Abstract

By combining interference lithography and projection photolithography concurrently, pattern-integrated interference lithography (PIIL) enables the wafer-scale, rapid, and single-exposure fabrication of multidimensional periodic microstructures that integrate arbitrary functional elements. To date, two-dimensional PIIL has been simulated and experimentally demonstrated. In this paper, we report new simulated results of PIIL exposures for various custom-modified three-dimensional (3D) periodic structures. These results were generated using custom PIIL comprehensive vector modeling. Simulations include mask-integrated and mask-shaped 3D periodic arrangements as well as microcavities on top of or fully embedded within 3D periodic structures. These results indicate PIIL is a viable method for making versatile 3D periodic microstructures.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
    [CrossRef]
  2. L.-H. Han, G. Mapili, S. Chen, and K. Roy, “Projection microfabrication of three-dimensional scaffolds for tissue engineering,” J. Manuf. Sci. Eng. 130, 021005 (2008).
    [CrossRef]
  3. S.-G. Park, S.-K. Lee, J.-H. Moon, and S.-M. Yang, “Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing,” Lab Chip 9, 3144–3150 (2009).
  4. P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater. 18, 2665–2678 (2006).
    [CrossRef]
  5. J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17, 3027–3041 (2007).
    [CrossRef]
  6. W. Mao, Y. Zhong, J. Dong, and H. Wang, “Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams,” J. Opt. Soc. Am. B 22, 1085–1091 (2005).
    [CrossRef]
  7. L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).
    [CrossRef]
  8. G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012).
    [CrossRef]
  9. T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, “Pattern-integrated interference [Invited],” Appl. Opt. 52, 61–72 (2013).
    [CrossRef]
  10. M. C. R. Leibovici and T. K. Gaylord, “Pattern-integrated interference lithography: vector modeling and 1D, 2D, and 3D device structures,” J. Vac. Sci. Technol. B 31, 06F501 (2013).
    [CrossRef]
  11. M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20, 23643–23652 (2012).
    [CrossRef]
  12. G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
    [CrossRef]
  13. D. E. Sedivy and T. K. Gaylord, “Modeling of multiple-optical-axis pattern-integrated interference lithography systems [Invited],” Appl. Opt. 53, D12–D20 (2014).
    [CrossRef]
  14. J. L. Stay and T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt. 47, 3221–3230 (2008).
    [CrossRef]
  15. R. C. Rumpf and E. G. Johnson, “Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,” J. Opt. Soc. Am. A 21, 1703–1713 (2004).
    [CrossRef]
  16. W. Y. Tam, “Woodpile and diamond structures by optical interference holography,” J. Opt. A 9, 1076–1081 (2007).
    [CrossRef]
  17. J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18, 1561–1565 (2006).
    [CrossRef]
  18. N. Tetreault, G. Von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
    [CrossRef]
  19. D. G. Flagello, T. Milster, and A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films,” J. Opt. Soc. Am. A 13, 53–64 (1996).
    [CrossRef]
  20. K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H. P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
    [CrossRef]

2014 (1)

D. E. Sedivy and T. K. Gaylord, “Modeling of multiple-optical-axis pattern-integrated interference lithography systems [Invited],” Appl. Opt. 53, D12–D20 (2014).
[CrossRef]

2013 (2)

T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, “Pattern-integrated interference [Invited],” Appl. Opt. 52, 61–72 (2013).
[CrossRef]

M. C. R. Leibovici and T. K. Gaylord, “Pattern-integrated interference lithography: vector modeling and 1D, 2D, and 3D device structures,” J. Vac. Sci. Technol. B 31, 06F501 (2013).
[CrossRef]

2012 (3)

M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20, 23643–23652 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012).
[CrossRef]

2009 (1)

S.-G. Park, S.-K. Lee, J.-H. Moon, and S.-M. Yang, “Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing,” Lab Chip 9, 3144–3150 (2009).

2008 (2)

L.-H. Han, G. Mapili, S. Chen, and K. Roy, “Projection microfabrication of three-dimensional scaffolds for tissue engineering,” J. Manuf. Sci. Eng. 130, 021005 (2008).
[CrossRef]

J. L. Stay and T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt. 47, 3221–3230 (2008).
[CrossRef]

2007 (2)

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17, 3027–3041 (2007).
[CrossRef]

W. Y. Tam, “Woodpile and diamond structures by optical interference holography,” J. Opt. A 9, 1076–1081 (2007).
[CrossRef]

2006 (3)

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18, 1561–1565 (2006).
[CrossRef]

N. Tetreault, G. Von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[CrossRef]

P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater. 18, 2665–2678 (2006).
[CrossRef]

2005 (1)

W. Mao, Y. Zhong, J. Dong, and H. Wang, “Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams,” J. Opt. Soc. Am. B 22, 1085–1091 (2005).
[CrossRef]

2004 (1)

R. C. Rumpf and E. G. Johnson, “Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,” J. Opt. Soc. Am. A 21, 1703–1713 (2004).
[CrossRef]

2003 (1)

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

2002 (1)

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).
[CrossRef]

1996 (1)

D. G. Flagello, T. Milster, and A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films,” J. Opt. Soc. Am. A 13, 53–64 (1996).
[CrossRef]

1995 (1)

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H. P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Blanco, A.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Braun, P. V.

P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater. 18, 2665–2678 (2006).
[CrossRef]

Burrow, G. M.

T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, “Pattern-integrated interference [Invited],” Appl. Opt. 52, 61–72 (2013).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012).
[CrossRef]

M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20, 23643–23652 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

Busch, K.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Cai, L. Z.

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).
[CrossRef]

Chang, T. H. P.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H. P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Chen, S.

L.-H. Han, G. Mapili, S. Chen, and K. Roy, “Projection microfabrication of three-dimensional scaffolds for tissue engineering,” J. Manuf. Sci. Eng. 130, 021005 (2008).
[CrossRef]

Denning, R. G.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18, 1561–1565 (2006).
[CrossRef]

Deubel, M.

N. Tetreault, G. Von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Dong, J.

W. Mao, Y. Zhong, J. Dong, and H. Wang, “Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams,” J. Opt. Soc. Am. B 22, 1085–1091 (2005).
[CrossRef]

Enkrich, C.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Flagello, D. G.

D. G. Flagello, T. Milster, and A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films,” J. Opt. Soc. Am. A 13, 53–64 (1996).
[CrossRef]

Garcia-Santamaria, F.

P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater. 18, 2665–2678 (2006).
[CrossRef]

Gaylord, T. K.

D. E. Sedivy and T. K. Gaylord, “Modeling of multiple-optical-axis pattern-integrated interference lithography systems [Invited],” Appl. Opt. 53, D12–D20 (2014).
[CrossRef]

T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, “Pattern-integrated interference [Invited],” Appl. Opt. 52, 61–72 (2013).
[CrossRef]

M. C. R. Leibovici and T. K. Gaylord, “Pattern-integrated interference lithography: vector modeling and 1D, 2D, and 3D device structures,” J. Vac. Sci. Technol. B 31, 06F501 (2013).
[CrossRef]

M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20, 23643–23652 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

J. L. Stay and T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt. 47, 3221–3230 (2008).
[CrossRef]

Gelorme, J. D.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H. P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Gorishnyy, T.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17, 3027–3041 (2007).
[CrossRef]

Graugnard, E.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18, 1561–1565 (2006).
[CrossRef]

Han, L.-H.

L.-H. Han, G. Mapili, S. Chen, and K. Roy, “Projection microfabrication of three-dimensional scaffolds for tissue engineering,” J. Manuf. Sci. Eng. 130, 021005 (2008).
[CrossRef]

Hermatschweiler, M.

N. Tetreault, G. Von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[CrossRef]

Jang, J. H.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17, 3027–3041 (2007).
[CrossRef]

John, S.

N. Tetreault, G. Von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[CrossRef]

Johnson, E. G.

R. C. Rumpf and E. G. Johnson, “Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,” J. Opt. Soc. Am. A 21, 1703–1713 (2004).
[CrossRef]

King, J. S.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18, 1561–1565 (2006).
[CrossRef]

Koch, W.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Koh, C. Y.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17, 3027–3041 (2007).
[CrossRef]

Kooi, S.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17, 3027–3041 (2007).
[CrossRef]

Kummer, J. W.

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

LaBianca, N.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H. P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Lee, K. Y.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H. P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Lee, S.-K.

S.-G. Park, S.-K. Lee, J.-H. Moon, and S.-M. Yang, “Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing,” Lab Chip 9, 3144–3150 (2009).

Leibovici, M. C. R.

M. C. R. Leibovici and T. K. Gaylord, “Pattern-integrated interference lithography: vector modeling and 1D, 2D, and 3D device structures,” J. Vac. Sci. Technol. B 31, 06F501 (2013).
[CrossRef]

T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, “Pattern-integrated interference [Invited],” Appl. Opt. 52, 61–72 (2013).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012).
[CrossRef]

M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20, 23643–23652 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

Maldovan, M.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17, 3027–3041 (2007).
[CrossRef]

Mao, W.

W. Mao, Y. Zhong, J. Dong, and H. Wang, “Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams,” J. Opt. Soc. Am. B 22, 1085–1091 (2005).
[CrossRef]

Mapili, G.

L.-H. Han, G. Mapili, S. Chen, and K. Roy, “Projection microfabrication of three-dimensional scaffolds for tissue engineering,” J. Manuf. Sci. Eng. 130, 021005 (2008).
[CrossRef]

Meisel, D. C.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Miklyaev, Y. V.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Milster, T.

D. G. Flagello, T. Milster, and A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films,” J. Opt. Soc. Am. A 13, 53–64 (1996).
[CrossRef]

Moon, J.-H.

S.-G. Park, S.-K. Lee, J.-H. Moon, and S.-M. Yang, “Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing,” Lab Chip 9, 3144–3150 (2009).

Ozin, G. A.

N. Tetreault, G. Von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[CrossRef]

Park, S.-G.

S.-G. Park, S.-K. Lee, J.-H. Moon, and S.-M. Yang, “Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing,” Lab Chip 9, 3144–3150 (2009).

Perez-Willard, F.

N. Tetreault, G. Von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[CrossRef]

Rinne, S. A.

P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater. 18, 2665–2678 (2006).
[CrossRef]

Rishton, S. A.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H. P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Roche, O. M.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18, 1561–1565 (2006).
[CrossRef]

Rosenbluth, A. E.

D. G. Flagello, T. Milster, and A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films,” J. Opt. Soc. Am. A 13, 53–64 (1996).
[CrossRef]

Roy, K.

L.-H. Han, G. Mapili, S. Chen, and K. Roy, “Projection microfabrication of three-dimensional scaffolds for tissue engineering,” J. Manuf. Sci. Eng. 130, 021005 (2008).
[CrossRef]

Rumpf, R. C.

R. C. Rumpf and E. G. Johnson, “Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,” J. Opt. Soc. Am. A 21, 1703–1713 (2004).
[CrossRef]

Scrimgeour, J.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18, 1561–1565 (2006).
[CrossRef]

Sedivy, D. E.

D. E. Sedivy and T. K. Gaylord, “Modeling of multiple-optical-axis pattern-integrated interference lithography systems [Invited],” Appl. Opt. 53, D12–D20 (2014).
[CrossRef]

Sharp, D. N.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18, 1561–1565 (2006).
[CrossRef]

Shaw, J.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H. P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Stay, J. L.

J. L. Stay and T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt. 47, 3221–3230 (2008).
[CrossRef]

Summers, C. J.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18, 1561–1565 (2006).
[CrossRef]

Tam, W. Y.

W. Y. Tam, “Woodpile and diamond structures by optical interference holography,” J. Opt. A 9, 1076–1081 (2007).
[CrossRef]

Tetreault, N.

N. Tetreault, G. Von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[CrossRef]

Thomas, E. L.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17, 3027–3041 (2007).
[CrossRef]

Turberfield, A. J.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18, 1561–1565 (2006).
[CrossRef]

Ullal, C. K.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17, 3027–3041 (2007).
[CrossRef]

Von Freymann, G.

N. Tetreault, G. Von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Wang, H.

W. Mao, Y. Zhong, J. Dong, and H. Wang, “Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams,” J. Opt. Soc. Am. B 22, 1085–1091 (2005).
[CrossRef]

Wang, Y. R.

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).
[CrossRef]

Wegener, M.

N. Tetreault, G. Von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Yang, S.-M.

S.-G. Park, S.-K. Lee, J.-H. Moon, and S.-M. Yang, “Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing,” Lab Chip 9, 3144–3150 (2009).

Yang, X. L.

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).
[CrossRef]

Zhong, Y.

W. Mao, Y. Zhong, J. Dong, and H. Wang, “Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams,” J. Opt. Soc. Am. B 22, 1085–1091 (2005).
[CrossRef]

Zolgharnain, S.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H. P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Adv. Funct. Mater. (1)

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17, 3027–3041 (2007).
[CrossRef]

Adv. Mater. (3)

P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater. 18, 2665–2678 (2006).
[CrossRef]

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18, 1561–1565 (2006).
[CrossRef]

N. Tetreault, G. Von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006).
[CrossRef]

Appl. Opt. (4)

D. E. Sedivy and T. K. Gaylord, “Modeling of multiple-optical-axis pattern-integrated interference lithography systems [Invited],” Appl. Opt. 53, D12–D20 (2014).
[CrossRef]

J. L. Stay and T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt. 47, 3221–3230 (2008).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012).
[CrossRef]

T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, “Pattern-integrated interference [Invited],” Appl. Opt. 52, 61–72 (2013).
[CrossRef]

Appl. Phys. Lett. (1)

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

J. Manuf. Sci. Eng. (1)

L.-H. Han, G. Mapili, S. Chen, and K. Roy, “Projection microfabrication of three-dimensional scaffolds for tissue engineering,” J. Manuf. Sci. Eng. 130, 021005 (2008).
[CrossRef]

J. Opt. A (1)

W. Y. Tam, “Woodpile and diamond structures by optical interference holography,” J. Opt. A 9, 1076–1081 (2007).
[CrossRef]

J. Opt. Soc. Am. A (2)

R. C. Rumpf and E. G. Johnson, “Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,” J. Opt. Soc. Am. A 21, 1703–1713 (2004).
[CrossRef]

D. G. Flagello, T. Milster, and A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films,” J. Opt. Soc. Am. A 13, 53–64 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

W. Mao, Y. Zhong, J. Dong, and H. Wang, “Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams,” J. Opt. Soc. Am. B 22, 1085–1091 (2005).
[CrossRef]

J. Vac. Sci. Technol. B (2)

M. C. R. Leibovici and T. K. Gaylord, “Pattern-integrated interference lithography: vector modeling and 1D, 2D, and 3D device structures,” J. Vac. Sci. Technol. B 31, 06F501 (2013).
[CrossRef]

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H. P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Lab Chip (1)

S.-G. Park, S.-K. Lee, J.-H. Moon, and S.-M. Yang, “Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing,” Lab Chip 9, 3144–3150 (2009).

Opt. Express (1)

M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20, 23643–23652 (2012).
[CrossRef]

Opt. Lett. (1)

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Example PIIL implementation using a 7f optical system. Multiple laser beams adjusted in polarization and amplitude generate multiple images of a mask at the sample plane (only three beams are represented for clarity). At the sample plane, a 3D interference pattern that integrates the mask features is produced in a single-exposure step. (b) (3+1)- or (c) (4+1)-beam configuration generates an fcc- or woodpile-like 3D periodic structure, respectively. A photoresist film can be used to record lithographically the optical intensity distribution.

Fig. 2.
Fig. 2.

Simulated PIIL exposures using a light-field mask and (a) (3+1)- or (b) (4+1)-beam configuration. The isometric views show the satisfactory creation of the mask-integrated 3D interference patterns within the SU-8 film. The insets show close-up views of the selected volumes located a few periods away from the logo. The intensity threshold is 50% of the maximum intensity produced with a blank mask.

Fig. 3.
Fig. 3.

Simulated PIIL exposures using a dark-field mask and (a) (3+1)- or (b) (4+1)-beam configuration. The isometric views show the satisfactory fabrication of the mask-shaped 3D interference patterns within the SU-8 film. The close-up views of the selected volumes show a relatively good reconstruction of the bicontinuous lattices. The intensity threshold is 50% of the maximum intensity produced with a blank mask.

Fig. 4.
Fig. 4.

Simulated PIIL exposures using (a) (3+1)- or (b) (4+1)-beam configuration. A microcavity is created on top of the 3D periodic structures. Side views of the central slice (x=0μm) depict the interference pattern being reproduced below the microcavity. The intensity threshold is 35% of the maximum intensity produced with a blank mask.

Fig. 5.
Fig. 5.

Simulated PIIL exposures using (a) (3+1)- or (b) (4+1)-beam configuration. A microcavity is successfully created within the 3D periodic structure. Above and below the plane of best focus (z=10μm), the 3D interference pattern is progressively reproduced by interference of the out-of-focus and nonoverlapping mask images. Top views of the plane of best focus depict the locally mask-integrated interference pattern. The intensity threshold is 35% of the maximum intensity produced with a blank mask.

Tables (1)

Tables Icon

Table 1. Input Polarization 2×1 Vectors (T is the Matrix Transpose)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(r)=i=1N(12Re[Ei(r)·Ei*(r)]+j>iNRe[Ei(r)·Ej*(r)]),
Λz=λ/nSU82sin2(sin1(sinθ/nSU8)/2),
Λxy(3+1)=2λ/3sinθΛxy(4+1)=λ/sinθ.

Metrics