Abstract

We report a full design process—finite element modeling, fabrication, and characterization—of adaptive doublet polymer lenses. A first-order model was developed and used to design fluidic doublets, analogous to their glass counterparts. Two constant-volume fluidic chambers were enclosed by three flexible membranes, resulting in a variable focal length doublet with a clear aperture of 19.0 mm. Chromatic focal shift was then used to compare numerical modeling to experimentally measured results over a positive focal length range of 55–200 mm (f/2.89 to f/10.5).

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Woodward, “Improvement in fluid lenses,” Letters Patent60,109 (November27, 1866).
  2. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electro-wetting,” Eur. Phys. J. E 3, 159–163 (2000).
    [CrossRef]
  3. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [CrossRef]
  4. H. Ren and S. Wu, Introduction to Adaptive Lens (Wiley, 2012).
  5. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16, 11847–11857 (2008).
    [CrossRef]
  6. B. E. Bagwell and F. Santiago, “RD100: RAZAR adaptive zoom rifle scope,” (2014).
  7. D. V. Wick, “Active optical zoom system,” U.S. patent6,977,777 (December20, 2005).
  8. D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
    [CrossRef]
  9. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19, 18584–18592 (2011).
    [CrossRef]
  10. A. Miks and J. Novak, “Analysis of two-element zoom systems based on variable power lenses,” Opt. Express 18, 6797–6810 (2010).
    [CrossRef]
  11. A. Miks and J. Novak, “Analysis of three-element zoom lens based on refractive variable-focus lenses,” Opt. Express 19, 23989–23996 (2011).
    [CrossRef]
  12. S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15, 14146–14154 (2007).
    [CrossRef]
  13. M. S. Baker, B. J. Anderson, G. Soehnel, B. Bagwell, and F. Santiago, “Polymer adaptive lens athermalization,” (Sandia National Laboratories, 2011).

2011

2010

2008

2007

2005

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

2004

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

2000

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electro-wetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Anderson, B. J.

M. S. Baker, B. J. Anderson, G. Soehnel, B. Bagwell, and F. Santiago, “Polymer adaptive lens athermalization,” (Sandia National Laboratories, 2011).

Baer, E.

Bagwell, B.

M. S. Baker, B. J. Anderson, G. Soehnel, B. Bagwell, and F. Santiago, “Polymer adaptive lens athermalization,” (Sandia National Laboratories, 2011).

Bagwell, B. E.

B. E. Bagwell and F. Santiago, “RD100: RAZAR adaptive zoom rifle scope,” (2014).

Baker, M. S.

M. S. Baker, B. J. Anderson, G. Soehnel, B. Bagwell, and F. Santiago, “Polymer adaptive lens athermalization,” (Sandia National Laboratories, 2011).

Beadie, G.

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electro-wetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Hiltner, A.

Kazmierczak, T.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Lepkowicz, R. S.

Liebetraut, P.

Mader, D.

Martinez, T.

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

Miks, A.

Novak, J.

Payne, D. M.

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electro-wetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Ponting, M.

Reichelt, S.

Ren, H.

H. Ren and S. Wu, Introduction to Adaptive Lens (Wiley, 2012).

Restaino, S. R.

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

Sandrock, M. L.

Santiago, F.

B. E. Bagwell and F. Santiago, “RD100: RAZAR adaptive zoom rifle scope,” (2014).

M. S. Baker, B. J. Anderson, G. Soehnel, B. Bagwell, and F. Santiago, “Polymer adaptive lens athermalization,” (Sandia National Laboratories, 2011).

Seifert, A.

Shirk, J. S.

Soehnel, G.

M. S. Baker, B. J. Anderson, G. Soehnel, B. Bagwell, and F. Santiago, “Polymer adaptive lens athermalization,” (Sandia National Laboratories, 2011).

Sweatt, W. C.

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

Waibel, P.

Wick, D. V.

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

D. V. Wick, “Active optical zoom system,” U.S. patent6,977,777 (December20, 2005).

Wiggins, M. J.

Wu, S.

H. Ren and S. Wu, Introduction to Adaptive Lens (Wiley, 2012).

Yang, Y.

Zappe, H.

Appl. Phys. Lett.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Eur. Phys. J. E

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electro-wetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Opt. Express

Proc. SPIE

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

Other

B. E. Bagwell and F. Santiago, “RD100: RAZAR adaptive zoom rifle scope,” (2014).

D. V. Wick, “Active optical zoom system,” U.S. patent6,977,777 (December20, 2005).

M. S. Baker, B. J. Anderson, G. Soehnel, B. Bagwell, and F. Santiago, “Polymer adaptive lens athermalization,” (Sandia National Laboratories, 2011).

D. A. Woodward, “Improvement in fluid lenses,” Letters Patent60,109 (November27, 1866).

H. Ren and S. Wu, Introduction to Adaptive Lens (Wiley, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(Left) ADPL focusing on a business card. (Right) Side view of the ADPL showing support rings.

Fig. 2.
Fig. 2.

Chromatic focal shift plot for a designed ADPL and ray-tracing diagram.

Fig. 3.
Fig. 3.

Conceptual drawing showing the relationship between ROC and Vcap.

Fig. 4.
Fig. 4.

Pressure versus volume results obtained from FEM and their respective linear fits.

Fig. 5.
Fig. 5.

Fixture used to measure pressure versus volume and ROC, as a function of Tr. The black port connects to a pressure gauge and measures the pressure inside the lens, and the clear port controls the volume and allows us to change the ROC.

Fig. 6.
Fig. 6.

Pressure versus volume results obtained from experimental results and their respective linear fits.

Fig. 7.
Fig. 7.

Comparison between the FEM and experimental results for a thickness ratio of Tr=0.77.

Fig. 8.
Fig. 8.

Cross-sectional representation of an ADPL and pressure, volume, and thickness ratio relationship.

Fig. 9.
Fig. 9.

Optical design to fabrication process for an ADPL.

Fig. 10.
Fig. 10.

Graphical representation of the measured prescription of ADPLs 1 and 2.

Fig. 11.
Fig. 11.

Optical setup with three collimated beams at the wavelengths of interest, 632, 532, and 405 nm.

Tables (1)

Tables Icon

Table 1. Actuated ADPL Focal Shift Results for Two Achromatic Doublets Obtained from Measurements and Zemax Calculations with Their Respective Effective Focal Lengths (EFFLs)a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Vcap=γ·1ROC,
Tr=TiTf,
ΔP=m(Tr)*Vcap,
m(Tr)=α*Tr+β,
ΔPT=n=1MΔPn=n=1Mmn*Vcapn=0,

Metrics