T. Shimobaba, K. Matsushima, T. Kakue, N. Masuda, and T. Ito, “Scaled angular spectrum method,” Opt. Lett. 37, 4128–4130 (2012).

[CrossRef]

T. Kozacki, K. Falaggis, and M. Kujawinska, “Computation of diffracted fields for the case of high numerical aperture using the angular spectrum method,” Appl. Opt. 51, 7080–7088 (2012).

[CrossRef]

X. Yu, T. Xiahui, Q. Yingxiong, P. Hao, and W. Wei, “Band-limited angular spectrum numerical propagation method with selective scaling of observation window size and sample number,” J. Opt. Soc. Am. A 29, 2415–2420 (2012).

[CrossRef]

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

J.-C. Li, P. Tankam, Z.-J. Peng, and P. Picart, “Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification,” Opt. Lett. 34, 572–574 (2009).

[CrossRef]

V. Nascov and P. C. Logofatu, “Fast computation algorithm for the Rayleigh–Sommerfeld diffraction formula using a type of scaled convolution,” Appl. Opt. 48, 4310–4319 (2009).

[CrossRef]

K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).

[CrossRef]

D. G. Voelz and M. C. Roggemann, “Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences,” Appl. Opt. 48, 6132–6142 (2009).

[CrossRef]

D. P. Kelly, T. J. Naughton, W. T. Rhodes, B. M. Hennelly, and N. Pandey, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).

[CrossRef]

L. F. Shampine, “MATLAB program for quadrature in 2D,” Appl. Math. Comput. 202, 266–274 (2008).

[CrossRef]

T. Kozacki, “Numerical errors of diffraction computing using plane wave spectrum decomposition,” Opt. Commun. 281, 4219–4223 (2008).

[CrossRef]

J. J. Braat, S. van Haver, A. J. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions,” Prog. Opt. 51, 349–468 (2008).

[CrossRef]

D. P. Kelly, W. T. Rhodes, J. T. Sheridan, and B. M. Hennelly, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).

[CrossRef]

D. P. Kelly, J. T. Sheridan, and W. T. Rhodes, “Finite-aperture effects for Fourier transform systems with convergent illumination. part I: 2-D system analysis,” Opt. Commun. 263, 171–179 (2006).

[CrossRef]

D. P. Kelly, B. M. Hennelly, J. T. Sheridan, and W. T. Rhodes, “Finite-aperture effects for Fourier transform systems with convergent illumination. part II: 3-D system analysis,” Opt. Commun. 263, 180–188 (2006).

[CrossRef]

F. B. Shen and A. B. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh–Sommerfeld diffraction formula,” Appl. Opt. 45, 1102–1110 (2006).

[CrossRef]

F. Zhang, G. Pedrini, and W. Osten, “Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution,” Opt. Lett. 31, 1633–1635 (2006).

[CrossRef]

D. Mas, J. Pérez, C. Hernández, C. Vázquez, J. J. Miret, and C. Illueca, “Fast numerical calculation of Fresnel patterns in convergent systems,” Opt. Commun. 227, 245–258 (2003).

[CrossRef]

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).

[CrossRef]

D. Mendlovic and A. W. Lohmann, “Space–bandwidth product adaptation and its application to superresolution: fundamentals,” J. Opt. Soc. Am. A 14, 558–562 (1997).

[CrossRef]

D. Mendlovic, A. W. Lohmann, and Z. Zalevsky, “Space–bandwidth product adaptation and its application to superresolution: examples,” J. Opt. Soc. Am. A 14, 563–567 (1997).

[CrossRef]

T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).

[CrossRef]

L. Bluestein, “A linear filtering approach to the computation of discrete Fourier transform,” IEEE Trans. Audio Electroacoust. 18, 451–455 (1970).

[CrossRef]

L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm and its application,” Bell Syst. Tech. J. 48, 1249–1292 (1969).

[CrossRef]

T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).

[CrossRef]

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).

[CrossRef]

L. Bluestein, “A linear filtering approach to the computation of discrete Fourier transform,” IEEE Trans. Audio Electroacoust. 18, 451–455 (1970).

[CrossRef]

J. J. Braat, S. van Haver, A. J. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions,” Prog. Opt. 51, 349–468 (2008).

[CrossRef]

E. O. Brigham, The Fast Fourier Transform and Its Applications, Prentice-Hall Signal Processing Series (Prentice Hall, 1988).

J. J. Braat, S. van Haver, A. J. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions,” Prog. Opt. 51, 349–468 (2008).

[CrossRef]

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).

[CrossRef]

A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).

[CrossRef]

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).

[CrossRef]

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).

D. P. Kelly, T. J. Naughton, W. T. Rhodes, B. M. Hennelly, and N. Pandey, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).

[CrossRef]

D. P. Kelly, B. M. Hennelly, J. T. Sheridan, and W. T. Rhodes, “Finite-aperture effects for Fourier transform systems with convergent illumination. part II: 3-D system analysis,” Opt. Commun. 263, 180–188 (2006).

[CrossRef]

D. P. Kelly, W. T. Rhodes, J. T. Sheridan, and B. M. Hennelly, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).

[CrossRef]

B. M. Hennelly, D. P. Kelly, D. S. Monaghan, and N. Pandey, “Zoom algorithms for digital holography,” in Information Optics and Photonics, B. Javidi and T. Fournel, eds. (Springer, 2010), pp. 187–204.

D. Mas, J. Pérez, C. Hernández, C. Vázquez, J. J. Miret, and C. Illueca, “Fast numerical calculation of Fresnel patterns in convergent systems,” Opt. Commun. 227, 245–258 (2003).

[CrossRef]

D. Mas, J. Pérez, C. Hernández, C. Vázquez, J. J. Miret, and C. Illueca, “Fast numerical calculation of Fresnel patterns in convergent systems,” Opt. Commun. 227, 245–258 (2003).

[CrossRef]

J. J. Braat, S. van Haver, A. J. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions,” Prog. Opt. 51, 349–468 (2008).

[CrossRef]

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).

[CrossRef]

M. Hillenbrand, A. Hoffmann, D. P. Kelly, and S. Sinzinger, “Fast nonparaxial scalar focal field calculations,” J. Opt. Soc. Am. A 31, 1206–1214 (2014).

[CrossRef]

D. P. Kelly, “Numerical calculation of the Fresnel transform,” J. Opt. Soc. Am. A 31, 755–764 (2014).

[CrossRef]

D. P. Kelly, T. J. Naughton, W. T. Rhodes, B. M. Hennelly, and N. Pandey, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).

[CrossRef]

D. P. Kelly, B. M. Hennelly, J. T. Sheridan, and W. T. Rhodes, “Finite-aperture effects for Fourier transform systems with convergent illumination. part II: 3-D system analysis,” Opt. Commun. 263, 180–188 (2006).

[CrossRef]

D. P. Kelly, J. T. Sheridan, and W. T. Rhodes, “Finite-aperture effects for Fourier transform systems with convergent illumination. part I: 2-D system analysis,” Opt. Commun. 263, 171–179 (2006).

[CrossRef]

D. P. Kelly, W. T. Rhodes, J. T. Sheridan, and B. M. Hennelly, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).

[CrossRef]

D. P. Kelly, N. Sabitov, T. Meinecke, and S. Sinzinger, “Some considerations when numerically calculating diffraction patterns,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2011), paper DTuC5.

B. M. Hennelly, D. P. Kelly, D. S. Monaghan, and N. Pandey, “Zoom algorithms for digital holography,” in Information Optics and Photonics, B. Javidi and T. Fournel, eds. (Springer, 2010), pp. 187–204.

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).

T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).

[CrossRef]

D. Mendlovic and A. W. Lohmann, “Space–bandwidth product adaptation and its application to superresolution: fundamentals,” J. Opt. Soc. Am. A 14, 558–562 (1997).

[CrossRef]

D. Mendlovic, A. W. Lohmann, and Z. Zalevsky, “Space–bandwidth product adaptation and its application to superresolution: examples,” J. Opt. Soc. Am. A 14, 563–567 (1997).

[CrossRef]

A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).

[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 2008).

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).

[CrossRef]

D. Mas, J. Pérez, C. Hernández, C. Vázquez, J. J. Miret, and C. Illueca, “Fast numerical calculation of Fresnel patterns in convergent systems,” Opt. Commun. 227, 245–258 (2003).

[CrossRef]

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).

[CrossRef]

T. Shimobaba, K. Matsushima, T. Kakue, N. Masuda, and T. Ito, “Scaled angular spectrum method,” Opt. Lett. 37, 4128–4130 (2012).

[CrossRef]

K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).

[CrossRef]

D. P. Kelly, N. Sabitov, T. Meinecke, and S. Sinzinger, “Some considerations when numerically calculating diffraction patterns,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2011), paper DTuC5.

D. Mendlovic, A. W. Lohmann, and Z. Zalevsky, “Space–bandwidth product adaptation and its application to superresolution: examples,” J. Opt. Soc. Am. A 14, 563–567 (1997).

[CrossRef]

D. Mendlovic and A. W. Lohmann, “Space–bandwidth product adaptation and its application to superresolution: fundamentals,” J. Opt. Soc. Am. A 14, 558–562 (1997).

[CrossRef]

A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).

[CrossRef]

D. Mas, J. Pérez, C. Hernández, C. Vázquez, J. J. Miret, and C. Illueca, “Fast numerical calculation of Fresnel patterns in convergent systems,” Opt. Commun. 227, 245–258 (2003).

[CrossRef]

B. M. Hennelly, D. P. Kelly, D. S. Monaghan, and N. Pandey, “Zoom algorithms for digital holography,” in Information Optics and Photonics, B. Javidi and T. Fournel, eds. (Springer, 2010), pp. 187–204.

D. P. Kelly, T. J. Naughton, W. T. Rhodes, B. M. Hennelly, and N. Pandey, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).

[CrossRef]

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. (Pearson, 2010).

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

D. P. Kelly, T. J. Naughton, W. T. Rhodes, B. M. Hennelly, and N. Pandey, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).

[CrossRef]

B. M. Hennelly, D. P. Kelly, D. S. Monaghan, and N. Pandey, “Zoom algorithms for digital holography,” in Information Optics and Photonics, B. Javidi and T. Fournel, eds. (Springer, 2010), pp. 187–204.

D. Mas, J. Pérez, C. Hernández, C. Vázquez, J. J. Miret, and C. Illueca, “Fast numerical calculation of Fresnel patterns in convergent systems,” Opt. Commun. 227, 245–258 (2003).

[CrossRef]

L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm and its application,” Bell Syst. Tech. J. 48, 1249–1292 (1969).

[CrossRef]

L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm and its application,” Bell Syst. Tech. J. 48, 1249–1292 (1969).

[CrossRef]

D. P. Kelly, T. J. Naughton, W. T. Rhodes, B. M. Hennelly, and N. Pandey, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).

[CrossRef]

D. P. Kelly, B. M. Hennelly, J. T. Sheridan, and W. T. Rhodes, “Finite-aperture effects for Fourier transform systems with convergent illumination. part II: 3-D system analysis,” Opt. Commun. 263, 180–188 (2006).

[CrossRef]

D. P. Kelly, J. T. Sheridan, and W. T. Rhodes, “Finite-aperture effects for Fourier transform systems with convergent illumination. part I: 2-D system analysis,” Opt. Commun. 263, 171–179 (2006).

[CrossRef]

D. P. Kelly, W. T. Rhodes, J. T. Sheridan, and B. M. Hennelly, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).

[CrossRef]

D. P. Kelly, N. Sabitov, T. Meinecke, and S. Sinzinger, “Some considerations when numerically calculating diffraction patterns,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2011), paper DTuC5.

L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm and its application,” Bell Syst. Tech. J. 48, 1249–1292 (1969).

[CrossRef]

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. (Pearson, 2010).

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

L. F. Shampine, “MATLAB program for quadrature in 2D,” Appl. Math. Comput. 202, 266–274 (2008).

[CrossRef]

D. P. Kelly, J. T. Sheridan, and W. T. Rhodes, “Finite-aperture effects for Fourier transform systems with convergent illumination. part I: 2-D system analysis,” Opt. Commun. 263, 171–179 (2006).

[CrossRef]

D. P. Kelly, B. M. Hennelly, J. T. Sheridan, and W. T. Rhodes, “Finite-aperture effects for Fourier transform systems with convergent illumination. part II: 3-D system analysis,” Opt. Commun. 263, 180–188 (2006).

[CrossRef]

D. P. Kelly, W. T. Rhodes, J. T. Sheridan, and B. M. Hennelly, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).

[CrossRef]

T. Shimobaba, K. Matsushima, T. Kakue, N. Masuda, and T. Ito, “Scaled angular spectrum method,” Opt. Lett. 37, 4128–4130 (2012).

[CrossRef]

K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).

[CrossRef]

M. Hillenbrand, A. Hoffmann, D. P. Kelly, and S. Sinzinger, “Fast nonparaxial scalar focal field calculations,” J. Opt. Soc. Am. A 31, 1206–1214 (2014).

[CrossRef]

D. P. Kelly, N. Sabitov, T. Meinecke, and S. Sinzinger, “Some considerations when numerically calculating diffraction patterns,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2011), paper DTuC5.

J. J. Stamnes, Waves in Focal Regions: Propagation, Diffraction and Focusing of Light, Sound and Water Waves, Adam Hilger Series on Optics and Optoelectronics (Hilger, 1986).

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

J. J. Braat, S. van Haver, A. J. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions,” Prog. Opt. 51, 349–468 (2008).

[CrossRef]

D. Mas, J. Pérez, C. Hernández, C. Vázquez, J. J. Miret, and C. Illueca, “Fast numerical calculation of Fresnel patterns in convergent systems,” Opt. Commun. 227, 245–258 (2003).

[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 2008).

D. Mendlovic, A. W. Lohmann, and Z. Zalevsky, “Space–bandwidth product adaptation and its application to superresolution: examples,” J. Opt. Soc. Am. A 14, 563–567 (1997).

[CrossRef]

A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).

[CrossRef]

L. F. Shampine, “MATLAB program for quadrature in 2D,” Appl. Math. Comput. 202, 266–274 (2008).

[CrossRef]

F. B. Shen and A. B. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh–Sommerfeld diffraction formula,” Appl. Opt. 45, 1102–1110 (2006).

[CrossRef]

L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39, 5929–5935 (2000).

[CrossRef]

D. G. Voelz and M. C. Roggemann, “Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences,” Appl. Opt. 48, 6132–6142 (2009).

[CrossRef]

P. Picart and P. Tankam, “Analysis and adaptation of convolution algorithms to reconstruct extended objects in digital holography,” Appl. Opt. 52, A240–A253 (2013).

[CrossRef]

T. Kozacki, K. Falaggis, and M. Kujawinska, “Computation of diffracted fields for the case of high numerical aperture using the angular spectrum method,” Appl. Opt. 51, 7080–7088 (2012).

[CrossRef]

V. Nascov and P. C. Logofatu, “Fast computation algorithm for the Rayleigh–Sommerfeld diffraction formula using a type of scaled convolution,” Appl. Opt. 48, 4310–4319 (2009).

[CrossRef]

L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm and its application,” Bell Syst. Tech. J. 48, 1249–1292 (1969).

[CrossRef]

L. Bluestein, “A linear filtering approach to the computation of discrete Fourier transform,” IEEE Trans. Audio Electroacoust. 18, 451–455 (1970).

[CrossRef]

D. Mendlovic and A. W. Lohmann, “Space–bandwidth product adaptation and its application to superresolution: fundamentals,” J. Opt. Soc. Am. A 14, 558–562 (1997).

[CrossRef]

D. Mendlovic, A. W. Lohmann, and Z. Zalevsky, “Space–bandwidth product adaptation and its application to superresolution: examples,” J. Opt. Soc. Am. A 14, 563–567 (1997).

[CrossRef]

D. P. Kelly, “Numerical calculation of the Fresnel transform,” J. Opt. Soc. Am. A 31, 755–764 (2014).

[CrossRef]

A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).

[CrossRef]

L. Onural, “Exact analysis of the effects of sampling of the scalar diffraction field,” J. Opt. Soc. Am. A 24, 359–367 (2007).

[CrossRef]

N. Delen and B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach,” J. Opt. Soc. Am. A 15, 857–867 (1998).

[CrossRef]

A. Stern and B. Javidi, “Sampling in the light of Wigner distribution,” J. Opt. Soc. Am. A 21, 360–366 (2004).

[CrossRef]

M. Hillenbrand, A. Hoffmann, D. P. Kelly, and S. Sinzinger, “Fast nonparaxial scalar focal field calculations,” J. Opt. Soc. Am. A 31, 1206–1214 (2014).

[CrossRef]

X. Yu, T. Xiahui, Q. Yingxiong, P. Hao, and W. Wei, “Band-limited angular spectrum numerical propagation method with selective scaling of observation window size and sample number,” J. Opt. Soc. Am. A 29, 2415–2420 (2012).

[CrossRef]

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).

[CrossRef]

D. Mas, J. Pérez, C. Hernández, C. Vázquez, J. J. Miret, and C. Illueca, “Fast numerical calculation of Fresnel patterns in convergent systems,” Opt. Commun. 227, 245–258 (2003).

[CrossRef]

D. P. Kelly, J. T. Sheridan, and W. T. Rhodes, “Finite-aperture effects for Fourier transform systems with convergent illumination. part I: 2-D system analysis,” Opt. Commun. 263, 171–179 (2006).

[CrossRef]

D. P. Kelly, B. M. Hennelly, J. T. Sheridan, and W. T. Rhodes, “Finite-aperture effects for Fourier transform systems with convergent illumination. part II: 3-D system analysis,” Opt. Commun. 263, 180–188 (2006).

[CrossRef]

T. Kozacki, “Numerical errors of diffraction computing using plane wave spectrum decomposition,” Opt. Commun. 281, 4219–4223 (2008).

[CrossRef]

D. P. Kelly, T. J. Naughton, W. T. Rhodes, B. M. Hennelly, and N. Pandey, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).

[CrossRef]

D. P. Kelly, W. T. Rhodes, J. T. Sheridan, and B. M. Hennelly, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).

[CrossRef]

K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).

[CrossRef]

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

J.-C. Li, P. Tankam, Z.-J. Peng, and P. Picart, “Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification,” Opt. Lett. 34, 572–574 (2009).

[CrossRef]

F. Zhang, G. Pedrini, and W. Osten, “Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution,” Opt. Lett. 31, 1633–1635 (2006).

[CrossRef]

T. Shimobaba, K. Matsushima, T. Kakue, N. Masuda, and T. Ito, “Scaled angular spectrum method,” Opt. Lett. 37, 4128–4130 (2012).

[CrossRef]

T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).

[CrossRef]

J. J. Braat, S. van Haver, A. J. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions,” Prog. Opt. 51, 349–468 (2008).

[CrossRef]

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 2008).

D. P. Kelly, N. Sabitov, T. Meinecke, and S. Sinzinger, “Some considerations when numerically calculating diffraction patterns,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2011), paper DTuC5.

J. J. Stamnes, Waves in Focal Regions: Propagation, Diffraction and Focusing of Light, Sound and Water Waves, Adam Hilger Series on Optics and Optoelectronics (Hilger, 1986).

E. O. Brigham, The Fast Fourier Transform and Its Applications, Prentice-Hall Signal Processing Series (Prentice Hall, 1988).

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. (Pearson, 2010).

B. M. Hennelly, D. P. Kelly, D. S. Monaghan, and N. Pandey, “Zoom algorithms for digital holography,” in Information Optics and Photonics, B. Javidi and T. Fournel, eds. (Springer, 2010), pp. 187–204.