Abstract

The spoof surface plasmon polariton (SPP) effect on the electromagnetic field distribution near the tip of a periodically corrugated metal cylinder–cone probe working at the terahertz regime was studied. We found that radially polarized terahertz radiation could be coupled effectively through a spoof SPP into a surface wave and propagated along the corrugated surface, resulting in more than 20× electric field enhancement near the tip of probe. Multiple resonances caused by the antenna effect were discussed in detail by finite element computation and theoretical analysis of dispersion relation for spoof SPP modes. Moreover, the key figures of merit such as the resonance frequency of the SPP can be flexibly tuned by modifying the geometry of the probe structure, making it attractive for application in an apertureless background-free terahertz near-field microscope.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
    [CrossRef]
  2. R. K. May, K. Su, L. Han, S. Zhong, J. A. Elliott, L. F. Gladden, and J. A. Zeitler, “Hardness and density distributions of pharmaceutical tablets measured by terahertz pulsed imaging,” J. Pharm. Sci. 102, 2179–2186 (2013).
    [CrossRef]
  3. M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67, 310–313 (2002).
    [CrossRef]
  4. E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
    [CrossRef]
  5. R. Kersting, F. F. Buersgens, G. Acuna, and G. C. Cho, “Terahertz near-field microscopy,” in Advances in Solid State Physics (Springer, 2008), pp. 203–222.
  6. O. Mitrofanov, I. Brener, M. C. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
    [CrossRef]
  7. Q. Chen, Z. Jiang, G. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett. 25, 1122–1124 (2000).
    [CrossRef]
  8. J. Xu and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett. 27, 1067–1069 (2002).
    [CrossRef]
  9. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
    [CrossRef]
  10. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
    [CrossRef]
  11. P. Nordlander and F. Le, “Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system,” Appl. Phys. B 84, 35–41 (2006).
  12. M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
    [CrossRef]
  13. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  14. H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).
  15. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
  16. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008).
    [CrossRef]
  17. V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips,” Opt. Express 18, 8722–8734 (2010).
    [CrossRef]
  18. S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara, and M. Ohtsu, “Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber,” Opt. Commun. 146, 45–48 (1998).
    [CrossRef]
  19. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
    [CrossRef]
  20. V. Trukhin, A. Golubok, and L. Samoilov, “Probe shape effect on near-field enhancement in apertureless terahertz near-field microscope,” in 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2011), p. 1.
  21. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef]
  22. F. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009).
    [CrossRef]
  23. A. Fernández-Domínguez, L. Martín-Moreno, F. García-Vidal, S. R. Andrews, and S. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008).
    [CrossRef]
  24. F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S97–S101 (2005).
    [CrossRef]
  25. X. Zhang, L. Shen, J.-J. Wu, and T.-J. Yang, “Terahertz surface plasmon polaritons on a periodically structured metal film with high confinement and low loss,” J. Electromagn. Waves Appl. 23, 2451–2460 (2009).
  26. M. A. Ordal, R. J. Bell, R. Alexander, L. Long, and M. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985).
    [CrossRef]
  27. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2012).
  28. T. Jiang, L. Shen, X. Zhang, and L.-X. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. 8, 91–102 (2009).
    [CrossRef]
  29. L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
    [CrossRef]

2013 (1)

R. K. May, K. Su, L. Han, S. Zhong, J. A. Elliott, L. F. Gladden, and J. A. Zeitler, “Hardness and density distributions of pharmaceutical tablets measured by terahertz pulsed imaging,” J. Pharm. Sci. 102, 2179–2186 (2013).
[CrossRef]

2012 (1)

M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
[CrossRef]

2010 (2)

V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips,” Opt. Express 18, 8722–8734 (2010).
[CrossRef]

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
[CrossRef]

2009 (3)

F. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009).
[CrossRef]

X. Zhang, L. Shen, J.-J. Wu, and T.-J. Yang, “Terahertz surface plasmon polaritons on a periodically structured metal film with high confinement and low loss,” J. Electromagn. Waves Appl. 23, 2451–2460 (2009).

T. Jiang, L. Shen, X. Zhang, and L.-X. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. 8, 91–102 (2009).
[CrossRef]

2008 (3)

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008).
[CrossRef]

A. Fernández-Domínguez, L. Martín-Moreno, F. García-Vidal, S. R. Andrews, and S. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008).
[CrossRef]

2006 (1)

P. Nordlander and F. Le, “Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system,” Appl. Phys. B 84, 35–41 (2006).

2005 (2)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S97–S101 (2005).
[CrossRef]

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

2002 (4)

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).

J. Xu and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett. 27, 1067–1069 (2002).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef]

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67, 310–313 (2002).
[CrossRef]

2000 (2)

O. Mitrofanov, I. Brener, M. C. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

Q. Chen, Z. Jiang, G. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett. 25, 1122–1124 (2000).
[CrossRef]

1998 (1)

S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara, and M. Ohtsu, “Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber,” Opt. Commun. 146, 45–48 (1998).
[CrossRef]

1994 (1)

1992 (1)

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef]

1985 (1)

Acuna, G.

R. Kersting, F. F. Buersgens, G. Acuna, and G. C. Cho, “Terahertz near-field microscopy,” in Advances in Solid State Physics (Springer, 2008), pp. 203–222.

Agarwal, K.

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

Alexander, R.

Andrews, S. R.

A. Fernández-Domínguez, L. Martín-Moreno, F. García-Vidal, S. R. Andrews, and S. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008).
[CrossRef]

Aussenegg, F. R.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).

Baida, F.

F. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2012).

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Belkhir, A.

F. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009).
[CrossRef]

Bell, R. J.

Berweger, S.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
[CrossRef]

Betzig, E.

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef]

Brener, I.

O. Mitrofanov, I. Brener, M. C. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

Bruce, A. J.

O. Mitrofanov, I. Brener, M. C. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

Buersgens, F. F.

R. Kersting, F. F. Buersgens, G. Acuna, and G. C. Cho, “Terahertz near-field microscopy,” in Advances in Solid State Physics (Springer, 2008), pp. 203–222.

Chen, Q.

Chen, X.

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

Cho, G. C.

R. Kersting, F. F. Buersgens, G. Acuna, and G. C. Cho, “Terahertz near-field microscopy,” in Advances in Solid State Physics (Springer, 2008), pp. 203–222.

Cole, B. E.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Ditlbacher, H.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).

Dorfmuller, J.

M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Elliott, J. A.

R. K. May, K. Su, L. Han, S. Zhong, J. A. Elliott, L. F. Gladden, and J. A. Zeitler, “Hardness and density distributions of pharmaceutical tablets measured by terahertz pulsed imaging,” J. Pharm. Sci. 102, 2179–2186 (2013).
[CrossRef]

Esslinger, M.

M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
[CrossRef]

Federici, J.

O. Mitrofanov, I. Brener, M. C. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

Fernández-Domínguez, A.

A. Fernández-Domínguez, L. Martín-Moreno, F. García-Vidal, S. R. Andrews, and S. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008).
[CrossRef]

Fischer, B.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67, 310–313 (2002).
[CrossRef]

Garcia-Vidal, F.

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S97–S101 (2005).
[CrossRef]

García-Vidal, F.

A. Fernández-Domínguez, L. Martín-Moreno, F. García-Vidal, S. R. Andrews, and S. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008).
[CrossRef]

Gladden, L. F.

R. K. May, K. Su, L. Han, S. Zhong, J. A. Elliott, L. F. Gladden, and J. A. Zeitler, “Hardness and density distributions of pharmaceutical tablets measured by terahertz pulsed imaging,” J. Pharm. Sci. 102, 2179–2186 (2013).
[CrossRef]

Golubok, A.

V. Trukhin, A. Golubok, and L. Samoilov, “Probe shape effect on near-field enhancement in apertureless terahertz near-field microscope,” in 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2011), p. 1.

Hafner, C.

Han, L.

R. K. May, K. Su, L. Han, S. Zhong, J. A. Elliott, L. F. Gladden, and J. A. Zeitler, “Hardness and density distributions of pharmaceutical tablets measured by terahertz pulsed imaging,” J. Pharm. Sci. 102, 2179–2186 (2013).
[CrossRef]

Helm, H.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67, 310–313 (2002).
[CrossRef]

Hillenbrand, R.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef]

Inouye, Y.

Jiang, T.

T. Jiang, L. Shen, X. Zhang, and L.-X. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. 8, 91–102 (2009).
[CrossRef]

Jiang, Z.

Kawata, S.

Keilmann, F.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef]

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Kern, K.

M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
[CrossRef]

Kersting, R.

R. Kersting, F. F. Buersgens, G. Acuna, and G. C. Cho, “Terahertz near-field microscopy,” in Advances in Solid State Physics (Springer, 2008), pp. 203–222.

Khunsin, W.

M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
[CrossRef]

Koshihara, S.

S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara, and M. Ohtsu, “Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber,” Opt. Commun. 146, 45–48 (1998).
[CrossRef]

Krenn, J. R.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).

Kuipers, L. K.

Lamprecht, B.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).

Le, F.

P. Nordlander and F. Le, “Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system,” Appl. Phys. B 84, 35–41 (2006).

Leitner, A.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Long, L.

Lotito, V.

Maier, S.

A. Fernández-Domínguez, L. Martín-Moreno, F. García-Vidal, S. R. Andrews, and S. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008).
[CrossRef]

Martin-Moreno, L.

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S97–S101 (2005).
[CrossRef]

Martín-Moreno, L.

A. Fernández-Domínguez, L. Martín-Moreno, F. García-Vidal, S. R. Andrews, and S. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008).
[CrossRef]

May, R. K.

R. K. May, K. Su, L. Han, S. Zhong, J. A. Elliott, L. F. Gladden, and J. A. Zeitler, “Hardness and density distributions of pharmaceutical tablets measured by terahertz pulsed imaging,” J. Pharm. Sci. 102, 2179–2186 (2013).
[CrossRef]

Mitrofanov, O.

O. Mitrofanov, I. Brener, M. C. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

Mononobe, S.

S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara, and M. Ohtsu, “Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber,” Opt. Commun. 146, 45–48 (1998).
[CrossRef]

Neacsu, C. C.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
[CrossRef]

Nordlander, P.

P. Nordlander and F. Le, “Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system,” Appl. Phys. B 84, 35–41 (2006).

Ohtsu, M.

S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara, and M. Ohtsu, “Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber,” Opt. Commun. 146, 45–48 (1998).
[CrossRef]

Olmon, R. L.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
[CrossRef]

Ordal, M. A.

Pendry, J.

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S97–S101 (2005).
[CrossRef]

Plochocka, P.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67, 310–313 (2002).
[CrossRef]

Polman, A.

Querry, M.

Raether, H.

H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).

Ran, L.-X.

T. Jiang, L. Shen, X. Zhang, and L.-X. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. 8, 91–102 (2009).
[CrossRef]

Raschke, M. B.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
[CrossRef]

Ropers, C.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
[CrossRef]

Ruel, R. R.

O. Mitrofanov, I. Brener, M. C. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

Saiki, T.

S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara, and M. Ohtsu, “Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber,” Opt. Commun. 146, 45–48 (1998).
[CrossRef]

Salerno, M.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).

Samoilov, L.

V. Trukhin, A. Golubok, and L. Samoilov, “Probe shape effect on near-field enhancement in apertureless terahertz near-field microscope,” in 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2011), p. 1.

Saraf, L. V.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
[CrossRef]

Schider, G.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).

Sennhauser, U.

Shen, L.

T. Jiang, L. Shen, X. Zhang, and L.-X. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. 8, 91–102 (2009).
[CrossRef]

X. Zhang, L. Shen, J.-J. Wu, and T.-J. Yang, “Terahertz surface plasmon polaritons on a periodically structured metal film with high confinement and low loss,” J. Electromagn. Waves Appl. 23, 2451–2460 (2009).

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

Shen, Y. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef]

Su, K.

R. K. May, K. Su, L. Han, S. Zhong, J. A. Elliott, L. F. Gladden, and J. A. Zeitler, “Hardness and density distributions of pharmaceutical tablets measured by terahertz pulsed imaging,” J. Pharm. Sci. 102, 2179–2186 (2013).
[CrossRef]

Suzuki, T.

S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara, and M. Ohtsu, “Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber,” Opt. Commun. 146, 45–48 (1998).
[CrossRef]

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Taubner, T.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef]

Trautman, J. K.

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef]

Tribe, W. R.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Trukhin, V.

V. Trukhin, A. Golubok, and L. Samoilov, “Probe shape effect on near-field enhancement in apertureless terahertz near-field microscope,” in 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2011), p. 1.

Uhd Jepsen, P.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67, 310–313 (2002).
[CrossRef]

Verhagen, E.

Vogelgesang, R.

M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
[CrossRef]

Walther, M.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67, 310–313 (2002).
[CrossRef]

Wanke, M. C.

O. Mitrofanov, I. Brener, M. C. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

Wu, J.-J.

X. Zhang, L. Shen, J.-J. Wu, and T.-J. Yang, “Terahertz surface plasmon polaritons on a periodically structured metal film with high confinement and low loss,” J. Electromagn. Waves Appl. 23, 2451–2460 (2009).

Wynn, J. D.

O. Mitrofanov, I. Brener, M. C. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

Xu, G.

Xu, J.

Yang, T.-J.

X. Zhang, L. Shen, J.-J. Wu, and T.-J. Yang, “Terahertz surface plasmon polaritons on a periodically structured metal film with high confinement and low loss,” J. Electromagn. Waves Appl. 23, 2451–2460 (2009).

Zeitler, J. A.

R. K. May, K. Su, L. Han, S. Zhong, J. A. Elliott, L. F. Gladden, and J. A. Zeitler, “Hardness and density distributions of pharmaceutical tablets measured by terahertz pulsed imaging,” J. Pharm. Sci. 102, 2179–2186 (2013).
[CrossRef]

Zhang, X.

T. Jiang, L. Shen, X. Zhang, and L.-X. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. 8, 91–102 (2009).
[CrossRef]

X. Zhang, L. Shen, J.-J. Wu, and T.-J. Yang, “Terahertz surface plasmon polaritons on a periodically structured metal film with high confinement and low loss,” J. Electromagn. Waves Appl. 23, 2451–2460 (2009).

Zhang, X.-C.

Zhong, S.

R. K. May, K. Su, L. Han, S. Zhong, J. A. Elliott, L. F. Gladden, and J. A. Zeitler, “Hardness and density distributions of pharmaceutical tablets measured by terahertz pulsed imaging,” J. Pharm. Sci. 102, 2179–2186 (2013).
[CrossRef]

Zhong, Y.

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

P. Nordlander and F. Le, “Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system,” Appl. Phys. B 84, 35–41 (2006).

Appl. Phys. Lett. (2)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

O. Mitrofanov, I. Brener, M. C. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

Biopolymers (1)

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67, 310–313 (2002).
[CrossRef]

Europhys. Lett. (1)

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).

IEEE J. Sel. Top. Quantum Electron. (1)

A. Fernández-Domínguez, L. Martín-Moreno, F. García-Vidal, S. R. Andrews, and S. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008).
[CrossRef]

J. Electromagn. Waves Appl. (1)

X. Zhang, L. Shen, J.-J. Wu, and T.-J. Yang, “Terahertz surface plasmon polaritons on a periodically structured metal film with high confinement and low loss,” J. Electromagn. Waves Appl. 23, 2451–2460 (2009).

J. Opt. A (1)

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S97–S101 (2005).
[CrossRef]

J. Pharm. Sci. (1)

R. K. May, K. Su, L. Han, S. Zhong, J. A. Elliott, L. F. Gladden, and J. A. Zeitler, “Hardness and density distributions of pharmaceutical tablets measured by terahertz pulsed imaging,” J. Pharm. Sci. 102, 2179–2186 (2013).
[CrossRef]

Nano Lett. (1)

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
[CrossRef]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef]

Opt. Commun. (1)

S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara, and M. Ohtsu, “Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber,” Opt. Commun. 146, 45–48 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (1)

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef]

Plasmonics (1)

F. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009).
[CrossRef]

Prog. Electromagn. Res. (1)

T. Jiang, L. Shen, X. Zhang, and L.-X. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. 8, 91–102 (2009).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
[CrossRef]

Science (1)

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef]

Other (4)

R. Kersting, F. F. Buersgens, G. Acuna, and G. C. Cho, “Terahertz near-field microscopy,” in Advances in Solid State Physics (Springer, 2008), pp. 203–222.

H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).

V. Trukhin, A. Golubok, and L. Samoilov, “Probe shape effect on near-field enhancement in apertureless terahertz near-field microscope,” in 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2011), p. 1.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of a terahertz near-field microscopy system. The probe is a combination of a long cylinder and a cone, both corrugated with periodic grooves. L1 and L2 are the lengths of the cylinder and the cone; R is the radius of the wire. The tip of the taper is rounded by a sphere with radius r. The parameters a, h, and p are the width, depth, and period of groove, respectively. The material of the probe is assumed as gold. The incident terahertz radiation focused on the upper end of the cylinder guide is coupled into a spoof SPP through grooves and guided to the bottom tip. A photoconductive antenna detector is placed to detect the scattered far-field signal.

Fig. 2.
Fig. 2.

Dispersion relation of surface mode sustained by a PEC cylinder corrugated with periodic grooves of width a, depth h, and period p. All the plots are calculated from the analytical equation (1) with p=30μm and a=0.2p. The fundamental asymptotic frequencies were marked by dashed horizontal lines. The ellipses denote the high modes.

Fig. 3.
Fig. 3.

Electric field intensity versus frequency for different cases of h=0.5, 1, 1.5, and 2 p, respectively. All the data were collected at 5 μm far from the apex of the taper on the symmetry axis. The arrows indicate the effective surface plasma frequency or cutoff frequency where there was a sharp dip in the plots. The inset is the whole view with frequency up to 4 THz.

Fig. 4.
Fig. 4.

SPP resonance characteristics as a function of mode number m. (a) Resonant frequency with corresponding mode number. (b) Dependence of redshift of SPP resonance on mode number m.

Fig. 5.
Fig. 5.

(a) Distributions of the electric field in cross section for h=2 p case at f=0.4, 0.85, 1.1, and 3.0 THz. The excitation wave is injected from the right port. (b) Electric field intensity variation in cross section at 0.5 THz for three structures with depths of h=1, 1.5, and 2 p. The lower-right image shows the zoom view of the high mode inside the groove depicted by a white rectangle in the “3.0 THz, h=2p” panel. In all cases the linear color ranges from blue (minimum) to red (maximum). Note that the scale is adjusted far lower than the maximum electric field intensity for clarity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

kx2k02k0=aptan(k0h),
λ2m=L,

Metrics