Abstract

Two psychophysical experiments were conducted at North Carolina State University (NCSU) and Rochester Institute of Technology (RIT) to obtain replicated perceived saturation data from color normal observers on the order of one unit of saturation. The same 37 Munsell sample sheets, including up to four references that had similar perceived saturation but different hue, were used in both experiments. Different assessment methods included presenting either four references simultaneously or only one reference at a time to observers and obtaining judged saturation magnitudes for the given Munsell samples. Four saturation models comprising Sab*, Suv*, CIECAM02, as well as Richter/Lübbe, were tested. CIECAM02 gave the best prediction of saturation for data obtained at NCSU while Sab* outperformed other models for the RIT data. For the combined dataset, Sab*, the Richter/Lübbe, and CIECAM02-based saturation models exhibited comparable performances. The Standardized Residual Sum of Squares index was used to measure the inter- and intra-observer variability and goodness of fit. Inter- and intra-observer variability of assessments was smaller than or comparable to those reported for the typical color difference evaluation experiments.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. G. Hunt, “The specification of colour appearance. I. Concepts and terms,” Color Res. Appl. 2, 55–68 (1977).
    [CrossRef]
  2. I. Newton, Opticks (Smith and Walford, 1704), p. 117.
  3. H. v. Helmholtz, Handbuch der Physiologischen Optik (Leopold Voss, 1867), p. 283.
  4. M. Richter, I. Schmidt, and A. Dresler, Grundriss der Farbenlehre der Gegenwart (Steinkopff, 1940).
  5. D. L. MacAdam, “Projective transformations of I. C. I. color specifications,” J. Opt. Soc. Am. 27, 294–297 (1937).
  6. D. B. Judd, “A Maxwell triangle yielding uniform chromaticity scales,” J. Opt. Soc. Am. 25, 24–35 (1935).
    [CrossRef]
  7. CIE, “A colour appearance model for colour management systems: CIECAM02,” CIE Publication 159 (CIE Central Bureau, 2004).
  8. E. Lübbe, “Sättigung im CIELAB-Farbsystem und LSh-Farbsystem,” Ph.D. dissertation (Technische Universität Ilmenau, 2011).
  9. L. Y. G. Juan and M. R. Luo, “Magnitude estimation for scaling saturation,” Proc. SPIE 4421, 575–578 (2002).
    [CrossRef]
  10. http://www.vcsconsulting.co.uk/home.html , retrieved 4/8/2014.
  11. P. A. Garcia, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24, 1823–1829 (2007).
    [CrossRef]
  12. M. Melgosa, P. A. García, L. Gómez-Robledo, R. Shamey, D. Hinks, G. Cui, and M. R. Luo, “Notes on the application of the standardized residual sum of squares index for the assessment of intra- and inter-observer variability in color-difference experiments,” J. Opt. Soc. Am. A 28, 949–953 (2011).
    [CrossRef]
  13. http://danielsoper.com/statcalc3/calc.aspx?id= , retrieved 4/8/2014.
  14. E. Kirchner and N. Dekker, “Performance measures of color-difference equations: correlation coefficient versus standardized residual sum of squares,” J. Opt. Soc. Am. A 28, 1841–1848 (2011).
    [CrossRef]
  15. M. R. Luo and B. Rigg, “Chromaticity-discrimination ellipses for surface colours,” Color Res. Appl. 11, 25–42 (1986).
    [CrossRef]
  16. R. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M. R. Balonon-Rosen, “Visual determination of suprathreshold color-difference tolerances using probit analysis,” Color Res. Appl. 16, 297–316 (1991).
    [CrossRef]

2011 (2)

2007 (1)

2002 (1)

L. Y. G. Juan and M. R. Luo, “Magnitude estimation for scaling saturation,” Proc. SPIE 4421, 575–578 (2002).
[CrossRef]

1991 (1)

R. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M. R. Balonon-Rosen, “Visual determination of suprathreshold color-difference tolerances using probit analysis,” Color Res. Appl. 16, 297–316 (1991).
[CrossRef]

1986 (1)

M. R. Luo and B. Rigg, “Chromaticity-discrimination ellipses for surface colours,” Color Res. Appl. 11, 25–42 (1986).
[CrossRef]

1977 (1)

R. W. G. Hunt, “The specification of colour appearance. I. Concepts and terms,” Color Res. Appl. 2, 55–68 (1977).
[CrossRef]

1937 (1)

1935 (1)

Alman, D. H.

R. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M. R. Balonon-Rosen, “Visual determination of suprathreshold color-difference tolerances using probit analysis,” Color Res. Appl. 16, 297–316 (1991).
[CrossRef]

Balonon-Rosen, M. R.

R. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M. R. Balonon-Rosen, “Visual determination of suprathreshold color-difference tolerances using probit analysis,” Color Res. Appl. 16, 297–316 (1991).
[CrossRef]

Berns, R.

R. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M. R. Balonon-Rosen, “Visual determination of suprathreshold color-difference tolerances using probit analysis,” Color Res. Appl. 16, 297–316 (1991).
[CrossRef]

Cui, G.

Dekker, N.

Dresler, A.

M. Richter, I. Schmidt, and A. Dresler, Grundriss der Farbenlehre der Gegenwart (Steinkopff, 1940).

Garcia, P. A.

García, P. A.

Gómez-Robledo, L.

Helmholtz, H. v.

H. v. Helmholtz, Handbuch der Physiologischen Optik (Leopold Voss, 1867), p. 283.

Hinks, D.

Huertas, R.

Hunt, R. W. G.

R. W. G. Hunt, “The specification of colour appearance. I. Concepts and terms,” Color Res. Appl. 2, 55–68 (1977).
[CrossRef]

Juan, L. Y. G.

L. Y. G. Juan and M. R. Luo, “Magnitude estimation for scaling saturation,” Proc. SPIE 4421, 575–578 (2002).
[CrossRef]

Judd, D. B.

Kirchner, E.

Lübbe, E.

E. Lübbe, “Sättigung im CIELAB-Farbsystem und LSh-Farbsystem,” Ph.D. dissertation (Technische Universität Ilmenau, 2011).

Luo, M. R.

M. Melgosa, P. A. García, L. Gómez-Robledo, R. Shamey, D. Hinks, G. Cui, and M. R. Luo, “Notes on the application of the standardized residual sum of squares index for the assessment of intra- and inter-observer variability in color-difference experiments,” J. Opt. Soc. Am. A 28, 949–953 (2011).
[CrossRef]

L. Y. G. Juan and M. R. Luo, “Magnitude estimation for scaling saturation,” Proc. SPIE 4421, 575–578 (2002).
[CrossRef]

M. R. Luo and B. Rigg, “Chromaticity-discrimination ellipses for surface colours,” Color Res. Appl. 11, 25–42 (1986).
[CrossRef]

MacAdam, D. L.

Melgosa, M.

Newton, I.

I. Newton, Opticks (Smith and Walford, 1704), p. 117.

Reniff, L.

R. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M. R. Balonon-Rosen, “Visual determination of suprathreshold color-difference tolerances using probit analysis,” Color Res. Appl. 16, 297–316 (1991).
[CrossRef]

Richter, M.

M. Richter, I. Schmidt, and A. Dresler, Grundriss der Farbenlehre der Gegenwart (Steinkopff, 1940).

Rigg, B.

M. R. Luo and B. Rigg, “Chromaticity-discrimination ellipses for surface colours,” Color Res. Appl. 11, 25–42 (1986).
[CrossRef]

Schmidt, I.

M. Richter, I. Schmidt, and A. Dresler, Grundriss der Farbenlehre der Gegenwart (Steinkopff, 1940).

Shamey, R.

Snyder, G. D.

R. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M. R. Balonon-Rosen, “Visual determination of suprathreshold color-difference tolerances using probit analysis,” Color Res. Appl. 16, 297–316 (1991).
[CrossRef]

Color Res. Appl. (3)

R. W. G. Hunt, “The specification of colour appearance. I. Concepts and terms,” Color Res. Appl. 2, 55–68 (1977).
[CrossRef]

M. R. Luo and B. Rigg, “Chromaticity-discrimination ellipses for surface colours,” Color Res. Appl. 11, 25–42 (1986).
[CrossRef]

R. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M. R. Balonon-Rosen, “Visual determination of suprathreshold color-difference tolerances using probit analysis,” Color Res. Appl. 16, 297–316 (1991).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

Proc. SPIE (1)

L. Y. G. Juan and M. R. Luo, “Magnitude estimation for scaling saturation,” Proc. SPIE 4421, 575–578 (2002).
[CrossRef]

Other (7)

http://www.vcsconsulting.co.uk/home.html , retrieved 4/8/2014.

http://danielsoper.com/statcalc3/calc.aspx?id= , retrieved 4/8/2014.

CIE, “A colour appearance model for colour management systems: CIECAM02,” CIE Publication 159 (CIE Central Bureau, 2004).

E. Lübbe, “Sättigung im CIELAB-Farbsystem und LSh-Farbsystem,” Ph.D. dissertation (Technische Universität Ilmenau, 2011).

I. Newton, Opticks (Smith and Walford, 1704), p. 117.

H. v. Helmholtz, Handbuch der Physiologischen Optik (Leopold Voss, 1867), p. 283.

M. Richter, I. Schmidt, and A. Dresler, Grundriss der Farbenlehre der Gegenwart (Steinkopff, 1940).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Lines of constant saturation drawn into a cross section through the Luther–Nyberg object color solid [4].

Fig. 2.
Fig. 2.

Munsell chroma versus saturation for 5Y (left) and 5PB (right).

Fig. 3.
Fig. 3.

Distribution of samples in the CIELAB a*b* plane (red stars denote the location of the four references).

Fig. 4.
Fig. 4.

Visual assessment involving 45/0 illumination viewing geometry, and a custom made sample stand painted in neutral gray that housed the standard and test samples.

Fig. 5.
Fig. 5.

Scatter plot of visual results for the two methods examined in the preliminary experiment.

Fig. 6.
Fig. 6.

(a) Inter-observer variability results at NCSU. (b) Inter-observer variability results at RIT.

Fig. 7.
Fig. 7.

Agreement between NMtd1 and RMtd1 results.

Fig. 8.
Fig. 8.

Agreement between NMtd2 and RMtd2 results.

Fig. 9.
Fig. 9.

Comparison of STRESS for different saturation models against NCSU, RIT, and combined experimental results.

Tables (7)

Tables Icon

Table 1. Normalized Tristimulus Values of the Easel, Booth Surface and the PTFE Plate at NCSU

Tables Icon

Table 2. Mean Intra-observer Variability Results of Three Trials at NCSU and RIT, Based on STRESS

Tables Icon

Table 3. Mean, SE, and SD of Saturation Determined Visually in Experiments Conducted at NCSU and RIT

Tables Icon

Table 4. Perceived Saturation Results Based on Various Methods

Tables Icon

Table 5. Mean Visual Saturation of Reference Samples Based on Different References Determined at RIT

Tables Icon

Table 6. STRESS between Perceived Saturation Against Saturation Based on Various Models (Bold Letter Indicates Models with the Best Agreement)

Tables Icon

Table 7. Colorimetric Values and the Visual Saturation of Samples and References (bold italic)a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S=CV.
Suv*=100Cuv*L*,Sab*=100Cab*L*.
S=100MQ.
S+=100Cab*L*2+Cab*2.
STRESS=100((SiF1Vi)2F12Vi2)1/2,whereF1=Si2SiVi.
F=STRESSA2STRESSB2.

Metrics