Abstract

Here we present a pattern recognition scheme based on the intensity correlation of thermal light. We prove theoretically that under spatially incoherent illumination the matched filtering technique can be realized in the ghost imaging field. Using the matched filtering technique, it is possible to distinguish an object from a preestablished set of objects through their ghost images, which are extracted by means of intensity correlation measurement. According to the pattern recognition scheme, we present a numerical simulation in which we can easily identify the character inserted into the object arm from a set of two characters through the position of the autocorrelation peak. This pattern recognition scheme opens up the possibility of performing coherent optical processing under spatially incoherent illumination.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Turin, “An introduction to matched filters,” IRE Trans. Inf. Theory 6, 311–329 (1960).
  2. A. V. Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964).
    [CrossRef]
  3. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
    [CrossRef]
  4. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [CrossRef]
  5. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
    [CrossRef]
  6. J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
    [CrossRef]
  7. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
    [CrossRef]
  8. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
    [CrossRef]
  9. K. Wang and D.-Z. Cao, “Subwavelength coincidence interference with classical thermal light,” Phys. Rev. A 70, 041801 (2004).
    [CrossRef]
  10. D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
    [CrossRef]
  11. J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
    [CrossRef]
  12. D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
    [CrossRef]
  13. G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
    [CrossRef]
  14. M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
    [CrossRef]
  15. S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: from coherent to incoherent,” Phys. Rev. Lett. 102, 073904 (2009).
    [CrossRef]
  16. D.-Z. Cao, G.-J. Ge, and K. Wang, “Two-photon subwavelength lithography with thermal light,” Appl. Phys. Lett. 97, 051105 (2010).
    [CrossRef]
  17. H.-C. Liu and J. Xiong, “Properties of high-order ghost imaging with natural light,” J. Opt. Soc. Am. A 30, 956–961 (2013).
    [CrossRef]
  18. H. Li, J. Shi, and G. Zeng, “Ghost imaging with nonuniform thermal light fields,” J. Opt. Soc. Am. A 30, 1854–1861 (2013).
    [CrossRef]
  19. C. J. Broadbent, P. Zerom, H. Shin, J. C. Howell, and R. W. Boyd, “Discriminating orthogonal single-photon images,” Phys. Rev. A 79, 033802 (2009).
    [CrossRef]
  20. M. Malik, H. Shin, M. O’Sullivan, P. Zerom, and R. W. Boyd, “Quantum ghost image identification with correlated photon pairs,” Phys. Rev. Lett. 104, 163602 (2010).
    [CrossRef]
  21. A. V. Belinskii and D. N. Klyshko, “Two-photon optics: diffraction, holography, and transformation of two-dimensional signals,” J. Exp. Theor. Phys. 78, 259–262 (1994).

2013 (2)

2010 (2)

D.-Z. Cao, G.-J. Ge, and K. Wang, “Two-photon subwavelength lithography with thermal light,” Appl. Phys. Lett. 97, 051105 (2010).
[CrossRef]

M. Malik, H. Shin, M. O’Sullivan, P. Zerom, and R. W. Boyd, “Quantum ghost image identification with correlated photon pairs,” Phys. Rev. Lett. 104, 163602 (2010).
[CrossRef]

2009 (2)

S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: from coherent to incoherent,” Phys. Rev. Lett. 102, 073904 (2009).
[CrossRef]

C. J. Broadbent, P. Zerom, H. Shin, J. C. Howell, and R. W. Boyd, “Discriminating orthogonal single-photon images,” Phys. Rev. A 79, 033802 (2009).
[CrossRef]

2007 (1)

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

2006 (1)

G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
[CrossRef]

2005 (5)

D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
[CrossRef]

D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

2004 (3)

K. Wang and D.-Z. Cao, “Subwavelength coincidence interference with classical thermal light,” Phys. Rev. A 70, 041801 (2004).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[CrossRef]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

1994 (1)

A. V. Belinskii and D. N. Klyshko, “Two-photon optics: diffraction, holography, and transformation of two-dimensional signals,” J. Exp. Theor. Phys. 78, 259–262 (1994).

1964 (1)

A. V. Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964).
[CrossRef]

1960 (1)

G. Turin, “An introduction to matched filters,” IRE Trans. Inf. Theory 6, 311–329 (1960).

Bache, M.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[CrossRef]

Belinskii, A. V.

A. V. Belinskii and D. N. Klyshko, “Two-photon optics: diffraction, holography, and transformation of two-dimensional signals,” J. Exp. Theor. Phys. 78, 259–262 (1994).

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

Berardi, V.

G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
[CrossRef]

Boyd, R. W.

M. Malik, H. Shin, M. O’Sullivan, P. Zerom, and R. W. Boyd, “Quantum ghost image identification with correlated photon pairs,” Phys. Rev. Lett. 104, 163602 (2010).
[CrossRef]

C. J. Broadbent, P. Zerom, H. Shin, J. C. Howell, and R. W. Boyd, “Discriminating orthogonal single-photon images,” Phys. Rev. A 79, 033802 (2009).
[CrossRef]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

Brambilla, E.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[CrossRef]

Broadbent, C. J.

C. J. Broadbent, P. Zerom, H. Shin, J. C. Howell, and R. W. Boyd, “Discriminating orthogonal single-photon images,” Phys. Rev. A 79, 033802 (2009).
[CrossRef]

Cao, D.-Z.

D.-Z. Cao, G.-J. Ge, and K. Wang, “Two-photon subwavelength lithography with thermal light,” Appl. Phys. Lett. 97, 051105 (2010).
[CrossRef]

S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: from coherent to incoherent,” Phys. Rev. Lett. 102, 073904 (2009).
[CrossRef]

D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
[CrossRef]

K. Wang and D.-Z. Cao, “Subwavelength coincidence interference with classical thermal light,” Phys. Rev. A 70, 041801 (2004).
[CrossRef]

Chen, X.-H.

Cheng, J.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef]

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Feng, L.-J.

S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: from coherent to incoherent,” Phys. Rev. Lett. 102, 073904 (2009).
[CrossRef]

Ferri, F.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

Gao, L.

S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: from coherent to incoherent,” Phys. Rev. Lett. 102, 073904 (2009).
[CrossRef]

Gatti, A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[CrossRef]

Ge, G.-J.

D.-Z. Cao, G.-J. Ge, and K. Wang, “Two-photon subwavelength lithography with thermal light,” Appl. Phys. Lett. 97, 051105 (2010).
[CrossRef]

Han, S.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef]

Howell, J. C.

C. J. Broadbent, P. Zerom, H. Shin, J. C. Howell, and R. W. Boyd, “Discriminating orthogonal single-photon images,” Phys. Rev. A 79, 033802 (2009).
[CrossRef]

Huang, F.

J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
[CrossRef]

Klyshko, D. N.

A. V. Belinskii and D. N. Klyshko, “Two-photon optics: diffraction, holography, and transformation of two-dimensional signals,” J. Exp. Theor. Phys. 78, 259–262 (1994).

Li, H.

Li, H.-G.

J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
[CrossRef]

Liu, H.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Liu, H.-C.

Liu, Y.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Lugiato, L. A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[CrossRef]

Lugt, A. V.

A. V. Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964).
[CrossRef]

Magatti, D.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

Malik, M.

M. Malik, H. Shin, M. O’Sullivan, P. Zerom, and R. W. Boyd, “Quantum ghost image identification with correlated photon pairs,” Phys. Rev. Lett. 104, 163602 (2010).
[CrossRef]

O’Sullivan, M.

M. Malik, H. Shin, M. O’Sullivan, P. Zerom, and R. W. Boyd, “Quantum ghost image identification with correlated photon pairs,” Phys. Rev. Lett. 104, 163602 (2010).
[CrossRef]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

Scarcelli, G.

G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

Shen, X.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Shi, J.

Shih, Y.

G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

Shin, H.

M. Malik, H. Shin, M. O’Sullivan, P. Zerom, and R. W. Boyd, “Quantum ghost image identification with correlated photon pairs,” Phys. Rev. Lett. 104, 163602 (2010).
[CrossRef]

C. J. Broadbent, P. Zerom, H. Shin, J. C. Howell, and R. W. Boyd, “Discriminating orthogonal single-photon images,” Phys. Rev. A 79, 033802 (2009).
[CrossRef]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

Sun, X.-J.

J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
[CrossRef]

Turin, G.

G. Turin, “An introduction to matched filters,” IRE Trans. Inf. Theory 6, 311–329 (1960).

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Wang, K.

D.-Z. Cao, G.-J. Ge, and K. Wang, “Two-photon subwavelength lithography with thermal light,” Appl. Phys. Lett. 97, 051105 (2010).
[CrossRef]

S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: from coherent to incoherent,” Phys. Rev. Lett. 102, 073904 (2009).
[CrossRef]

D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
[CrossRef]

K. Wang and D.-Z. Cao, “Subwavelength coincidence interference with classical thermal light,” Phys. Rev. A 70, 041801 (2004).
[CrossRef]

Wei, Q.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Wu, L.-A.

Xiong, J.

H.-C. Liu and J. Xiong, “Properties of high-order ghost imaging with natural light,” J. Opt. Soc. Am. A 30, 956–961 (2013).
[CrossRef]

S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: from coherent to incoherent,” Phys. Rev. Lett. 102, 073904 (2009).
[CrossRef]

J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
[CrossRef]

D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

Zeng, G.

Zerom, P.

M. Malik, H. Shin, M. O’Sullivan, P. Zerom, and R. W. Boyd, “Quantum ghost image identification with correlated photon pairs,” Phys. Rev. Lett. 104, 163602 (2010).
[CrossRef]

C. J. Broadbent, P. Zerom, H. Shin, J. C. Howell, and R. W. Boyd, “Discriminating orthogonal single-photon images,” Phys. Rev. A 79, 033802 (2009).
[CrossRef]

Zhai, Y.-H.

Zhang, D.

Zhang, M.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

Zhang, S.-H.

S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: from coherent to incoherent,” Phys. Rev. Lett. 102, 073904 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006).
[CrossRef]

D.-Z. Cao, G.-J. Ge, and K. Wang, “Two-photon subwavelength lithography with thermal light,” Appl. Phys. Lett. 97, 051105 (2010).
[CrossRef]

IEEE Trans. Inf. Theory (1)

A. V. Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964).
[CrossRef]

IRE Trans. Inf. Theory (1)

G. Turin, “An introduction to matched filters,” IRE Trans. Inf. Theory 6, 311–329 (1960).

J. Exp. Theor. Phys. (1)

A. V. Belinskii and D. N. Klyshko, “Two-photon optics: diffraction, holography, and transformation of two-dimensional signals,” J. Exp. Theor. Phys. 78, 259–262 (1994).

J. Opt. Soc. Am. A (2)

Opt. Lett. (1)

Phys. Rev. A (6)

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, and S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007).
[CrossRef]

C. J. Broadbent, P. Zerom, H. Shin, J. C. Howell, and R. W. Boyd, “Discriminating orthogonal single-photon images,” Phys. Rev. A 79, 033802 (2009).
[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

K. Wang and D.-Z. Cao, “Subwavelength coincidence interference with classical thermal light,” Phys. Rev. A 70, 041801 (2004).
[CrossRef]

D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[CrossRef]

Phys. Rev. Lett. (7)

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
[CrossRef]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

M. Malik, H. Shin, M. O’Sullivan, P. Zerom, and R. W. Boyd, “Quantum ghost image identification with correlated photon pairs,” Phys. Rev. Lett. 104, 163602 (2010).
[CrossRef]

S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: from coherent to incoherent,” Phys. Rev. Lett. 102, 073904 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Pattern recognition scheme. The object is placed in the front focal plane of the lens. D1 is a point detector located at the back focal point of the lens. D2 is an array of pixel detectors. The dashed lines indicate the imaging process for a point on the object. The images in the dashed boxes are the two Chinese characters “he” and “bei,” which are used as objects a and b in the numerical simulation. BS, beam splitter; C.M., intensity correlation measurement.

Fig. 2.
Fig. 2.

Double-exposure process. Objects are illuminated by plane waves. (a) During the first exposure, object a is used and the point source is located at the point xa; (b) during the second exposure, object b is used and the point source is located at the point xb.

Fig. 3.
Fig. 3.

Amplitude transmittance of the holographic matched filter. The size of the matched filter is 3.7mm×3.7mm. The visibility of the matched filter is normalized to 1. The left part is mainly associated with the character “he,” and the right part is mainly associated with the character “bei.”

Fig. 4.
Fig. 4.

Simulation results of the pattern recognition. (a) The distribution of the intensity fluctuation correlation when the character “he” is inserted into the object arm. The autocorrelation peak is located at point (1.25,0)mm, with a value of 0.182. SNR=9.10. (b) The distribution of the intensity fluctuation correlation when the character “bei” is inserted into the object arm. The autocorrelation peak is located at point (1.25,0) mm, with a value of 0.210. SNR=10.40. The intensity fluctuation correlation is obtained by averaging over 40,000 independent frames.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Es*(xs)Es(xs)=Isδ(xsxs),
h1(x1,xs)=hL(x1,xo)O(xo)hz0(xo,xs)dxo,
h2(x2,xs)=hz2(x2,xt)T(xt)hz1(xt,xs)dxt,
hz(x,x)=1λzexp[iπ4+ikz+ik(xx)22z],
hL(x,x)=1λfexp[iπ4+ik2fikxxf].
ΔI1(x1)ΔI2(x2)=|E1*(x1)E2(x2)|2,
E1*(x1)E2(x2)=Ish1*(x1,xs)h2(x2,xs)dxs.
ΔI1(0)ΔI2(x2)=Is2λf|dxthz2(x2,xt)T(xt)×[dxohz3(xt,xo)O(xo)]|2.
Eo(xt)=hz3(xt,xo)O(xo)dxo,
Er(xt)=hz2*(xt,xr)δ(xrx^r)dxr.
T(xt)=α|Eo(xt)+Er(xt)|2,
ΔI1(0)ΔI2(x2)=αIs2λf|dxthz2(x2,xt)[Eo(xt)|Eo(xt)|2+Eo(xt)|Er(xt)|2+|Eo(xt)|2Er(xt)+Eo2(xt)Er*(xt)]|2.
ΔI1(0)ΔI2(x2)3=C|E˜o(q)E˜o(q)|2,
|E˜o(q)E˜o(q)|2=|O(xo)O(xoλz3q)exp(i2πqxo)dxo|2|O(λz3q)O(λz3q)|2,

Metrics