Abstract

The intrinsic optical torque of a focused cylindrical vector beam on a Rayleigh absorptive spherical particle is calculated via the corrected dipole approximation. Numerical results show that, for the radially polarized input field, the torque is distributed in the focal plane strictly along the azimuthal direction anywhere except at the focus. This shows a completely different property from what is observed in the focusing of a circularly polarized beam, where a strong axial torque component arises. For other cylindrically polarized input fields, the torque tends to align itself along the radial direction, as the polarization angle (the angle between the electric vector and the radial direction) changes from 0° to 90°. When limited to considering the torque at the equilibrium position, we find that only for those input fields with polarization angles larger than 50°, the particle experiences a nonzero torque at its equilibrium position. This is verified by showing quantitatively the effects of the polarization angle on the magnitude and orientation of the torque at the equilibrium position.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef]
  2. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
    [CrossRef]
  3. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
    [CrossRef]
  4. T. X. Hoang, X. Chen, and C. J. Sheppard, “Multipole theory for tight focusing of polarized light, including radially polarized and other special cases,” J. Opt. Soc. Am. A 29, 32–43 (2012).
    [CrossRef]
  5. A. A. Ambardekar and Y.-Q. Li, “Optical levitation and manipulation of stuck particles with pulsed optical tweezers,” Opt. Lett. 30, 1797–1799 (2005).
    [CrossRef]
  6. L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006).
    [CrossRef]
  7. Y. Tadir, W. Wright, O. Vafa, T. Ord, R. Asch, and M. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).
  8. N. Ponelies, J. Scheef, A. Harim, G. Leitz, and K. Greulich, “Laser micromanipulators for biotechnology and genome research,” J. Biotechnol. 35, 109–120 (1994).
    [CrossRef]
  9. K. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz–Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
    [CrossRef]
  10. T. Nieminen, H. Rubinsztein-Dunlop, N. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001).
    [CrossRef]
  11. F. Xu, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
    [CrossRef]
  12. S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430–443 (2007).
    [CrossRef]
  13. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
  14. S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
    [CrossRef]
  15. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
    [CrossRef]
  16. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to QED (Wiley, 1989).
  17. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57, 35–40 (2004).
    [CrossRef]
  18. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [CrossRef]
  19. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  20. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
    [CrossRef]
  21. P. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000).
    [CrossRef]
  22. P. C. Chaumet and A. Rahmani, “Electromagnetic force and torque on magnetic and negative-index scatterers,” Opt. Express 17, 2224–2234 (2009).
    [CrossRef]
  23. K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” arXiv:1308.0547 (2014).
  24. K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Dual electromagnetism: helicity, spin, momentum and angular momentum,” New J. Phys. 15, 033026 (2013).
    [CrossRef]
  25. E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London, Ser. A 253, 349–357 (1959).
    [CrossRef]
  26. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A. 253, 358–379 (1959).
    [CrossRef]
  27. S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
    [CrossRef]
  28. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
    [CrossRef]

2013 (1)

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Dual electromagnetism: helicity, spin, momentum and angular momentum,” New J. Phys. 15, 033026 (2013).
[CrossRef]

2012 (1)

2011 (1)

S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
[CrossRef]

2009 (1)

2007 (4)

S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430–443 (2007).
[CrossRef]

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
[CrossRef]

F. Xu, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[CrossRef]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).

2006 (1)

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006).
[CrossRef]

2005 (1)

2004 (1)

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57, 35–40 (2004).
[CrossRef]

2001 (1)

T. Nieminen, H. Rubinsztein-Dunlop, N. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001).
[CrossRef]

2000 (2)

1996 (2)

K. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz–Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
[CrossRef]

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

1994 (2)

N. Ponelies, J. Scheef, A. Harim, G. Leitz, and K. Greulich, “Laser micromanipulators for biotechnology and genome research,” J. Biotechnol. 35, 109–120 (1994).
[CrossRef]

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
[CrossRef]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef]

1989 (1)

Y. Tadir, W. Wright, O. Vafa, T. Ord, R. Asch, and M. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).

1988 (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

1986 (1)

1973 (1)

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
[CrossRef]

1959 (2)

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London, Ser. A 253, 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A. 253, 358–379 (1959).
[CrossRef]

Allen, L.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57, 35–40 (2004).
[CrossRef]

Ambardekar, A. A.

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

Asch, R.

Y. Tadir, W. Wright, O. Vafa, T. Ord, R. Asch, and M. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef]

A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef]

Bekshaev, A. Y.

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Dual electromagnetism: helicity, spin, momentum and angular momentum,” New J. Phys. 15, 033026 (2013).
[CrossRef]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” arXiv:1308.0547 (2014).

Berns, M.

Y. Tadir, W. Wright, O. Vafa, T. Ord, R. Asch, and M. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).

Bishop, A. I.

T. Nieminen, H. Rubinsztein-Dunlop, N. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001).
[CrossRef]

Bjorkholm, J.

Bliokh, K. Y.

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Dual electromagnetism: helicity, spin, momentum and angular momentum,” New J. Phys. 15, 033026 (2013).
[CrossRef]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” arXiv:1308.0547 (2014).

Block, S. M.

Bottka, S.

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006).
[CrossRef]

Branczyk, A. M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).

Brown, T.

Cai, X.

F. Xu, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[CrossRef]

Chaumet, P.

Chaumet, P. C.

Chen, X.

Chu, S.

Cohen-Tannoudji, C.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to QED (Wiley, 1989).

Courtial, J.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57, 35–40 (2004).
[CrossRef]

Draine, B. T.

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Dupont-Roc, J.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to QED (Wiley, 1989).

Dziedzic, J.

Galajda, P.

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006).
[CrossRef]

Gordon, J. P.

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
[CrossRef]

Gouesbet, G.

Gréhan, G.

F. Xu, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[CrossRef]

K. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz–Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
[CrossRef]

Greulich, K.

N. Ponelies, J. Scheef, A. Harim, G. Leitz, and K. Greulich, “Laser micromanipulators for biotechnology and genome research,” J. Biotechnol. 35, 109–120 (1994).
[CrossRef]

Grynberg, G.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to QED (Wiley, 1989).

Hanna, S.

S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
[CrossRef]

S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430–443 (2007).
[CrossRef]

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

Harim, A.

N. Ponelies, J. Scheef, A. Harim, G. Leitz, and K. Greulich, “Laser micromanipulators for biotechnology and genome research,” J. Biotechnol. 35, 109–120 (1994).
[CrossRef]

Heckenberg, N.

T. Nieminen, H. Rubinsztein-Dunlop, N. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001).
[CrossRef]

Heckenberg, N. R.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).

Hoang, T. X.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

Kirei, H.

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006).
[CrossRef]

Knöner, G.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).

Leitz, G.

N. Ponelies, J. Scheef, A. Harim, G. Leitz, and K. Greulich, “Laser micromanipulators for biotechnology and genome research,” J. Biotechnol. 35, 109–120 (1994).
[CrossRef]

Li, Y.-Q.

Loke, V. L. Y.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).

Nieminen, T.

T. Nieminen, H. Rubinsztein-Dunlop, N. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001).
[CrossRef]

Nieminen, T. A.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).

Nieto-Vesperinas, M.

Nori, F.

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Dual electromagnetism: helicity, spin, momentum and angular momentum,” New J. Phys. 15, 033026 (2013).
[CrossRef]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” arXiv:1308.0547 (2014).

Ord, T.

Y. Tadir, W. Wright, O. Vafa, T. Ord, R. Asch, and M. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).

Ormos, P.

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006).
[CrossRef]

Oroszi, L.

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006).
[CrossRef]

Padgett, M.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57, 35–40 (2004).
[CrossRef]

Ponelies, N.

N. Ponelies, J. Scheef, A. Harim, G. Leitz, and K. Greulich, “Laser micromanipulators for biotechnology and genome research,” J. Biotechnol. 35, 109–120 (1994).
[CrossRef]

Rahmani, A.

Ren, K.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A. 253, 358–379 (1959).
[CrossRef]

Rubinsztein-Dunlop, H.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).

T. Nieminen, H. Rubinsztein-Dunlop, N. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001).
[CrossRef]

Scheef, J.

N. Ponelies, J. Scheef, A. Harim, G. Leitz, and K. Greulich, “Laser micromanipulators for biotechnology and genome research,” J. Biotechnol. 35, 109–120 (1994).
[CrossRef]

Sheppard, C. J.

Simpson, S. H.

S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
[CrossRef]

S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430–443 (2007).
[CrossRef]

Stilgoe, A. B.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).

Svoboda, K.

Tadir, Y.

Y. Tadir, W. Wright, O. Vafa, T. Ord, R. Asch, and M. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).

Vafa, O.

Y. Tadir, W. Wright, O. Vafa, T. Ord, R. Asch, and M. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).

Wolf, E.

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London, Ser. A 253, 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A. 253, 358–379 (1959).
[CrossRef]

Wright, W.

Y. Tadir, W. Wright, O. Vafa, T. Ord, R. Asch, and M. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).

Xu, F.

F. Xu, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[CrossRef]

Yan, S.

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
[CrossRef]

Yao, B.

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
[CrossRef]

Youngworth, K.

Appl. Opt. (1)

Astrophys. J. (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef]

Comput. Phys. Commun. (1)

T. Nieminen, H. Rubinsztein-Dunlop, N. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001).
[CrossRef]

Fertil. Steril. (1)

Y. Tadir, W. Wright, O. Vafa, T. Ord, R. Asch, and M. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).

J. Biotechnol. (1)

N. Ponelies, J. Scheef, A. Harim, G. Leitz, and K. Greulich, “Laser micromanipulators for biotechnology and genome research,” J. Biotechnol. 35, 109–120 (1994).
[CrossRef]

J. Opt. A (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).

J. Opt. Soc. Am. A (2)

New J. Phys. (1)

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Dual electromagnetism: helicity, spin, momentum and angular momentum,” New J. Phys. 15, 033026 (2013).
[CrossRef]

Opt. Commun. (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. A (3)

S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
[CrossRef]

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
[CrossRef]

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
[CrossRef]

Phys. Rev. E (1)

F. Xu, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006).
[CrossRef]

Phys. Today (1)

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57, 35–40 (2004).
[CrossRef]

Proc. R. Soc. London, Ser. A (1)

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London, Ser. A 253, 349–357 (1959).
[CrossRef]

Proc. R. Soc. London, Ser. A. (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A. 253, 358–379 (1959).
[CrossRef]

Other (3)

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” arXiv:1308.0547 (2014).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to QED (Wiley, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Geometry of the optical trapping of a particle in a cylindrical vector beam focused by a lens.

Fig. 2.
Fig. 2.

Normalized torques and transverse trapping forces along the x axis of an absorptive particle illuminated by radially and circularly polarized input fields.

Fig. 3.
Fig. 3.

Transverse torque distribution in the focal plane illuminated by (a) radially and (b) circularly polarized input fields, respectively.

Fig. 4.
Fig. 4.

(a) Normalized transverse force under illumination of the cylindrically polarized input fields with ϕ0=30° and ϕ0=60°. (b) Change of the equilibrium position x0 with the polarization angle ϕ0.

Fig. 5.
Fig. 5.

Change of (a) the magnitude and (b) orientation of the torque at the equilibrium position with the polarization angle ϕ0 of the cylindrical vector beam.

Fig. 6.
Fig. 6.

Transverse torque distribution in the focal plane illuminated by the cylindrically polarized input fields with (a) ϕ0=50° and (b) ϕ0=75°, respectively.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

p=α0E.
α0=a3(ε1)/(ε+2).
Erad=23e2c3(iw)3x/e=i23k3p.
p=αE=α0(E+Erad).
α=α01i(2/3)k3α0.
F=(p·)E+1cpt×B.
Fi=12Re[αEji(Ej)*]i,j=1,2,3,
Γint=p×(E+Erad).
Γint=12Re[p×(E+Erad)*].
Γint=12|α|2Re[1α0*E×E*].
E(r)=ikf2π0θmax02πcos(θ)A(θ,φ)exp[ik·r]sinθdθdφ,
l(θ)={l0,sin1(NA1)θsin1(NA/n1)0,otherwise,

Metrics