Abstract

Diffuse optical tomography is a highly unstable problem with respect to modeling and measurement errors. During clinical measurements, the body shape is not always known, and an approximate model domain has to be employed. The use of an incorrect model domain can, however, lead to significant artifacts in the reconstructed images. Recently, the Bayesian approximation error theory has been proposed to handle model-based errors. In this work, the feasibility of the Bayesian approximation error approach to compensate for modeling errors due to unknown body shape is investigated. The approach is tested with simulations. The results show that the Bayesian approximation error method can be used to reduce artifacts in reconstructed images due to unknown domain shape.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
Adaptive finite element based tomography for fluorescence optical imaging in tissue

Amit Joshi, Wolfgang Bangerth, and Eva M. Sevick-Muraca
Opt. Express 12(22) 5402-5417 (2004)

Compensation for geometric mismodelling by anisotropies in optical tomography

Jenni Heino, Erkki Somersalo, and Jari P. Kaipio
Opt. Express 13(1) 296-308 (2005)

Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions

Harrison H. Barrett, Christopher Dainty, and David Lara
J. Opt. Soc. Am. A 24(2) 391-414 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (42)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription