006).
[CrossRef]

Maslovski, S. I.

S. I. Maslovski, P. M. Ikonen, I. Kolmakov, S. A. Tretyakov, and M. Kaunisto, “Artificial magnetic materials based on the new magnetic particle: metasolenoid,” Prog. Electromagn. Res. 54, 61–81 (2005).
[CrossRef]

Mie, G.

G. Mie, “Optics of turbid media,” Ann. Phys. 25, 377–445 (1908).

Miroshnichenko, A. E.

A. E. Miroshnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80, 013808 (2009).
[CrossRef]

Mishra, S. K.

S. K. Mandal, T. Rakshit, S. K. Ray, S. K. Mishra, P. S. R. Krishna, and A. Chandra, “Nanostructures of sr2+ doped BiFeO3 multifunctional ceramics with tunable photoluminescence and magnetic properties,” J. Phys. Condens. Matter 25, 055303 (2013).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef]

Newton, R. G.

R. G. Newton, “Optical theorem and beyond,” Am. J. Phys. 44, 639–642 (1976).
[CrossRef]

Nieto-Vesperinas, M.

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Negative refraction,” Contemp. Phys. 45, 191–202 (2004).
[CrossRef]

Pozar, D.

D.-H. Kwon and D. Pozar, “Optimal characteristics of an arbitrary receive antenna,” IEEE Trans. Antennas Propag. 57, 3720–3727 (2009).
[CrossRef]

Ra’di, Y.

Y. Ra’di and S. A. Tretyakov, “Balanced and optimal bianisotropic particles: maximizing power extracted from electromagnetic fields,” New J. Phys. 15, 053008 (2013).
[CrossRef]

Rahmat-Samii, Y.

T. J. Brockett, H. Rajagopalan, R. B. Laghumavarapu, D. Hufakker, and Y. Rahmat-Samii, “Electromagnetic characterization of high absorption sub-wavelength optical nanostructure photovoltaics for solar energy harvesting,” IEEE Trans. Antennas Propag. 61, 1518–1527 (2013).
[CrossRef]

Rajagopalan, H.

T. J. Brockett, H. Rajagopalan, R. B. Laghumavarapu, D. Hufakker, and Y. Rahmat-Samii, “Electromagnetic characterization of high absorption sub-wavelength optical nanostructure photovoltaics for solar energy harvesting,” IEEE Trans. Antennas Propag. 61, 1518–1527 (2013).
[CrossRef]

Rakshit, T.

S. K. Mandal, T. Rakshit, S. K. Ray, S. K. Mishra, P. S. R. Krishna, and A. Chandra, “Nanostructures of sr2+ doped BiFeO3 multifunctional ceramics with tunable photoluminescence and magnetic properties,” J. Phys. Condens. Matter 25, 055303 (2013).
[CrossRef]

Ray, S. K.

S. K. Mandal, T. Rakshit, S. K. Ray, S. K. Mishra, P. S. R. Krishna, and A. Chandra, “Nanostructures of sr2+ doped BiFeO3 multifunctional ceramics with tunable photoluminescence and magnetic properties,” J. Phys. Condens. Matter 25, 055303 (2013).
[CrossRef]

Saenz, J. J.

Sáenz, J. J.

R. Gómez-Medina, M. Nieto-Vesperinas, and J. J. Sáenz, “Nonconservative electric and magnetic optical forces on submicron dielectric particles,” Phys. Rev. A 83, 033825 (2011).
[CrossRef]

Scheffold, F.

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef]

Simovski, C.

P. Ikonen, S. Maslovski, C. Simovski, and S. Tretyakov, “On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas,” IEEE Trans. Antennas Propag. 54, 1654–1662 (2006).
[CrossRef]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef]

Sohl, C.

M. Gustafsson, C. Sohl, and G. Kristensson, “Physical limitations on antennas of arbitrary shape,” Proc. R. Soc. A 463, 2589–2607 (2007).
[CrossRef]

C. Sohl, M. Gustafsson, and G. Kristensson, “Physical limitations on metamaterials: restrictions on scattering and absorption over a frequency interval,” J. Phys. D 40, 7146–7151 (2007).
[CrossRef]

C. Sohl, M. Gustafsson, and G. Kristensson, “Physical limitations on broadband scattering by heterogeneous obstacles,” J. Phys. A 40, 11165–11182 (2007).
[CrossRef]

Tretyakov, S.

P. Ikonen, S. Maslovski, C. Simovski, and S. Tretyakov, “On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas,” IEEE Trans. Antennas Propag. 54, 1654–1662 (2006).
[CrossRef]

Tretyakov, S. A.

Y. Ra’di and S. A. Tretyakov, “Balanced and optimal bianisotropic particles: maximizing power extracted from electromagnetic fields,” New J. Phys. 15, 053008 (2013).
[CrossRef]

S. I. Maslovski, P. M. Ikonen, I. Kolmakov, S. A. Tretyakov, and M. Kaunisto, “Artificial magnetic materials based on the new magnetic particle: metasolenoid,” Prog. Electromagn. Res. 54, 61–81 (2005).
[CrossRef]

Tuersun, P.

van de Hulst, H.

H. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef]

Wang, D.-S.

Wu, X.-B.

Y.-L. Geng, X.-B. Wu, L.-W. Li, and B.-R. Guan, “Mie scattering by a uniaxial anisotropic sphere,” Phys. Rev. E 70, 056609 (2004).
[CrossRef]

Ziolkowski, R. W.

S. D. Campbell and R. W. Ziolkowski, “Lightweight, flexible, polarization-insensitive, highly absorbing meta-films,” IEEE Trans. Antennas Propag. 61, 1191–1200 (2013).
[CrossRef]

I. Liberal and R. W. Ziolkowski, “Analytical and equivalent circuit models to elucidate power balance in scattering problems,” IEEE Trans. Antennas Propag. 61, 2714–2726 (2013).
[CrossRef]

I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “A multipolar analysis of near-field absorption and scattering processes,” IEEE Trans. Antennas Propag. 61, 5184–5199 (2013).
[CrossRef]

ACM Trans. Graph. (1)

J. R. Frisvad, N. J. Christensen, and H. W. Jensen, “Computing the scattering properties of participating media using Lorenz-Mie theory,” ACM Trans. Graph. 26, 60 (2007).
[CrossRef]

Am. J. Phys. (2)

R. G. Newton, “Optical theorem and beyond,” Am. J. Phys. 44, 639–642 (1976).
[CrossRef]

C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51, 323–327 (1983).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Optics of turbid media,” Ann. Phys. 25, 377–445 (1908).

Appl. Opt. (1)

Contemp. Phys. (1)

J. B. Pendry, “Negative refraction,” Contemp. Phys. 45, 191–202 (2004).
[CrossRef]

IEEE Trans. Antennas Propag. (7)

T. J. Brockett, H. Rajagopalan, R. B. Laghumavarapu, D. Hufakker, and Y. Rahmat-Samii, “Electromagnetic characterization of high absorption sub-wavelength optical nanostructure photovoltaics for solar energy harvesting,” IEEE Trans. Antennas Propag. 61, 1518–1527 (2013).
[CrossRef]

S. D. Campbell and R. W. Ziolkowski, “Lightweight, flexible, polarization-insensitive, highly absorbing meta-films,” IEEE Trans. Antennas Propag. 61, 1191–1200 (2013).
[CrossRef]

R. Kastner, “High electromagnetic conductance media,” IEEE Trans. Antennas Propag. 61, 775–778 (2013).
[CrossRef]

P. Ikonen, S. Maslovski, C. Simovski, and S. Tretyakov, “On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas,” IEEE Trans. Antennas Propag. 54, 1654–1662 (2006).
[CrossRef]

D.-H. Kwon and D. Pozar, “Optimal characteristics of an arbitrary receive antenna,” IEEE Trans. Antennas Propag. 57, 3720–3727 (2009).
[CrossRef]

I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “A multipolar analysis of near-field absorption and scattering processes,” IEEE Trans. Antennas Propag. 61, 5184–5199 (2013).
[CrossRef]

I. Liberal and R. W. Ziolkowski, “Analytical and equivalent circuit models to elucidate power balance in scattering problems,” IEEE Trans. Antennas Propag. 61, 2714–2726 (2013).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. A (1)

C. Sohl, M. Gustafsson, and G. Kristensson, “Physical limitations on broadband scattering by heterogeneous obstacles,” J. Phys. A 40, 11165–11182 (2007).
[CrossRef]

J. Phys. Condens. Matter (1)

S. K. Mandal, T. Rakshit, S. K. Ray, S. K. Mishra, P. S. R. Krishna, and A. Chandra, “Nanostructures of sr2+ doped BiFeO3 multifunctional ceramics with tunable photoluminescence and magnetic properties,” J. Phys. Condens. Matter 25, 055303 (2013).
[CrossRef]

J. Phys. D (1)

C. Sohl, M. Gustafsson, and G. Kristensson, “Physical limitations on metamaterials: restrictions on scattering and absorption over a frequency interval,” J. Phys. D 40, 7146–7151 (2007).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

K. Kwon and J. Choi, “Microstrip phase shifter using artificial magneto-dielectric for phased array antenna,” Microw. Opt. Technol. Lett. 55, 1868–1871 (2013).
[CrossRef]

New J. Phys. (1)

Y. Ra’di and S. A. Tretyakov, “Balanced and optimal bianisotropic particles: maximizing power extracted from electromagnetic fields,” New J. Phys. 15, 053008 (2013).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (2)

A. E. Miroshnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80, 013808 (2009).
[CrossRef]

R. Gómez-Medina, M. Nieto-Vesperinas, and J. J. Sáenz, “Nonconservative electric and magnetic optical forces on submicron dielectric particles,” Phys. Rev. A 83, 033825 (2011).
[CrossRef]

Phys. Rev. E (1)

Y.-L. Geng, X.-B. Wu, L.-W. Li, and B.-R. Guan, “Mie scattering by a uniaxial anisotropic sphere,” Phys. Rev. E 70, 056609 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett. 109, 243903 (2012).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef]

Proc. R. Soc. A (1)

M. Gustafsson, C. Sohl, and G. Kristensson, “Physical limitations on antennas of arbitrary shape,” Proc. R. Soc. A 463, 2589–2607 (2007).
[CrossRef]

Procedia Comput. Sci. (1)

A. M. Ionescu and C. Hierold, “Guardian angels for a smarter life: enabling a zero-power technological platform for autonomous smart systems,” Procedia Comput. Sci. 7, 43–46 (2011).
[CrossRef]

Prog. Electromagn. Res. (1)

S. I. Maslovski, P. M. Ikonen, I. Kolmakov, S. A. Tretyakov, and M. Kaunisto, “Artificial magnetic materials based on the new magnetic particle: metasolenoid,” Prog. Electromagn. Res. 54, 61–81 (2005).
[CrossRef]

Vidensk. Selsk. Skr. (1)

L. Lorenz, “Lysbevægelser i og uden for en af plane lysbølger belyst kugle,” Vidensk. Selsk. Skr. 6, 1–62 (1890).

Other (5)

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 2012).

J. Hansen, ed., Spherical Near-Field Antenna Measurements, Vol. 26 of IEE Electromagnetic Waves Series (Peter Peregrinus, 1988).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

H. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Sphere embedded in a nonabsorbing medium, illuminated by a time-harmonic plane wave.

Fig. 2.
Fig. 2.

Absorption for small dielectric spheres with real part of permittivity equal to ϵr=2 and imaginary part, ϵr, approaching zero. Full Lorenz–Mie solution.

Fig. 3.
Fig. 3.

Contour plot of the absorption relative to sphere size (Qabs/κ) for a small sphere with equal permittivity and permeability. Based on Eq. (6).

Fig. 4.
Fig. 4.

Absorption efficiency of a homogeneous dielectric sphere of electrical size κ=1. Resonances are labeled with their peak value.

Fig. 5.
Fig. 5.

Absorption efficiency of a homogeneous magneto-dielectric sphere of electrical size κ=1 and with equal relative permittivity and permeability; ϵr=μr. Resonances are labeled with their peak value.

Fig. 6.
Fig. 6.

Absorption for dielectric and magneto-dielectric sphere with constant real part ϵr=5 and varying imaginary part, ϵr. The magneto-dielectric sphere has relative permeability equal to the relative permittivity.

Fig. 7.
Fig. 7.

Absorption efficiency level on plateau as a function of sphere size. Free-space intrinsic impedance, Zr=1.

Fig. 8.
Fig. 8.

Electric field magnitude normalized to incident field in and around κ=1 sized spheres in an xz cut. The incident field travels from left to right and is x polarized. The direction and size of the time-averaged Poynting vector are indicated with arrows. Fields are calculated from Lorenz–Mie theory. (a) Dielectric sphere with ϵr=30+i30 and μr=1. (b) Magneto-dielectric sphere with ϵr=30+i30 and μr=ϵr.

Fig. 9.
Fig. 9.

Power flow density into κ=1 sized spheres. Calculated as the negative r component of the time-averaged Poynting vector over the surface of the sphere (Sr). The incident field is x polarized and travels in the positive z direction, thus hitting the sphere at θ=180. The power flow density is normalized to that of the incident field in the direction of travel (Si). (a) Dielectric sphere with ϵr=30+i30 and μr=1. (b) Magneto-dielectric sphere with ϵr=30+i30 and μr=ϵr. (c) Dielectric sphere at a quadrupole resonance with ϵr=19.4+i0.232 and μr=1.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Qext=Qsca+Qabs.
Qabs=2κ2n=1(2n+1)×(Re{an+bn}|an|2|bn|2),
an=ϵrjn(mκ)[κjn(κ)]jn(κ)[mκjn(mκ)]ϵrjn(mκ)[κhn(1)(κ)]hn(1)(κ)[mκjn(mκ)],
bn=μrjn(mκ)[κjn(κ)]jn(κ)[mκjn(mκ)]μrjn(mκ)[κhn(1)(κ)]hn(1)(κ)[mκjn(mκ)],
Qsca=83κ4(|μr1μr+2|2+|ϵr1ϵr+2|2),
QabsQext=4κIm{ϵr1ϵr+2+μr1μr+2}=4κ(3ϵr(ϵr+2)2+ϵr2+3μr(μr+2)2+μr2),
ϵr=μr=1+i3,
Qabs=4κ.
an=i[κjn(κ)]Zrκjn(κ)i[κhn(1)(κ)]Zrκhn(1)(κ)
bn=iZr[κjn(κ)]κjn(κ)iZr[κhn(1)(κ)]κhn(1)(κ),

Metrics