E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7, 93–101 (2013).

[CrossRef]

P. Kanchanawong and C. M. Waterman, “Advances in light-based imaging of three-dimensional cellular ultrastructure,” Curr. Opin. Cell Biol. 24, 125–133 (2012).

[CrossRef]

T. X. Hoang, X. Chen, and C. J. R. Sheppard, “Interpretation of the scattering mechanism for particles in a focused beam,” Phys. Rev. A 86, 033817 (2012).

[CrossRef]

Y. Jiang, Y. Shao, X. Qu, J. Ou, and H. Hua, “Scattering of a focused Laguerre–Gaussian beam by a spheroidal particle,” J. Opt. 14, 125709 (2012).

[CrossRef]

C. K. Hayakawa, E. O. Potma, and V. Venugopalan, “Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues,” Biomed. Opt. Express 2, 278–290 (2011).

[CrossRef]

C. G. Koay, “A simple scheme for generating nearly uniform distribution of antipodally symmetric points on the unit sphere,” J. Comput. Sci. 2, 377–381 (2011).

[CrossRef]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).

[CrossRef]

Z. Cui, Y. Han, and Q. Xu, “Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams,” J. Opt. Soc. Am. A 28, 2200–2208 (2011).

[CrossRef]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).

[CrossRef]

S. A. Prahl, D. D. Duncan, and D. G. Fischer, “Stochastic Huygens and partial coherence propagation through thin tissues,” Proc. SPIE 7573, 75730D (2010).

[CrossRef]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82, 3474–3486 (2010).

[CrossRef]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 43903 (2009).

[CrossRef]

B. A. Wilt, L. D. Burns, E. T. W. Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32, 435–506 (2009).

[CrossRef]

M. S. Starosta and A. K. Dunn, “Three-dimensional computation of focused beam propagation through multiple biological cells,” Opt. Express 17, 12455–12469 (2009).

[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).

[CrossRef]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).

[CrossRef]

J. Lermé, G. Bachelier, P. Billaud, C. Bonnet, M. Broyer, E. Cottancin, S. Marhaba, and M. Pellarin, “Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique,” J. Opt. Soc. Am. A 25, 493–514 (2008).

[CrossRef]

I. R. Çapoğlu, A. Taflove, and V. Backman, “Generation of an incident focused light pulse in FDTD,” Opt. Express 16, 19208–19220 (2008).

[CrossRef]

A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Quantum Electron. 2, 898–905 (1996).

[CrossRef]

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).

[CrossRef]

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

[CrossRef]

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London Ser. A 253, 349–357 (1959).

[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).

[CrossRef]

J. Lermé, G. Bachelier, P. Billaud, C. Bonnet, M. Broyer, E. Cottancin, S. Marhaba, and M. Pellarin, “Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique,” J. Opt. Soc. Am. A 25, 493–514 (2008).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).

[CrossRef]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82, 3474–3486 (2010).

[CrossRef]

J. Lermé, G. Bachelier, P. Billaud, C. Bonnet, M. Broyer, E. Cottancin, S. Marhaba, and M. Pellarin, “Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique,” J. Opt. Soc. Am. A 25, 493–514 (2008).

[CrossRef]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

J. Lermé, G. Bachelier, P. Billaud, C. Bonnet, M. Broyer, E. Cottancin, S. Marhaba, and M. Pellarin, “Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique,” J. Opt. Soc. Am. A 25, 493–514 (2008).

[CrossRef]

F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles, 2nd ed. (Springer, 2007).

J. Lermé, G. Bachelier, P. Billaud, C. Bonnet, M. Broyer, E. Cottancin, S. Marhaba, and M. Pellarin, “Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique,” J. Opt. Soc. Am. A 25, 493–514 (2008).

[CrossRef]

B. A. Wilt, L. D. Burns, E. T. W. Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32, 435–506 (2009).

[CrossRef]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82, 3474–3486 (2010).

[CrossRef]

T. X. Hoang, X. Chen, and C. J. R. Sheppard, “Interpretation of the scattering mechanism for particles in a focused beam,” Phys. Rev. A 86, 033817 (2012).

[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).

[CrossRef]

J. Lermé, G. Bachelier, P. Billaud, C. Bonnet, M. Broyer, E. Cottancin, S. Marhaba, and M. Pellarin, “Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique,” J. Opt. Soc. Am. A 25, 493–514 (2008).

[CrossRef]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82, 3474–3486 (2010).

[CrossRef]

F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles, 2nd ed. (Springer, 2007).

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).

[CrossRef]

S. A. Prahl, D. D. Duncan, and D. G. Fischer, “Stochastic Huygens and partial coherence propagation through thin tissues,” Proc. SPIE 7573, 75730D (2010).

[CrossRef]

A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Quantum Electron. 2, 898–905 (1996).

[CrossRef]

M. S. Starosta and A. K. Dunn, “Three-dimensional computation of focused beam propagation through multiple biological cells,” Opt. Express 17, 12455–12469 (2009).

[CrossRef]

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39, 1194–1201 (2000).

[CrossRef]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).

[CrossRef]

R. Heintzmann and G. Ficz, “Breaking the resolution limit in light microscopy,” Briefings Funct. Genomics Proteomics 5, 289–301 (2006).

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).

[CrossRef]

S. A. Prahl, D. D. Duncan, and D. G. Fischer, “Stochastic Huygens and partial coherence propagation through thin tissues,” Proc. SPIE 7573, 75730D (2010).

[CrossRef]

B. A. Wilt, L. D. Burns, E. T. W. Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32, 435–506 (2009).

[CrossRef]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).

[CrossRef]

C. K. Hayakawa, E. O. Potma, and V. Venugopalan, “Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues,” Biomed. Opt. Express 2, 278–290 (2011).

[CrossRef]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 43903 (2009).

[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

R. Heintzmann and G. Ficz, “Breaking the resolution limit in light microscopy,” Briefings Funct. Genomics Proteomics 5, 289–301 (2006).

B. A. Wilt, L. D. Burns, E. T. W. Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32, 435–506 (2009).

[CrossRef]

T. X. Hoang, X. Chen, and C. J. R. Sheppard, “Interpretation of the scattering mechanism for particles in a focused beam,” Phys. Rev. A 86, 033817 (2012).

[CrossRef]

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7, 93–101 (2013).

[CrossRef]

Y. Jiang, Y. Shao, X. Qu, J. Ou, and H. Hua, “Scattering of a focused Laguerre–Gaussian beam by a spheroidal particle,” J. Opt. 14, 125709 (2012).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Y. Jiang, Y. Shao, X. Qu, J. Ou, and H. Hua, “Scattering of a focused Laguerre–Gaussian beam by a spheroidal particle,” J. Opt. 14, 125709 (2012).

[CrossRef]

E. K. Yen and R. G. Johnston, “The ineffectiveness of the correlation coefficient for image comparisons,” research paper (Los Alamos National Laboratory, Los Alamos, New Mexico, 1996).

P. Kanchanawong and C. M. Waterman, “Advances in light-based imaging of three-dimensional cellular ultrastructure,” Curr. Opin. Cell Biol. 24, 125–133 (2012).

[CrossRef]

C. G. Koay, “A simple scheme for generating nearly uniform distribution of antipodally symmetric points on the unit sphere,” J. Comput. Sci. 2, 377–381 (2011).

[CrossRef]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 43903 (2009).

[CrossRef]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

[CrossRef]

J. Lermé, G. Bachelier, P. Billaud, C. Bonnet, M. Broyer, E. Cottancin, S. Marhaba, and M. Pellarin, “Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique,” J. Opt. Soc. Am. A 25, 493–514 (2008).

[CrossRef]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).

[CrossRef]

M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15, 17902–17911 (2007).

[CrossRef]

Z. Song, K. Dong, X. H. Hu, and J. Q. Lu, “Monte Carlo simulation of converging laser beams propagating in biological materials,” Appl. Opt. 38, 2944–2949 (1999).

[CrossRef]

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991).

[CrossRef]

J. Lermé, G. Bachelier, P. Billaud, C. Bonnet, M. Broyer, E. Cottancin, S. Marhaba, and M. Pellarin, “Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique,” J. Opt. Soc. Am. A 25, 493–514 (2008).

[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).

[CrossRef]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).

[CrossRef]

B. A. Wilt, L. D. Burns, E. T. W. Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32, 435–506 (2009).

[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Y. Jiang, Y. Shao, X. Qu, J. Ou, and H. Hua, “Scattering of a focused Laguerre–Gaussian beam by a spheroidal particle,” J. Opt. 14, 125709 (2012).

[CrossRef]

J. Lermé, G. Bachelier, P. Billaud, C. Bonnet, M. Broyer, E. Cottancin, S. Marhaba, and M. Pellarin, “Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique,” J. Opt. Soc. Am. A 25, 493–514 (2008).

[CrossRef]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).

[CrossRef]

C. K. Hayakawa, E. O. Potma, and V. Venugopalan, “Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues,” Biomed. Opt. Express 2, 278–290 (2011).

[CrossRef]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 43903 (2009).

[CrossRef]

S. A. Prahl, D. D. Duncan, and D. G. Fischer, “Stochastic Huygens and partial coherence propagation through thin tissues,” Proc. SPIE 7573, 75730D (2010).

[CrossRef]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).

[CrossRef]

Y. Jiang, Y. Shao, X. Qu, J. Ou, and H. Hua, “Scattering of a focused Laguerre–Gaussian beam by a spheroidal particle,” J. Opt. 14, 125709 (2012).

[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).

[CrossRef]

A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Quantum Electron. 2, 898–905 (1996).

[CrossRef]

F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles, 2nd ed. (Springer, 2007).

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

B. A. Wilt, L. D. Burns, E. T. W. Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32, 435–506 (2009).

[CrossRef]

Y. Jiang, Y. Shao, X. Qu, J. Ou, and H. Hua, “Scattering of a focused Laguerre–Gaussian beam by a spheroidal particle,” J. Opt. 14, 125709 (2012).

[CrossRef]

T. X. Hoang, X. Chen, and C. J. R. Sheppard, “Interpretation of the scattering mechanism for particles in a focused beam,” Phys. Rev. A 86, 033817 (2012).

[CrossRef]

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7, 93–101 (2013).

[CrossRef]

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).

[CrossRef]

C. K. Hayakawa, E. O. Potma, and V. Venugopalan, “Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues,” Biomed. Opt. Express 2, 278–290 (2011).

[CrossRef]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 43903 (2009).

[CrossRef]

P. Kanchanawong and C. M. Waterman, “Advances in light-based imaging of three-dimensional cellular ultrastructure,” Curr. Opin. Cell Biol. 24, 125–133 (2012).

[CrossRef]

B. A. Wilt, L. D. Burns, E. T. W. Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32, 435–506 (2009).

[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).

[CrossRef]

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London Ser. A 253, 349–357 (1959).

[CrossRef]

H.-X. Xu, “A new method by extending Mie theory to calculate local field in outside/inside of aggregates of arbitrary spheres,” Phys. Lett. A 312, 411–419 (2003).

[CrossRef]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).

[CrossRef]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

[CrossRef]

E. K. Yen and R. G. Johnston, “The ineffectiveness of the correlation coefficient for image comparisons,” research paper (Los Alamos National Laboratory, Los Alamos, New Mexico, 1996).

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82, 3474–3486 (2010).

[CrossRef]

B. A. Wilt, L. D. Burns, E. T. W. Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32, 435–506 (2009).

[CrossRef]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).

[CrossRef]

Z. Song, K. Dong, X. H. Hu, and J. Q. Lu, “Monte Carlo simulation of converging laser beams propagating in biological materials,” Appl. Opt. 38, 2944–2949 (1999).

[CrossRef]

X. Deng and M. Gu, “Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation,” Appl. Opt. 42, 3321–3329 (2003).

[CrossRef]

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39, 1194–1201 (2000).

[CrossRef]

J. A. Lock, S. Y. Wrbanek, and K. E. Weiland, “Scattering of a tightly focused beam by an optically trapped particle,” Appl. Opt. 45, 3634–3645 (2006).

[CrossRef]

R. Heintzmann and G. Ficz, “Breaking the resolution limit in light microscopy,” Briefings Funct. Genomics Proteomics 5, 289–301 (2006).

P. Kanchanawong and C. M. Waterman, “Advances in light-based imaging of three-dimensional cellular ultrastructure,” Curr. Opin. Cell Biol. 24, 125–133 (2012).

[CrossRef]

A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Quantum Electron. 2, 898–905 (1996).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).

[CrossRef]

C. G. Koay, “A simple scheme for generating nearly uniform distribution of antipodally symmetric points on the unit sphere,” J. Comput. Sci. 2, 377–381 (2011).

[CrossRef]

Y. Jiang, Y. Shao, X. Qu, J. Ou, and H. Hua, “Scattering of a focused Laguerre–Gaussian beam by a spheroidal particle,” J. Opt. 14, 125709 (2012).

[CrossRef]

Z. Cui, Y. Han, and Q. Xu, “Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams,” J. Opt. Soc. Am. A 28, 2200–2208 (2011).

[CrossRef]

J. Lermé, G. Bachelier, P. Billaud, C. Bonnet, M. Broyer, E. Cottancin, S. Marhaba, and M. Pellarin, “Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique,” J. Opt. Soc. Am. A 25, 493–514 (2008).

[CrossRef]

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7, 93–101 (2013).

[CrossRef]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).

[CrossRef]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).

[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).

[CrossRef]

M. S. Starosta and A. K. Dunn, “Three-dimensional computation of focused beam propagation through multiple biological cells,” Opt. Express 17, 12455–12469 (2009).

[CrossRef]

M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15, 17902–17911 (2007).

[CrossRef]

M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12, 6530–6539 (2004).

[CrossRef]

I. R. Çapoğlu, A. Taflove, and V. Backman, “Generation of an incident focused light pulse in FDTD,” Opt. Express 16, 19208–19220 (2008).

[CrossRef]

H.-X. Xu, “A new method by extending Mie theory to calculate local field in outside/inside of aggregates of arbitrary spheres,” Phys. Lett. A 312, 411–419 (2003).

[CrossRef]

T. X. Hoang, X. Chen, and C. J. R. Sheppard, “Interpretation of the scattering mechanism for particles in a focused beam,” Phys. Rev. A 86, 033817 (2012).

[CrossRef]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 43903 (2009).

[CrossRef]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).

[CrossRef]

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991).

[CrossRef]

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London Ser. A 253, 349–357 (1959).

[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).

[CrossRef]

S. A. Prahl, D. D. Duncan, and D. G. Fischer, “Stochastic Huygens and partial coherence propagation through thin tissues,” Proc. SPIE 7573, 75730D (2010).

[CrossRef]

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

C. G. Koay, “Highly specific but edgily effective data processing (HI-SPEED) software packets,” 2014, https://sites.google.com/site/hispeedpackets/Home/antipodallysymmetricpointset/ .

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).

F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles, 2nd ed. (Springer, 2007).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

E. K. Yen and R. G. Johnston, “The ineffectiveness of the correlation coefficient for image comparisons,” research paper (Los Alamos National Laboratory, Los Alamos, New Mexico, 1996).

SCATTPORT, “Light scattering Software,” 2014, http://www.scattport.org/index.php/light-scattering-software/ .