Abstract

The scintillation indices of optical plane and spherical waves propagating in underwater turbulent media are evaluated by using the Rytov method, and the variations in the scintillation indices are investigated when the rate of dissipation of mean squared temperature, the temperature and salinity fluctuations, the propagation distance, the wavelength, the Kolmogorov microscale length, and the rate of dissipation of the turbulent kinetic energy are varied. Results show that as in the atmosphere, also in underwater media the plane wave is more affected by turbulence as compared to the spherical wave. The underwater turbulence effect becomes significant at 5–10 m for a plane wave and at 20–25 m for a spherical wave. The turbulence effect is relatively small in deep water and is large at the surface of the water. Salinity-induced turbulence strongly dominates the scintillations compared to temperature-induced turbulence.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Thorpe, The Turbulent Ocean (Cambridge University, 2005).
  2. Y. I. Kopilevich, N. V. Aleksejev, B. V. Kurasov, and V. A. Yakovlev, “Diagnostics of seawater refractive turbulence,” Proc. SPIE 2208, 35–43 (1997).
  3. C. H. Gibson, “Turbulence in the ocean, atmosphere, galaxy, and universe,” Appl. Mech. Rev. 49, 299–315 (1996).
    [CrossRef]
  4. R. J. Hill, “Optical propagation in turbulent water,” J. Opt. Soc. Am. 68, 1067–1072 (1978).
    [CrossRef]
  5. W. Lu, L. Liu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence,” J. Opt. A 8, 1052–1058 (2006).
    [CrossRef]
  6. E. Shchepakina, N. Farwell, and O. Korotkova, “Spectral changes in stochastic light beams propagating in turbulent ocean,” Appl. Phys. B 105, 415–420 (2011).
    [CrossRef]
  7. N. Farwell and O. Korotkova, “Intensity and coherence properties of light in oceanic turbulence,” Opt. Commun. 285, 872–875 (2012).
    [CrossRef]
  8. H. T. Eyyuboğlu and Y. Baykal, “Scintillation characteristics of cosh-Gaussian beams,” Appl. Opt. 46, 1099–1106 (2007).
    [CrossRef]
  9. S. A. Arpali, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of higher-order cos-Gaussian, cosh-Gaussian and annular beams,” J. Mod. Opt. 55, 227–239 (2008).
    [CrossRef]
  10. N. Perlot, “Evaluation of the scintillation loss for optical communication systems with direct detection,” Opt. Eng. 46, 025003 (2007).
    [CrossRef]
  11. K. S. Gochelashvily and V. I. Shishov, “Laser beam scintillation beyond a turbulent layer,” Opt. Acta 18, 313–320 (1971).
    [CrossRef]
  12. F. Hanson and M. Lasher, “Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber,” Appl. Opt. 49, 3224–3230 (2010).
    [CrossRef]
  13. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47, 277–283 (2008).
    [CrossRef]
  14. V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res. 27, 82–98 (2000).
  15. O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22, 260–266 (2012).
  16. B. E. Stribling, B. M. Welsh, and M. C. Roggemann, “Optical propagation in non-Kolmogorov atmospheric turbulence,” Proc. SPIE 2471, 181–196 (1995).
    [CrossRef]
  17. Y. Baykal, “Formulation of correlations for general-type beams in atmospheric turbulence,” J. Opt. Soc. Am. A 23, 889–893 (2006).
    [CrossRef]
  18. A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley, 1999).

2012 (2)

N. Farwell and O. Korotkova, “Intensity and coherence properties of light in oceanic turbulence,” Opt. Commun. 285, 872–875 (2012).
[CrossRef]

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22, 260–266 (2012).

2011 (1)

E. Shchepakina, N. Farwell, and O. Korotkova, “Spectral changes in stochastic light beams propagating in turbulent ocean,” Appl. Phys. B 105, 415–420 (2011).
[CrossRef]

2010 (1)

2008 (2)

F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47, 277–283 (2008).
[CrossRef]

S. A. Arpali, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of higher-order cos-Gaussian, cosh-Gaussian and annular beams,” J. Mod. Opt. 55, 227–239 (2008).
[CrossRef]

2007 (2)

N. Perlot, “Evaluation of the scintillation loss for optical communication systems with direct detection,” Opt. Eng. 46, 025003 (2007).
[CrossRef]

H. T. Eyyuboğlu and Y. Baykal, “Scintillation characteristics of cosh-Gaussian beams,” Appl. Opt. 46, 1099–1106 (2007).
[CrossRef]

2006 (2)

W. Lu, L. Liu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence,” J. Opt. A 8, 1052–1058 (2006).
[CrossRef]

Y. Baykal, “Formulation of correlations for general-type beams in atmospheric turbulence,” J. Opt. Soc. Am. A 23, 889–893 (2006).
[CrossRef]

2000 (1)

V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res. 27, 82–98 (2000).

1997 (1)

Y. I. Kopilevich, N. V. Aleksejev, B. V. Kurasov, and V. A. Yakovlev, “Diagnostics of seawater refractive turbulence,” Proc. SPIE 2208, 35–43 (1997).

1996 (1)

C. H. Gibson, “Turbulence in the ocean, atmosphere, galaxy, and universe,” Appl. Mech. Rev. 49, 299–315 (1996).
[CrossRef]

1995 (1)

B. E. Stribling, B. M. Welsh, and M. C. Roggemann, “Optical propagation in non-Kolmogorov atmospheric turbulence,” Proc. SPIE 2471, 181–196 (1995).
[CrossRef]

1978 (1)

1971 (1)

K. S. Gochelashvily and V. I. Shishov, “Laser beam scintillation beyond a turbulent layer,” Opt. Acta 18, 313–320 (1971).
[CrossRef]

Aleksejev, N. V.

Y. I. Kopilevich, N. V. Aleksejev, B. V. Kurasov, and V. A. Yakovlev, “Diagnostics of seawater refractive turbulence,” Proc. SPIE 2208, 35–43 (1997).

Arpali, S. A.

S. A. Arpali, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of higher-order cos-Gaussian, cosh-Gaussian and annular beams,” J. Mod. Opt. 55, 227–239 (2008).
[CrossRef]

Baykal, Y.

Eyyuboglu, H. T.

S. A. Arpali, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of higher-order cos-Gaussian, cosh-Gaussian and annular beams,” J. Mod. Opt. 55, 227–239 (2008).
[CrossRef]

H. T. Eyyuboğlu and Y. Baykal, “Scintillation characteristics of cosh-Gaussian beams,” Appl. Opt. 46, 1099–1106 (2007).
[CrossRef]

Farwell, N.

N. Farwell and O. Korotkova, “Intensity and coherence properties of light in oceanic turbulence,” Opt. Commun. 285, 872–875 (2012).
[CrossRef]

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22, 260–266 (2012).

E. Shchepakina, N. Farwell, and O. Korotkova, “Spectral changes in stochastic light beams propagating in turbulent ocean,” Appl. Phys. B 105, 415–420 (2011).
[CrossRef]

Gibson, C. H.

C. H. Gibson, “Turbulence in the ocean, atmosphere, galaxy, and universe,” Appl. Mech. Rev. 49, 299–315 (1996).
[CrossRef]

Gochelashvily, K. S.

K. S. Gochelashvily and V. I. Shishov, “Laser beam scintillation beyond a turbulent layer,” Opt. Acta 18, 313–320 (1971).
[CrossRef]

Hanson, F.

Hill, R. J.

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley, 1999).

Kopilevich, Y. I.

Y. I. Kopilevich, N. V. Aleksejev, B. V. Kurasov, and V. A. Yakovlev, “Diagnostics of seawater refractive turbulence,” Proc. SPIE 2208, 35–43 (1997).

Korotkova, O.

N. Farwell and O. Korotkova, “Intensity and coherence properties of light in oceanic turbulence,” Opt. Commun. 285, 872–875 (2012).
[CrossRef]

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22, 260–266 (2012).

E. Shchepakina, N. Farwell, and O. Korotkova, “Spectral changes in stochastic light beams propagating in turbulent ocean,” Appl. Phys. B 105, 415–420 (2011).
[CrossRef]

Kurasov, B. V.

Y. I. Kopilevich, N. V. Aleksejev, B. V. Kurasov, and V. A. Yakovlev, “Diagnostics of seawater refractive turbulence,” Proc. SPIE 2208, 35–43 (1997).

Lasher, M.

Liu, L.

W. Lu, L. Liu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence,” J. Opt. A 8, 1052–1058 (2006).
[CrossRef]

Lu, W.

W. Lu, L. Liu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence,” J. Opt. A 8, 1052–1058 (2006).
[CrossRef]

Nikishov, V. I.

V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res. 27, 82–98 (2000).

Nikishov, V. V.

V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res. 27, 82–98 (2000).

Perlot, N.

N. Perlot, “Evaluation of the scintillation loss for optical communication systems with direct detection,” Opt. Eng. 46, 025003 (2007).
[CrossRef]

Radic, S.

Roggemann, M. C.

B. E. Stribling, B. M. Welsh, and M. C. Roggemann, “Optical propagation in non-Kolmogorov atmospheric turbulence,” Proc. SPIE 2471, 181–196 (1995).
[CrossRef]

Shchepakina, E.

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22, 260–266 (2012).

E. Shchepakina, N. Farwell, and O. Korotkova, “Spectral changes in stochastic light beams propagating in turbulent ocean,” Appl. Phys. B 105, 415–420 (2011).
[CrossRef]

Shishov, V. I.

K. S. Gochelashvily and V. I. Shishov, “Laser beam scintillation beyond a turbulent layer,” Opt. Acta 18, 313–320 (1971).
[CrossRef]

Stribling, B. E.

B. E. Stribling, B. M. Welsh, and M. C. Roggemann, “Optical propagation in non-Kolmogorov atmospheric turbulence,” Proc. SPIE 2471, 181–196 (1995).
[CrossRef]

Sun, J.

W. Lu, L. Liu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence,” J. Opt. A 8, 1052–1058 (2006).
[CrossRef]

Thorpe, S. A.

S. A. Thorpe, The Turbulent Ocean (Cambridge University, 2005).

Welsh, B. M.

B. E. Stribling, B. M. Welsh, and M. C. Roggemann, “Optical propagation in non-Kolmogorov atmospheric turbulence,” Proc. SPIE 2471, 181–196 (1995).
[CrossRef]

Yakovlev, V. A.

Y. I. Kopilevich, N. V. Aleksejev, B. V. Kurasov, and V. A. Yakovlev, “Diagnostics of seawater refractive turbulence,” Proc. SPIE 2208, 35–43 (1997).

Appl. Mech. Rev. (1)

C. H. Gibson, “Turbulence in the ocean, atmosphere, galaxy, and universe,” Appl. Mech. Rev. 49, 299–315 (1996).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

E. Shchepakina, N. Farwell, and O. Korotkova, “Spectral changes in stochastic light beams propagating in turbulent ocean,” Appl. Phys. B 105, 415–420 (2011).
[CrossRef]

Int. J. Fluid Mech. Res. (1)

V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res. 27, 82–98 (2000).

J. Mod. Opt. (1)

S. A. Arpali, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of higher-order cos-Gaussian, cosh-Gaussian and annular beams,” J. Mod. Opt. 55, 227–239 (2008).
[CrossRef]

J. Opt. A (1)

W. Lu, L. Liu, and J. Sun, “Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence,” J. Opt. A 8, 1052–1058 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Acta (1)

K. S. Gochelashvily and V. I. Shishov, “Laser beam scintillation beyond a turbulent layer,” Opt. Acta 18, 313–320 (1971).
[CrossRef]

Opt. Commun. (1)

N. Farwell and O. Korotkova, “Intensity and coherence properties of light in oceanic turbulence,” Opt. Commun. 285, 872–875 (2012).
[CrossRef]

Opt. Eng. (1)

N. Perlot, “Evaluation of the scintillation loss for optical communication systems with direct detection,” Opt. Eng. 46, 025003 (2007).
[CrossRef]

Proc. SPIE (2)

Y. I. Kopilevich, N. V. Aleksejev, B. V. Kurasov, and V. A. Yakovlev, “Diagnostics of seawater refractive turbulence,” Proc. SPIE 2208, 35–43 (1997).

B. E. Stribling, B. M. Welsh, and M. C. Roggemann, “Optical propagation in non-Kolmogorov atmospheric turbulence,” Proc. SPIE 2471, 181–196 (1995).
[CrossRef]

Waves Random Complex Media (1)

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22, 260–266 (2012).

Other (2)

A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley, 1999).

S. A. Thorpe, The Turbulent Ocean (Cambridge University, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Scintillation index of plane (upper plot) and spherical (lower plot) waves versus propagation distance for various rates of dissipation of mean squared temperature.

Fig. 2.
Fig. 2.

Scintillation index of plane (upper plot) and spherical (lower plot) waves versus propagation distance for various temperature and salinity contribution parameters.

Fig. 3.
Fig. 3.

Scintillation index of plane (upper plot) and spherical (lower plot) waves versus rate of dissipation of mean squared temperature for various temperature and salinity contribution parameters.

Fig. 4.
Fig. 4.

Scintillation index of plane (upper plot) and spherical (lower plot) waves versus wavelength for various temperature and salinity contribution parameters.

Fig. 5.
Fig. 5.

Scintillation index of plane and spherical waves versus rate of dissipation of mean squared temperature for various wavelengths.

Fig. 6.
Fig. 6.

Scintillation index of plane and spherical waves versus propagation distance for various wavelengths.

Fig. 7.
Fig. 7.

Scintillation index of plane (upper plot) and spherical (lower plot) waves versus Kolmogorov microscale length for various temperature and salinity contribution parameters.

Fig. 8.
Fig. 8.

Scintillation index of plane (upper plot) and spherical (lower plot) waves versus the rate of dissipation of the turbulent kinetic energy for various temperature and salinity contribution parameters.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϕn(κ)=0.388×108ε1/3κ11/3[1+2.35(κη)2/3]×XTw2(w2eATδ+eASδ2weATSδ),
m2(L)=4Bχ(L)=4πRe{0Ldz0κdκ02πdθ[M1(L,z,κ,θ)+M2(L,z,κ,θ)]ϕn(κ)},
M1(L,z,κ,θ)=N(L,η,κ,θ)N(L,z,κ,θ),
M2(L,z,κ,θ)=N(L,z,κ,θ)N*(L,z,κ,θ),
N(L,z,κ,θ)=ikexp[i(zL)2kκ2],
m2(L)=1.552π×108ε1/3XTw2k2Re[0Ldz×0κ8/3[1+2.35(κη)2/3]dκ02πdθ×{exp[i(zL)kκ2]}×(w2eATδ+eASδ2weATSδ)].
Bχ(L)=(2π)20Ldz0κdκ|Hr|2ϕn(κ),
m2(L)=6.208×108ε1/3k2π2XTw2×0Ldz0dκκ8/3[1+2.35(κη)2/3]×sin2[zL(Lz)2kκ2](w2eATδ+eASδ2weATSδ).

Metrics