Abstract

Correlation can be changed into anticorrelation by superposing thermal and laser light with the same frequency and polarization. Two-photon interference theory is employed to interpret this phenomenon. An experimental scheme is designed to verify the theoretical predictions by employing pseudothermal light to simulate thermal light. The experimental results are consistent with the theoretical results.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial second-order interference of pseudothermal light in a Hong-Ou-Mandel interferometer

Jianbin Liu, Yu Zhou, Wentao Wang, Rui-feng Liu, Kang He, Fu-li Li, and Zhuo Xu
Opt. Express 21(16) 19209-19218 (2013)

Studying the optical second-order interference pattern formation process with classical light in the photon counting regime

Yuchen He, Jianbin Liu, Songlin Zhang, Wentao Wang, Bin Bai, Mingnan Le, and Zhuo Xu
J. Opt. Soc. Am. A 32(12) 2431-2435 (2015)

Measurement of photon indistinguishability to a quantifiable uncertainty using a Hong-Ou-Mandel interferometer

Peter J. Thomas, Jessica Y. Cheung, Christopher J. Chunnilall, and Malcolm H. Dunn
Appl. Opt. 49(11) 2173-2182 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription