T. Correia, T. Rudge, M. Koch, V. Ntziachristos, and S. Arridge, “Wavelet-based data and solution compression for efficient image reconstruction in fluorescence diffuse optical tomography,” J. Biomed. Opt. 18, 086008 (2013).

[CrossRef]

G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2013).

[CrossRef]

X. Cao, X. Wang, B. Zhang, F. Liu, J. Luo, and J. Bai, “Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction,” Biomed. Opt. Express 4, 1–14 (2013).

[CrossRef]

P. Mohajerani and V. Ntziachristos, “Compression of Born ratio for fluorescence molecular tomography/x-ray computed tomography hybrid imaging: methodology and in vivo validation,” Opt. Lett. 38, 2324–2326 (2013).

[CrossRef]

W. Zou, J. Wang, and D. D. Feng, “Image reconstruction of fluorescent molecular tomography based on the simplified matrix system,” J. Opt. Soc. Am. A 30, 1464–1475 (2013).

[CrossRef]

J. Shi, B. Zhang, F. Liu, J. Luo, and J. Bai, “Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient,” Opt. Lett. 38, 3696–3699 (2013).

[CrossRef]

N. Ducros, C. D’Andrea, A. Basis, G. Valentini, and S. Arridge, “A virtual source pattern method for fluorescence tomography with structured light,” Phys. Med. Biol. 57, 3811–3832 (2012).

[CrossRef]

J. Ripoll, “Hybrid Fourier-real space method for diffuse optical tomography,” Opt. Lett. 35, 688–690 (2010).

[CrossRef]

N. Ducros, C. D’Andrea, G. Valentini, T. Rudge, S. Arridge, and A. Bassi, “Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination,” Opt. Lett. 35, 3676–3678 (2010).

[CrossRef]

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37, 1976–1986 (2010).

[CrossRef]

F. Liu, X. Wang, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng. 38, 3440–3448 (2010).

[CrossRef]

N. C. Deliolanis, J. Dunham, T. Wurdinger, J. L. Figueiredo, B. A. Tannous, and V. Ntziachristos, “In-vivo imaging of murine tumors using complete-angle projection fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2009).

[CrossRef]

A. D. Zacharopoulos, P. Svenmarker, J. Axelsson, M. Schweiger, S. R. Arridge, and S. Andersson-Engels, “A matrix-free algorithm for multiple wavelength fluorescence tomography,” Opt. Express 17, 3025–3035 (2009).

[CrossRef]

V. Lukic, V. A. Markel, and J. C. Schotland, “Optical tomography with structured illumination,” Opt. Lett. 34, 983–985 (2009).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).

[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E 64, 051917 (2001).

[CrossRef]

D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, “Tikhonov regularization and the L-curve for large discrete ill-posed problems,” J. Comput. Appl. Math. 123, 423–446 (2000).

[CrossRef]

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).

[CrossRef]

M. Hanke and C. W. Groetsch, “Nonstationary iterated Tikhonov regularization,” J. Optim. Theory. Appl. 98, 37–53 (1998).

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).

[CrossRef]

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37, 1976–1986 (2010).

[CrossRef]

T. Correia, T. Rudge, M. Koch, V. Ntziachristos, and S. Arridge, “Wavelet-based data and solution compression for efficient image reconstruction in fluorescence diffuse optical tomography,” J. Biomed. Opt. 18, 086008 (2013).

[CrossRef]

N. Ducros, C. D’Andrea, A. Basis, G. Valentini, and S. Arridge, “A virtual source pattern method for fluorescence tomography with structured light,” Phys. Med. Biol. 57, 3811–3832 (2012).

[CrossRef]

N. Ducros, C. D’Andrea, G. Valentini, T. Rudge, S. Arridge, and A. Bassi, “Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination,” Opt. Lett. 35, 3676–3678 (2010).

[CrossRef]

X. Cao, X. Wang, B. Zhang, F. Liu, J. Luo, and J. Bai, “Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction,” Biomed. Opt. Express 4, 1–14 (2013).

[CrossRef]

J. Shi, B. Zhang, F. Liu, J. Luo, and J. Bai, “Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient,” Opt. Lett. 38, 3696–3699 (2013).

[CrossRef]

G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2013).

[CrossRef]

X. Cao, B. Zhang, F. Liu, X. Wang, and J. Bai, “Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual,” Opt. Lett. 36, 4515–4517 (2011).

[CrossRef]

F. Liu, X. Wang, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng. 38, 3440–3448 (2010).

[CrossRef]

D. Wang, X. Song, and J. Bai, “Adaptive-mesh-based algorithm for fluoresence molecular tomography using an analytical solution,” Opt. Express 15, 9722–9730 (2007).

[CrossRef]

N. Ducros, C. D’Andrea, A. Basis, G. Valentini, and S. Arridge, “A virtual source pattern method for fluorescence tomography with structured light,” Phys. Med. Biol. 57, 3811–3832 (2012).

[CrossRef]

D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, “Tikhonov regularization and the L-curve for large discrete ill-posed problems,” J. Comput. Appl. Math. 123, 423–446 (2000).

[CrossRef]

G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2013).

[CrossRef]

X. Cao, X. Wang, B. Zhang, F. Liu, J. Luo, and J. Bai, “Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction,” Biomed. Opt. Express 4, 1–14 (2013).

[CrossRef]

X. Cao, B. Zhang, F. Liu, X. Wang, and J. Bai, “Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual,” Opt. Lett. 36, 4515–4517 (2011).

[CrossRef]

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E 64, 051917 (2001).

[CrossRef]

T. Correia, T. Rudge, M. Koch, V. Ntziachristos, and S. Arridge, “Wavelet-based data and solution compression for efficient image reconstruction in fluorescence diffuse optical tomography,” J. Biomed. Opt. 18, 086008 (2013).

[CrossRef]

N. Ducros, C. D’Andrea, A. Basis, G. Valentini, and S. Arridge, “A virtual source pattern method for fluorescence tomography with structured light,” Phys. Med. Biol. 57, 3811–3832 (2012).

[CrossRef]

N. Ducros, C. D’Andrea, G. Valentini, T. Rudge, S. Arridge, and A. Bassi, “Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination,” Opt. Lett. 35, 3676–3678 (2010).

[CrossRef]

N. C. Deliolanis, J. Dunham, T. Wurdinger, J. L. Figueiredo, B. A. Tannous, and V. Ntziachristos, “In-vivo imaging of murine tumors using complete-angle projection fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2009).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

N. Ducros, C. D’Andrea, A. Basis, G. Valentini, and S. Arridge, “A virtual source pattern method for fluorescence tomography with structured light,” Phys. Med. Biol. 57, 3811–3832 (2012).

[CrossRef]

N. Ducros, C. D’Andrea, G. Valentini, T. Rudge, S. Arridge, and A. Bassi, “Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination,” Opt. Lett. 35, 3676–3678 (2010).

[CrossRef]

N. C. Deliolanis, J. Dunham, T. Wurdinger, J. L. Figueiredo, B. A. Tannous, and V. Ntziachristos, “In-vivo imaging of murine tumors using complete-angle projection fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2009).

[CrossRef]

N. C. Deliolanis, J. Dunham, T. Wurdinger, J. L. Figueiredo, B. A. Tannous, and V. Ntziachristos, “In-vivo imaging of murine tumors using complete-angle projection fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2009).

[CrossRef]

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

M. Hanke and C. W. Groetsch, “Nonstationary iterated Tikhonov regularization,” J. Optim. Theory. Appl. 98, 37–53 (1998).

M. Hanke and C. W. Groetsch, “Nonstationary iterated Tikhonov regularization,” J. Optim. Theory. Appl. 98, 37–53 (1998).

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).

[CrossRef]

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).

[CrossRef]

T. Correia, T. Rudge, M. Koch, V. Ntziachristos, and S. Arridge, “Wavelet-based data and solution compression for efficient image reconstruction in fluorescence diffuse optical tomography,” J. Biomed. Opt. 18, 086008 (2013).

[CrossRef]

G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2013).

[CrossRef]

J. Shi, B. Zhang, F. Liu, J. Luo, and J. Bai, “Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient,” Opt. Lett. 38, 3696–3699 (2013).

[CrossRef]

X. Cao, X. Wang, B. Zhang, F. Liu, J. Luo, and J. Bai, “Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction,” Biomed. Opt. Express 4, 1–14 (2013).

[CrossRef]

X. Cao, B. Zhang, F. Liu, X. Wang, and J. Bai, “Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual,” Opt. Lett. 36, 4515–4517 (2011).

[CrossRef]

F. Liu, X. Wang, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng. 38, 3440–3448 (2010).

[CrossRef]

X. Cao, X. Wang, B. Zhang, F. Liu, J. Luo, and J. Bai, “Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction,” Biomed. Opt. Express 4, 1–14 (2013).

[CrossRef]

J. Shi, B. Zhang, F. Liu, J. Luo, and J. Bai, “Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient,” Opt. Lett. 38, 3696–3699 (2013).

[CrossRef]

G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2013).

[CrossRef]

D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, “Tikhonov regularization and the L-curve for large discrete ill-posed problems,” J. Comput. Appl. Math. 123, 423–446 (2000).

[CrossRef]

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E 64, 051917 (2001).

[CrossRef]

T. Correia, T. Rudge, M. Koch, V. Ntziachristos, and S. Arridge, “Wavelet-based data and solution compression for efficient image reconstruction in fluorescence diffuse optical tomography,” J. Biomed. Opt. 18, 086008 (2013).

[CrossRef]

P. Mohajerani and V. Ntziachristos, “Compression of Born ratio for fluorescence molecular tomography/x-ray computed tomography hybrid imaging: methodology and in vivo validation,” Opt. Lett. 38, 2324–2326 (2013).

[CrossRef]

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37, 1976–1986 (2010).

[CrossRef]

N. C. Deliolanis, J. Dunham, T. Wurdinger, J. L. Figueiredo, B. A. Tannous, and V. Ntziachristos, “In-vivo imaging of murine tumors using complete-angle projection fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2009).

[CrossRef]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).

[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E 64, 051917 (2001).

[CrossRef]

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).

[CrossRef]

R. Penrose, “A generalized inverse for matrices,” in Mathematical Proceedings of the Cambridge Philosophical Society (Cambridge University, 1955).

D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, “Tikhonov regularization and the L-curve for large discrete ill-posed problems,” J. Comput. Appl. Math. 123, 423–446 (2000).

[CrossRef]

J. Ripoll, “Hybrid Fourier-real space method for diffuse optical tomography,” Opt. Lett. 35, 688–690 (2010).

[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E 64, 051917 (2001).

[CrossRef]

T. Correia, T. Rudge, M. Koch, V. Ntziachristos, and S. Arridge, “Wavelet-based data and solution compression for efficient image reconstruction in fluorescence diffuse optical tomography,” J. Biomed. Opt. 18, 086008 (2013).

[CrossRef]

N. Ducros, C. D’Andrea, G. Valentini, T. Rudge, S. Arridge, and A. Bassi, “Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination,” Opt. Lett. 35, 3676–3678 (2010).

[CrossRef]

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37, 1976–1986 (2010).

[CrossRef]

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37, 1976–1986 (2010).

[CrossRef]

D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, “Tikhonov regularization and the L-curve for large discrete ill-posed problems,” J. Comput. Appl. Math. 123, 423–446 (2000).

[CrossRef]

D. Wang, X. Song, and J. Bai, “Adaptive-mesh-based algorithm for fluoresence molecular tomography using an analytical solution,” Opt. Express 15, 9722–9730 (2007).

[CrossRef]

X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography,” Appl. Opt. 43, 1053–1062 (2004).

[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).

N. C. Deliolanis, J. Dunham, T. Wurdinger, J. L. Figueiredo, B. A. Tannous, and V. Ntziachristos, “In-vivo imaging of murine tumors using complete-angle projection fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2009).

[CrossRef]

N. Ducros, C. D’Andrea, A. Basis, G. Valentini, and S. Arridge, “A virtual source pattern method for fluorescence tomography with structured light,” Phys. Med. Biol. 57, 3811–3832 (2012).

[CrossRef]

N. Ducros, C. D’Andrea, G. Valentini, T. Rudge, S. Arridge, and A. Bassi, “Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination,” Opt. Lett. 35, 3676–3678 (2010).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

F. Liu, X. Wang, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng. 38, 3440–3448 (2010).

[CrossRef]

D. Wang, X. Song, and J. Bai, “Adaptive-mesh-based algorithm for fluoresence molecular tomography using an analytical solution,” Opt. Express 15, 9722–9730 (2007).

[CrossRef]

X. Cao, X. Wang, B. Zhang, F. Liu, J. Luo, and J. Bai, “Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction,” Biomed. Opt. Express 4, 1–14 (2013).

[CrossRef]

X. Cao, B. Zhang, F. Liu, X. Wang, and J. Bai, “Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual,” Opt. Lett. 36, 4515–4517 (2011).

[CrossRef]

F. Liu, X. Wang, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng. 38, 3440–3448 (2010).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).

[CrossRef]

N. C. Deliolanis, J. Dunham, T. Wurdinger, J. L. Figueiredo, B. A. Tannous, and V. Ntziachristos, “In-vivo imaging of murine tumors using complete-angle projection fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2009).

[CrossRef]

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).

[CrossRef]

X. Cao, X. Wang, B. Zhang, F. Liu, J. Luo, and J. Bai, “Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction,” Biomed. Opt. Express 4, 1–14 (2013).

[CrossRef]

J. Shi, B. Zhang, F. Liu, J. Luo, and J. Bai, “Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient,” Opt. Lett. 38, 3696–3699 (2013).

[CrossRef]

G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2013).

[CrossRef]

X. Cao, B. Zhang, F. Liu, X. Wang, and J. Bai, “Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual,” Opt. Lett. 36, 4515–4517 (2011).

[CrossRef]

F. Liu, X. Wang, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng. 38, 3440–3448 (2010).

[CrossRef]

G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2013).

[CrossRef]

F. Liu, X. Wang, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng. 38, 3440–3448 (2010).

[CrossRef]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).

[CrossRef]

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).

[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).

N. C. Deliolanis, J. Dunham, T. Wurdinger, J. L. Figueiredo, B. A. Tannous, and V. Ntziachristos, “In-vivo imaging of murine tumors using complete-angle projection fluorescence molecular tomography,” J. Biomed. Opt. 14, 030509 (2009).

[CrossRef]

T. Correia, T. Rudge, M. Koch, V. Ntziachristos, and S. Arridge, “Wavelet-based data and solution compression for efficient image reconstruction in fluorescence diffuse optical tomography,” J. Biomed. Opt. 18, 086008 (2013).

[CrossRef]

D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, “Tikhonov regularization and the L-curve for large discrete ill-posed problems,” J. Comput. Appl. Math. 123, 423–446 (2000).

[CrossRef]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).

[CrossRef]

W. Zou, J. Wang, and D. D. Feng, “Image reconstruction of fluorescent molecular tomography based on the simplified matrix system,” J. Opt. Soc. Am. A 30, 1464–1475 (2013).

[CrossRef]

M. Hanke and C. W. Groetsch, “Nonstationary iterated Tikhonov regularization,” J. Optim. Theory. Appl. 98, 37–53 (1998).

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).

[CrossRef]

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37, 1976–1986 (2010).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

D. Wang, X. Song, and J. Bai, “Adaptive-mesh-based algorithm for fluoresence molecular tomography using an analytical solution,” Opt. Express 15, 9722–9730 (2007).

[CrossRef]

A. D. Zacharopoulos, P. Svenmarker, J. Axelsson, M. Schweiger, S. R. Arridge, and S. Andersson-Engels, “A matrix-free algorithm for multiple wavelength fluorescence tomography,” Opt. Express 17, 3025–3035 (2009).

[CrossRef]

V. Lukic, V. A. Markel, and J. C. Schotland, “Optical tomography with structured illumination,” Opt. Lett. 34, 983–985 (2009).

[CrossRef]

J. Ripoll, “Hybrid Fourier-real space method for diffuse optical tomography,” Opt. Lett. 35, 688–690 (2010).

[CrossRef]

N. Ducros, C. D’Andrea, G. Valentini, T. Rudge, S. Arridge, and A. Bassi, “Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination,” Opt. Lett. 35, 3676–3678 (2010).

[CrossRef]

X. Cao, B. Zhang, F. Liu, X. Wang, and J. Bai, “Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual,” Opt. Lett. 36, 4515–4517 (2011).

[CrossRef]

J. Shi, B. Zhang, F. Liu, J. Luo, and J. Bai, “Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient,” Opt. Lett. 38, 3696–3699 (2013).

[CrossRef]

P. Mohajerani and V. Ntziachristos, “Compression of Born ratio for fluorescence molecular tomography/x-ray computed tomography hybrid imaging: methodology and in vivo validation,” Opt. Lett. 38, 2324–2326 (2013).

[CrossRef]

G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58, 351–372 (2013).

[CrossRef]

N. Ducros, C. D’Andrea, A. Basis, G. Valentini, and S. Arridge, “A virtual source pattern method for fluorescence tomography with structured light,” Phys. Med. Biol. 57, 3811–3832 (2012).

[CrossRef]

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E 64, 051917 (2001).

[CrossRef]

R. Penrose, “A generalized inverse for matrices,” in Mathematical Proceedings of the Cambridge Philosophical Society (Cambridge University, 1955).