Abstract

Based on the Rayleigh approximation, this paper presents the electromagnetic scattering properties of the small partially charged isotropic sphere and those of a similar anisotropic sphere and then discusses the effect of surface charges on particles’ optical properties. The numerical simulation results show that the surface charges on a charged particle can enhance the scattering of the incident waves, and the effect on an anisotropic charged sphere is much greater than that on an isotropic charged particle. Therefore it is necessary to consider the medium property (isotropic or anisotropic) and electric effects of dust particles in the remote sensing of sandstorms.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Akhlaq, T. R. Sheltami, and H. T. Mouftah, “A review of techniques and technologies for sand and dust storm detection,” Rev. Environ. Sci. Biotechnol. 11, 305–322 (2012).
    [CrossRef]
  2. X. Y. Dong, H. Y. Chen, and D. H. Guo, “Microwave and millimeter wave attenuation in sand and dust storms,” IEEE Antennas Wirel. Propag. Lett. 10, 469–471 (2011).
    [CrossRef]
  3. S. A. Christopher and T. A. Jones, “Satellite and surface-based remote sensing of Saharan dust aerosols,” Remote Sens. Environ. 114, 1002–1007 (2010).
    [CrossRef]
  4. T. Nousiainen, “Optical modeling of mineral dust particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 110, 1261–1279 (2009).
    [CrossRef]
  5. L. Xingcai and Z. Beidou, “Comparison research between two EM scattering models for wet sand particle,” J. Ningxia Univ. 34, 35–39 (2013).
  6. L. Xingcai and Z. Beidou, “An equivalent solution for the electromagnetic scattering of multilayer particle,” J. Quant. Spectrosc. Radiat. Transfer 129, 236–240 (2013).
    [CrossRef]
  7. R. Yang, Z. Wu, and J. You, “The Study of MMW and MW attenuation considering multiple scattering effect in sand and dust storms at slant paths,” Int. J. Infrared Millim. Waves 24, 1383–1392 (2003).
    [CrossRef]
  8. M. R. I. Z. Elabdin, O. O. Khalifa, and H. E. A. Raouf, “Mathematical model for the prediction of microwave signal attenuation due to duststorm,” Prog. Electromagn. Res. M 6, 139–153 (2009).
  9. S. O. Bashir and N. J. McEwan, “Microwave propagation in dust storms: a review,” Proc. IEEE 133, 241–247 (1986).
  10. A. A. Ali and M. A. Alhaider, “Millimeter wave propagation in arid land: a field study in Riyadh,” IEEE Trans. Antennas Propag. 40, 492–499 (1992).
    [CrossRef]
  11. Q. S. Dong, Z. W. Zhao, and H. J. Cong, “The mm-Wave attenuation due to sand and dust,” Chin. J. Radio Sci. 11, 29–32 (1996).
  12. Y. H. Zhou, Q. S. He, and X. J. Zheng, “Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles,” Eur. Phys. J. E 17, 181–187 (2005).
    [CrossRef]
  13. T. Shinbrot and H. J. Herrmann, “Granular matter: static in motion,” Nature 451, 773–774 (2008).
    [CrossRef]
  14. D. J. Lacks, “Particle clouds: frictile attraction,” Nat. Phys. 6, 324–325 (2010).
    [CrossRef]
  15. T. Pahtz, H. J. Herrmann, and T. Shinbrot, “Why do particle clouds generate electric charges,” Nat. Phys. 6, 364–368 (2010).
    [CrossRef]
  16. J. J. Qu, M. H. Yan, G. G. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. Chin. Ser. D 47, 529–539 (2004).
    [CrossRef]
  17. Q. S. He, Y. H. Zhou, and X. J. Zheng, “Effects of charged sand on electromagnetic wave propagation and its scattering field,” Sci. Chin. Ser. G 49, 77–87 (2006).
    [CrossRef]
  18. L. Xie, X. C. Li, and X. J. Zheng, “Attenuation of an electromagnetic wave by charged dust particles in a sandstorm,” Appl. Opt. 49, 6756–6761 (2010).
    [CrossRef]
  19. X. Li, L. Xie, and X. Zheng, “The comparison between the Mie theory and the Rayleigh approximation to calculate the EM scattering by partially charged sand,” J. Quant. Spectrosc. Radiat. Transfer 113, 251–258 (2012).
    [CrossRef]
  20. X. Li and B. Zhang, “The electromagnetic scattering of the charged inhomogeneous sand particle,” J. Quant. Spectrosc. Radiat. Transfer 119, 150–154 (2013).
    [CrossRef]
  21. C. F. Bohren and D. R. Huffman, in Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 82–103.
  22. S.-H. Zhao, Z.-J. Zhou, Q. Zhu, and Y.-Q. Song, “Anisotropic medium sphere in uniform field,” Coll. Phys. 30, 26–28 (2011).

2013

L. Xingcai and Z. Beidou, “Comparison research between two EM scattering models for wet sand particle,” J. Ningxia Univ. 34, 35–39 (2013).

L. Xingcai and Z. Beidou, “An equivalent solution for the electromagnetic scattering of multilayer particle,” J. Quant. Spectrosc. Radiat. Transfer 129, 236–240 (2013).
[CrossRef]

X. Li and B. Zhang, “The electromagnetic scattering of the charged inhomogeneous sand particle,” J. Quant. Spectrosc. Radiat. Transfer 119, 150–154 (2013).
[CrossRef]

2012

X. Li, L. Xie, and X. Zheng, “The comparison between the Mie theory and the Rayleigh approximation to calculate the EM scattering by partially charged sand,” J. Quant. Spectrosc. Radiat. Transfer 113, 251–258 (2012).
[CrossRef]

M. Akhlaq, T. R. Sheltami, and H. T. Mouftah, “A review of techniques and technologies for sand and dust storm detection,” Rev. Environ. Sci. Biotechnol. 11, 305–322 (2012).
[CrossRef]

2011

X. Y. Dong, H. Y. Chen, and D. H. Guo, “Microwave and millimeter wave attenuation in sand and dust storms,” IEEE Antennas Wirel. Propag. Lett. 10, 469–471 (2011).
[CrossRef]

S.-H. Zhao, Z.-J. Zhou, Q. Zhu, and Y.-Q. Song, “Anisotropic medium sphere in uniform field,” Coll. Phys. 30, 26–28 (2011).

2010

S. A. Christopher and T. A. Jones, “Satellite and surface-based remote sensing of Saharan dust aerosols,” Remote Sens. Environ. 114, 1002–1007 (2010).
[CrossRef]

D. J. Lacks, “Particle clouds: frictile attraction,” Nat. Phys. 6, 324–325 (2010).
[CrossRef]

T. Pahtz, H. J. Herrmann, and T. Shinbrot, “Why do particle clouds generate electric charges,” Nat. Phys. 6, 364–368 (2010).
[CrossRef]

L. Xie, X. C. Li, and X. J. Zheng, “Attenuation of an electromagnetic wave by charged dust particles in a sandstorm,” Appl. Opt. 49, 6756–6761 (2010).
[CrossRef]

2009

T. Nousiainen, “Optical modeling of mineral dust particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 110, 1261–1279 (2009).
[CrossRef]

M. R. I. Z. Elabdin, O. O. Khalifa, and H. E. A. Raouf, “Mathematical model for the prediction of microwave signal attenuation due to duststorm,” Prog. Electromagn. Res. M 6, 139–153 (2009).

2008

T. Shinbrot and H. J. Herrmann, “Granular matter: static in motion,” Nature 451, 773–774 (2008).
[CrossRef]

2006

Q. S. He, Y. H. Zhou, and X. J. Zheng, “Effects of charged sand on electromagnetic wave propagation and its scattering field,” Sci. Chin. Ser. G 49, 77–87 (2006).
[CrossRef]

2005

Y. H. Zhou, Q. S. He, and X. J. Zheng, “Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles,” Eur. Phys. J. E 17, 181–187 (2005).
[CrossRef]

2004

J. J. Qu, M. H. Yan, G. G. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. Chin. Ser. D 47, 529–539 (2004).
[CrossRef]

2003

R. Yang, Z. Wu, and J. You, “The Study of MMW and MW attenuation considering multiple scattering effect in sand and dust storms at slant paths,” Int. J. Infrared Millim. Waves 24, 1383–1392 (2003).
[CrossRef]

1996

Q. S. Dong, Z. W. Zhao, and H. J. Cong, “The mm-Wave attenuation due to sand and dust,” Chin. J. Radio Sci. 11, 29–32 (1996).

1992

A. A. Ali and M. A. Alhaider, “Millimeter wave propagation in arid land: a field study in Riyadh,” IEEE Trans. Antennas Propag. 40, 492–499 (1992).
[CrossRef]

1986

S. O. Bashir and N. J. McEwan, “Microwave propagation in dust storms: a review,” Proc. IEEE 133, 241–247 (1986).

Akhlaq, M.

M. Akhlaq, T. R. Sheltami, and H. T. Mouftah, “A review of techniques and technologies for sand and dust storm detection,” Rev. Environ. Sci. Biotechnol. 11, 305–322 (2012).
[CrossRef]

Alhaider, M. A.

A. A. Ali and M. A. Alhaider, “Millimeter wave propagation in arid land: a field study in Riyadh,” IEEE Trans. Antennas Propag. 40, 492–499 (1992).
[CrossRef]

Ali, A. A.

A. A. Ali and M. A. Alhaider, “Millimeter wave propagation in arid land: a field study in Riyadh,” IEEE Trans. Antennas Propag. 40, 492–499 (1992).
[CrossRef]

Bashir, S. O.

S. O. Bashir and N. J. McEwan, “Microwave propagation in dust storms: a review,” Proc. IEEE 133, 241–247 (1986).

Beidou, Z.

L. Xingcai and Z. Beidou, “Comparison research between two EM scattering models for wet sand particle,” J. Ningxia Univ. 34, 35–39 (2013).

L. Xingcai and Z. Beidou, “An equivalent solution for the electromagnetic scattering of multilayer particle,” J. Quant. Spectrosc. Radiat. Transfer 129, 236–240 (2013).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, in Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 82–103.

Chen, H. Y.

X. Y. Dong, H. Y. Chen, and D. H. Guo, “Microwave and millimeter wave attenuation in sand and dust storms,” IEEE Antennas Wirel. Propag. Lett. 10, 469–471 (2011).
[CrossRef]

Christopher, S. A.

S. A. Christopher and T. A. Jones, “Satellite and surface-based remote sensing of Saharan dust aerosols,” Remote Sens. Environ. 114, 1002–1007 (2010).
[CrossRef]

Cong, H. J.

Q. S. Dong, Z. W. Zhao, and H. J. Cong, “The mm-Wave attenuation due to sand and dust,” Chin. J. Radio Sci. 11, 29–32 (1996).

Dong, G. G.

J. J. Qu, M. H. Yan, G. G. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. Chin. Ser. D 47, 529–539 (2004).
[CrossRef]

Dong, Q. S.

Q. S. Dong, Z. W. Zhao, and H. J. Cong, “The mm-Wave attenuation due to sand and dust,” Chin. J. Radio Sci. 11, 29–32 (1996).

Dong, X. Y.

X. Y. Dong, H. Y. Chen, and D. H. Guo, “Microwave and millimeter wave attenuation in sand and dust storms,” IEEE Antennas Wirel. Propag. Lett. 10, 469–471 (2011).
[CrossRef]

Elabdin, M. R. I. Z.

M. R. I. Z. Elabdin, O. O. Khalifa, and H. E. A. Raouf, “Mathematical model for the prediction of microwave signal attenuation due to duststorm,” Prog. Electromagn. Res. M 6, 139–153 (2009).

Guo, D. H.

X. Y. Dong, H. Y. Chen, and D. H. Guo, “Microwave and millimeter wave attenuation in sand and dust storms,” IEEE Antennas Wirel. Propag. Lett. 10, 469–471 (2011).
[CrossRef]

He, Q. S.

Q. S. He, Y. H. Zhou, and X. J. Zheng, “Effects of charged sand on electromagnetic wave propagation and its scattering field,” Sci. Chin. Ser. G 49, 77–87 (2006).
[CrossRef]

Y. H. Zhou, Q. S. He, and X. J. Zheng, “Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles,” Eur. Phys. J. E 17, 181–187 (2005).
[CrossRef]

Herrmann, H. J.

T. Pahtz, H. J. Herrmann, and T. Shinbrot, “Why do particle clouds generate electric charges,” Nat. Phys. 6, 364–368 (2010).
[CrossRef]

T. Shinbrot and H. J. Herrmann, “Granular matter: static in motion,” Nature 451, 773–774 (2008).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, in Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 82–103.

Jones, T. A.

S. A. Christopher and T. A. Jones, “Satellite and surface-based remote sensing of Saharan dust aerosols,” Remote Sens. Environ. 114, 1002–1007 (2010).
[CrossRef]

Khalifa, O. O.

M. R. I. Z. Elabdin, O. O. Khalifa, and H. E. A. Raouf, “Mathematical model for the prediction of microwave signal attenuation due to duststorm,” Prog. Electromagn. Res. M 6, 139–153 (2009).

Lacks, D. J.

D. J. Lacks, “Particle clouds: frictile attraction,” Nat. Phys. 6, 324–325 (2010).
[CrossRef]

Li, F.

J. J. Qu, M. H. Yan, G. G. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. Chin. Ser. D 47, 529–539 (2004).
[CrossRef]

Li, X.

X. Li and B. Zhang, “The electromagnetic scattering of the charged inhomogeneous sand particle,” J. Quant. Spectrosc. Radiat. Transfer 119, 150–154 (2013).
[CrossRef]

X. Li, L. Xie, and X. Zheng, “The comparison between the Mie theory and the Rayleigh approximation to calculate the EM scattering by partially charged sand,” J. Quant. Spectrosc. Radiat. Transfer 113, 251–258 (2012).
[CrossRef]

Li, X. C.

McEwan, N. J.

S. O. Bashir and N. J. McEwan, “Microwave propagation in dust storms: a review,” Proc. IEEE 133, 241–247 (1986).

Mouftah, H. T.

M. Akhlaq, T. R. Sheltami, and H. T. Mouftah, “A review of techniques and technologies for sand and dust storm detection,” Rev. Environ. Sci. Biotechnol. 11, 305–322 (2012).
[CrossRef]

Nousiainen, T.

T. Nousiainen, “Optical modeling of mineral dust particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 110, 1261–1279 (2009).
[CrossRef]

Pahtz, T.

T. Pahtz, H. J. Herrmann, and T. Shinbrot, “Why do particle clouds generate electric charges,” Nat. Phys. 6, 364–368 (2010).
[CrossRef]

Qu, J. J.

J. J. Qu, M. H. Yan, G. G. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. Chin. Ser. D 47, 529–539 (2004).
[CrossRef]

Raouf, H. E. A.

M. R. I. Z. Elabdin, O. O. Khalifa, and H. E. A. Raouf, “Mathematical model for the prediction of microwave signal attenuation due to duststorm,” Prog. Electromagn. Res. M 6, 139–153 (2009).

Sheltami, T. R.

M. Akhlaq, T. R. Sheltami, and H. T. Mouftah, “A review of techniques and technologies for sand and dust storm detection,” Rev. Environ. Sci. Biotechnol. 11, 305–322 (2012).
[CrossRef]

Shinbrot, T.

T. Pahtz, H. J. Herrmann, and T. Shinbrot, “Why do particle clouds generate electric charges,” Nat. Phys. 6, 364–368 (2010).
[CrossRef]

T. Shinbrot and H. J. Herrmann, “Granular matter: static in motion,” Nature 451, 773–774 (2008).
[CrossRef]

Song, Y.-Q.

S.-H. Zhao, Z.-J. Zhou, Q. Zhu, and Y.-Q. Song, “Anisotropic medium sphere in uniform field,” Coll. Phys. 30, 26–28 (2011).

Tuo, W. Q.

J. J. Qu, M. H. Yan, G. G. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. Chin. Ser. D 47, 529–539 (2004).
[CrossRef]

Wu, Z.

R. Yang, Z. Wu, and J. You, “The Study of MMW and MW attenuation considering multiple scattering effect in sand and dust storms at slant paths,” Int. J. Infrared Millim. Waves 24, 1383–1392 (2003).
[CrossRef]

Xiao, Z. H.

J. J. Qu, M. H. Yan, G. G. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. Chin. Ser. D 47, 529–539 (2004).
[CrossRef]

Xie, L.

X. Li, L. Xie, and X. Zheng, “The comparison between the Mie theory and the Rayleigh approximation to calculate the EM scattering by partially charged sand,” J. Quant. Spectrosc. Radiat. Transfer 113, 251–258 (2012).
[CrossRef]

L. Xie, X. C. Li, and X. J. Zheng, “Attenuation of an electromagnetic wave by charged dust particles in a sandstorm,” Appl. Opt. 49, 6756–6761 (2010).
[CrossRef]

Xingcai, L.

L. Xingcai and Z. Beidou, “An equivalent solution for the electromagnetic scattering of multilayer particle,” J. Quant. Spectrosc. Radiat. Transfer 129, 236–240 (2013).
[CrossRef]

L. Xingcai and Z. Beidou, “Comparison research between two EM scattering models for wet sand particle,” J. Ningxia Univ. 34, 35–39 (2013).

Yan, M. H.

J. J. Qu, M. H. Yan, G. G. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. Chin. Ser. D 47, 529–539 (2004).
[CrossRef]

Yang, B.

J. J. Qu, M. H. Yan, G. G. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. Chin. Ser. D 47, 529–539 (2004).
[CrossRef]

Yang, R.

R. Yang, Z. Wu, and J. You, “The Study of MMW and MW attenuation considering multiple scattering effect in sand and dust storms at slant paths,” Int. J. Infrared Millim. Waves 24, 1383–1392 (2003).
[CrossRef]

You, J.

R. Yang, Z. Wu, and J. You, “The Study of MMW and MW attenuation considering multiple scattering effect in sand and dust storms at slant paths,” Int. J. Infrared Millim. Waves 24, 1383–1392 (2003).
[CrossRef]

Zhang, B.

X. Li and B. Zhang, “The electromagnetic scattering of the charged inhomogeneous sand particle,” J. Quant. Spectrosc. Radiat. Transfer 119, 150–154 (2013).
[CrossRef]

Zhang, H. F.

J. J. Qu, M. H. Yan, G. G. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. Chin. Ser. D 47, 529–539 (2004).
[CrossRef]

Zhao, A. G.

J. J. Qu, M. H. Yan, G. G. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. Chin. Ser. D 47, 529–539 (2004).
[CrossRef]

Zhao, S.-H.

S.-H. Zhao, Z.-J. Zhou, Q. Zhu, and Y.-Q. Song, “Anisotropic medium sphere in uniform field,” Coll. Phys. 30, 26–28 (2011).

Zhao, Z. W.

Q. S. Dong, Z. W. Zhao, and H. J. Cong, “The mm-Wave attenuation due to sand and dust,” Chin. J. Radio Sci. 11, 29–32 (1996).

Zheng, X.

X. Li, L. Xie, and X. Zheng, “The comparison between the Mie theory and the Rayleigh approximation to calculate the EM scattering by partially charged sand,” J. Quant. Spectrosc. Radiat. Transfer 113, 251–258 (2012).
[CrossRef]

Zheng, X. J.

L. Xie, X. C. Li, and X. J. Zheng, “Attenuation of an electromagnetic wave by charged dust particles in a sandstorm,” Appl. Opt. 49, 6756–6761 (2010).
[CrossRef]

Q. S. He, Y. H. Zhou, and X. J. Zheng, “Effects of charged sand on electromagnetic wave propagation and its scattering field,” Sci. Chin. Ser. G 49, 77–87 (2006).
[CrossRef]

Y. H. Zhou, Q. S. He, and X. J. Zheng, “Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles,” Eur. Phys. J. E 17, 181–187 (2005).
[CrossRef]

Zhou, Y. H.

Q. S. He, Y. H. Zhou, and X. J. Zheng, “Effects of charged sand on electromagnetic wave propagation and its scattering field,” Sci. Chin. Ser. G 49, 77–87 (2006).
[CrossRef]

Y. H. Zhou, Q. S. He, and X. J. Zheng, “Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles,” Eur. Phys. J. E 17, 181–187 (2005).
[CrossRef]

Zhou, Z.-J.

S.-H. Zhao, Z.-J. Zhou, Q. Zhu, and Y.-Q. Song, “Anisotropic medium sphere in uniform field,” Coll. Phys. 30, 26–28 (2011).

Zhu, Q.

S.-H. Zhao, Z.-J. Zhou, Q. Zhu, and Y.-Q. Song, “Anisotropic medium sphere in uniform field,” Coll. Phys. 30, 26–28 (2011).

Zu, R. P.

J. J. Qu, M. H. Yan, G. G. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. Chin. Ser. D 47, 529–539 (2004).
[CrossRef]

Appl. Opt.

Chin. J. Radio Sci.

Q. S. Dong, Z. W. Zhao, and H. J. Cong, “The mm-Wave attenuation due to sand and dust,” Chin. J. Radio Sci. 11, 29–32 (1996).

Coll. Phys.

S.-H. Zhao, Z.-J. Zhou, Q. Zhu, and Y.-Q. Song, “Anisotropic medium sphere in uniform field,” Coll. Phys. 30, 26–28 (2011).

Eur. Phys. J. E

Y. H. Zhou, Q. S. He, and X. J. Zheng, “Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles,” Eur. Phys. J. E 17, 181–187 (2005).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett.

X. Y. Dong, H. Y. Chen, and D. H. Guo, “Microwave and millimeter wave attenuation in sand and dust storms,” IEEE Antennas Wirel. Propag. Lett. 10, 469–471 (2011).
[CrossRef]

IEEE Trans. Antennas Propag.

A. A. Ali and M. A. Alhaider, “Millimeter wave propagation in arid land: a field study in Riyadh,” IEEE Trans. Antennas Propag. 40, 492–499 (1992).
[CrossRef]

Int. J. Infrared Millim. Waves

R. Yang, Z. Wu, and J. You, “The Study of MMW and MW attenuation considering multiple scattering effect in sand and dust storms at slant paths,” Int. J. Infrared Millim. Waves 24, 1383–1392 (2003).
[CrossRef]

J. Ningxia Univ.

L. Xingcai and Z. Beidou, “Comparison research between two EM scattering models for wet sand particle,” J. Ningxia Univ. 34, 35–39 (2013).

J. Quant. Spectrosc. Radiat. Transfer

L. Xingcai and Z. Beidou, “An equivalent solution for the electromagnetic scattering of multilayer particle,” J. Quant. Spectrosc. Radiat. Transfer 129, 236–240 (2013).
[CrossRef]

T. Nousiainen, “Optical modeling of mineral dust particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 110, 1261–1279 (2009).
[CrossRef]

X. Li, L. Xie, and X. Zheng, “The comparison between the Mie theory and the Rayleigh approximation to calculate the EM scattering by partially charged sand,” J. Quant. Spectrosc. Radiat. Transfer 113, 251–258 (2012).
[CrossRef]

X. Li and B. Zhang, “The electromagnetic scattering of the charged inhomogeneous sand particle,” J. Quant. Spectrosc. Radiat. Transfer 119, 150–154 (2013).
[CrossRef]

Nat. Phys.

D. J. Lacks, “Particle clouds: frictile attraction,” Nat. Phys. 6, 324–325 (2010).
[CrossRef]

T. Pahtz, H. J. Herrmann, and T. Shinbrot, “Why do particle clouds generate electric charges,” Nat. Phys. 6, 364–368 (2010).
[CrossRef]

Nature

T. Shinbrot and H. J. Herrmann, “Granular matter: static in motion,” Nature 451, 773–774 (2008).
[CrossRef]

Proc. IEEE

S. O. Bashir and N. J. McEwan, “Microwave propagation in dust storms: a review,” Proc. IEEE 133, 241–247 (1986).

Prog. Electromagn. Res. M

M. R. I. Z. Elabdin, O. O. Khalifa, and H. E. A. Raouf, “Mathematical model for the prediction of microwave signal attenuation due to duststorm,” Prog. Electromagn. Res. M 6, 139–153 (2009).

Remote Sens. Environ.

S. A. Christopher and T. A. Jones, “Satellite and surface-based remote sensing of Saharan dust aerosols,” Remote Sens. Environ. 114, 1002–1007 (2010).
[CrossRef]

Rev. Environ. Sci. Biotechnol.

M. Akhlaq, T. R. Sheltami, and H. T. Mouftah, “A review of techniques and technologies for sand and dust storm detection,” Rev. Environ. Sci. Biotechnol. 11, 305–322 (2012).
[CrossRef]

Sci. Chin. Ser. D

J. J. Qu, M. H. Yan, G. G. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. Chin. Ser. D 47, 529–539 (2004).
[CrossRef]

Sci. Chin. Ser. G

Q. S. He, Y. H. Zhou, and X. J. Zheng, “Effects of charged sand on electromagnetic wave propagation and its scattering field,” Sci. Chin. Ser. G 49, 77–87 (2006).
[CrossRef]

Other

C. F. Bohren and D. R. Huffman, in Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 82–103.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic drawing of a charged sand particle illuminated by an electromagnetic wave.

Fig. 2.
Fig. 2.

Differential scattering cross section for partially charged sphere: (a) obtained from Zhou et al. [12] and (b) obtained from this paper.

Fig. 3.
Fig. 3.

Effect of the charged angle on particle extinction efficiency.

Fig. 4.
Fig. 4.

Effect of the charge–mass ratio on particle extinction efficiency.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

2ϕ1(r,θ,φ)=0r<R,0θπ,0φ2π,2ϕ2(r,θ,φ)=0r>R,0θπ,0φ2π.
r=Rϕ1=ϕ2ε0ϕ2rεsϕ1r=σHθθq,r0ϕ1is finite,rE0E0ez.
Hθθq={1ifθqθ0ifθq<θ.
ϕ1=n(anrn+bnrn+1)Pn(cosθ),ϕ2=n(cnrn+dnrn+1)Pn(cosθ).
Ein=3εr+2E0ex+σRrε0δθθqeθ,
P¯=χeε0Ein=εr1εr+23E0ε0ex+εr1rσRδθθqeθ.
P¯=εr1εr+23E0ε0ex+εr1rσRδθθq(cosθcosφex+cosθsinφeysinθez).
p=0R0π02πP¯r2sinθdrdθdφ=4πε0E0R3εr1εr+2exπσR3(εr1)sinθqez.
Es=eikrikrik34πε0(pθeθpφeφ),
Es=eikrikrik34πε0(pθeθpφeφ)=eikrikrik34πε0(pθeθ+pφeφ)=eikrk24πε0r{[4πε0E0R3εr1εr+2cosθcosφ+πσR3(εr1)sinθqsinθ]eθ4πε0E0R3εr1εr+2sinφeφ}.
σd=limrr2|Es|2|Ei|2=k4R6|εr1εr+2|2cos2θcos2φ+σ216E02ε02k4R6|εr1|2×sin2θqsin2θ+k4R6σ2ε0E0|εr1|2|εr+2|cosθcosφsinθsinθq+k4R6|εr1εr+2|2sin2φ.
σs=83k4R6|εr1εr+2|2+π6k4R6σ2E02ε02|εr1|2sin2θq.
σα=k0R0π02πεrEin·Einr2sinθdrdθdφ|Ei|2=12πkεrR31|εr+2|2.
σext=σs+σa=12πkεrR31|εr+2|2+83k4R6|εr1εr+2|2+π6k4R6σ2E02ε02|εr1|2sin2θq.
Qext=σextπR2.
εr=ε0(ε1000ε2000ε3),
2ϕx2+2ϕy2+2ϕz2=0(x2+y2+z2>R2).
ϕ=n=0m=nn(Anmrn+Bnmrn1)Pnm(cosθ)eimφ,
ϕ=E0×r=E0xx+E0yy+E0zz=rE0(sinθ0cosφ0sinθcosφ+sinθ0sinφ0sinθsinφ+cosθ0cosθ).
ϕ=rE0(sinθ0cosφ0sinθcosφ+sinθ0sinφ0sinθsinφ+cosθ0cosθ)+n=0m=nnBnmrn1Pnm(cosθ)eimφ
ϕi=e1rsinθcosφ+e2rsinθsinφ+e3rcosθ+B.
ϕ=rE0(sinθ0cosφ0sinθcosφ+sinθ0sinφ0sinθsinφ+cosθ0cosθ)+Ar+B10r2cosθ+B11r2sinθcosφ+C11r2sinθsinφ.
r=R{ϕ=ϕin·(D2D1)=σH(θθq).
ϕi=3E0ε1+2sinθ0cosφ0rsinθcosφ3E0ε2+2sinθ0sinφ0rsinθsinφ3E0ε3+2cosθ0rcosθ+σH(θθq)ε0R.
Ein=ϕi=er{3E0ε1+2sinθ0cosφ0sinθcosφ+3E0ε2+2sinθ0sinφ0sinθsinφ+3E0ε3+2cosθ0cosθ}+eθ{3E0ε1+2sinθ0cosφ0rcosθcosφ+3E0ε2+2sinθ0sinφ0rcosθsinφ3E0ε3+2cosθ0rsinθσRrε0δθθq}+eφ{3E0ε1+2sinθ0cosφ0sinφ+3E0ε2+2sinθ0sinφ0cosφ}=3E0ε1+2sinθ0cosφ0ex+3E0ε2+2sinθ0sinφ0ey+3E0ε3+2cosθ0ezσRrε0δθθqeθ.
P¯=χeε0Ein=3E0ε0(ε11)ε1+2sinθ0cosφ0ex+3E0ε0(ε21)ε2+2sinθ0sinφ0ey+3E0ε0(ε31)ε3+2cosθ0ezσRrε0δθθq[ε0(ε11)cosθcosφex+ε0(ε21)cosθsinφeyε0(ε31)sinθez]=[3E0ε0(ε11)ε1+2sinθ0cosφ0σRrδθθq(ε11)cosθcosφ]ex+[3E0ε0(ε21)ε2+2sinθ0sinφ0σRrδθθq(ε21)cosθsinφ]ey+[3E0ε0(ε31)ε3+2cosθ0+σRrδθθq(ε31)sinθ]ez.
p¯=0R0π02πP¯r2sinθdφdθdr=4πE0R3ε0(ε11)ε1+2sinθ0cosφ0ex+4πE0R3ε0(ε21)ε2+2sinθ0sinφ0ey+4πE0R3ε0(ε31)ε3+2cosθ0ez+σR3(ε31)πsinθqez
Es=eikrikrik34πε0r¯×(r¯×p¯)=eikrikrik34πε0(pθeθpφeφ)=eikrrk2R3{[ε11ε1+2sinθ0cosφ0sinθcosφ+ε21ε2+2sinθ0sinφ0sinθsinφε31ε3+2cosθ0sinθσ(ε11)4πε0E0πsinθqsinθ]eθ+[ε11ε1+2sinθ0cosφ0sinφ+ε21ε2+2sinθ0sinφ0cosφ]eφ}.
σd=limrr2|Es|2|Ei|2=k4R6{|ε11ε1+2sinθ0cosφ0sinθcosφ+ε21ε2+2sinθ0sinφ0×sinθsinφε31ε3+2cosθ0sinθσ(ε11)4πε0E0πsinθqsinθ|2+|ε11ε1+2sinθ0cosφ0sinφ+ε21ε2+2sinθ0sinφ0cosφ|2}
σs=0π02πσdsinθdφdθ=8π3k4R6|ε11ε1+2sinθ0cosφ0|2+8π3k4R6|ε21ε2+2sinθ0sinφ0|2+8π3k4R6|ε31ε3+2cosθ0|2+4π3k4R6|σ(ε31)ε0E0(ε3+2)|sinθqcosθ0+π6k4R6|σ(ε31)ε0E0sinθq|2.
σs=83k4R6|εr1εr+2|2+π6k4R6σ2E02ε02|εr1|2sin2θq.
σa=vJ·Edv2Si.
σa=12vωε0εrE·EdvSi=12ωε0vεrEin·Eindv|Ei|2/(2η0).
σα=k0R0π02πεr|Ein·Ein|r2sinθdrdθdφ|Ei|2=kE020R0π02π{ε1(3E0|ε1+2|sinθ0cosφ0σRrε0δθθqcosθcosφ)2+ε2(3E0|ε2+2|sinθ0sinφ0σRrε0δθθqcosθsinφ)2+ε3(3E0|ε3+2|cosθ0+σRrε0δθθqsinθ)2}r2sinθdrdθdφ=kε1[12πR31|ε1+2|2sinθ02cosφ02]+kε2[12πR31|ε2+2|2sinθ02sinφ02]+kε3[12πR31|ε3+2|2cosθ02+6πσR3E0ε0|ε3+2|cosθ0sin2θq].

Metrics