Abstract

The measurement accuracy of a large-scale optical measurement positioning system largely depends on the calibration procedure. A more reliable calibration approach for the system by using spherical constraints is presented in this paper, and both the adjustment model based on spherical constraint and the calculation method for the optimization are given. This approach can provide constraint in every direction of the system in the workspace and thereby estimate the orientation parameters more accurately than by using current methods. The experimental data show that by using the proposed method, which improves the accuracy of the depth direction, the average 3D coordinate error of the system compared with the laser tracker is about 0.18 mm in the whole workspace.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Bosch, Coordinate Measuring Machines and Systems (CRC Press, 1995), Vol. 42.
  2. G. N. Peggs, P. G. Maropoulos, E. B. Hughes, A. B. Forbes, S. Robson, M. Ziebart, and B. Muralikrishnan, “Recent developments in large-scale dimensional metrology,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 223, 571–595 (2009).
    [CrossRef]
  3. L. H. Yang, X. Y. Yang, J. G. Zhu, M. Q. Duan, and D. B. Lao, “Novel method for spatial angle measurement based on rotating planar laser beams,” Chin. J. Mech. Eng. 23, 758–764 (2010).
    [CrossRef]
  4. B. Xue, J. Zhu, Z. Zhao, J. Wu, Z. Liu, and Q. Wang, “Validation and mathematical model of workspace measuring and positioning system as an integrated metrology system for improving industrial robot positioning,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 228, 422–440 (2013).
  5. T. Q. Su, S. S. Wang, R. E. Parks, P. Su, and J. H. Burge, “Measuring rough optical surfaces using scanning long-wave optical test system. 1. Principle and implementation,” Appl. Opt. 52, 7117–7126 (2013).
    [CrossRef]
  6. Z. Wang, M. Liang, and P. G. Maropoulos, “High accuracy mobile robot positioning using external large volume metrology instruments,” Int. J. Comp. Integrated Manuf. 24, 37–41 (2011).
  7. Z. Wang, L. Mastrogiacomo, F. Franceschini, and P. Maropoulos, “Experimental comparison of dynamic tracking performance of iGPS and laser tracker,” Int. J. Adv. Manuf. Technol. 56, 205–213 (2011).
  8. Z. Wang, J. Jamshidi, P. Maropoulos, G. Owen, and T. Mileham, “Experimental deployment of the indoor gps large volume metrology system in a large scale production facility,” in Proceedings of the 3rd International Conference on Manufacturing Engineering, Chalkidiki, Greece, 2008.
  9. D. A. Maisano, J. Jamshidi, F. Franceschini, P. G. Maropoulos, L. Mastrogiacomo, A. R. Mileham, and G. W. Owen, “A comparison of two distributed large-volume measurement systems: the mobile spatial co-ordinate measuring system and the indoor global positioning system,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223, 511–521 (2008).
  10. L. Huang, Q. C. Zhang, and A. Asundi, “Flexible camera calibration using not-measured imperfect target,” Appl. Opt. 52, 6278–6286 (2013).
    [CrossRef]
  11. F. P. Zhu, H. J. Shi, P. X. Bai, D. Lei, and X. Y. He, “Nonlinear calibration for generalized fringe projection profilometry under large measuring depth range,” Appl. Opt. 52, 7718–7723 (2013).
    [CrossRef]
  12. J. E. Muelaner, Z. Wang, J. Jamshidi, and P. G. Maropoulos, “Verification of the indoor GPS system by comparison with points calibrated using a network of laser tracker measurements,” in Proceedings of the 6th CIRP-Sponsored International Conference on Digital Enterprise Technology (Springer, 2010), pp. 607–619.
  13. J. E. Muelaner, Z. Wang, O. Martin, J. Jamshidi, and P. G. Maropoulos, “Estimation of uncertainty in three-dimensional coordinate measurement by comparison with calibrated points,” Meas. Sci. Technol. 21, 025106 (2010).
    [CrossRef]
  14. A. B. Mileham, “Study of the uncertainty of angle measurement for a rotary-laser automatic theodolite (R-LAT),” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223, 217–229 (2009).
  15. D. F. Zhang, S. Rolt, and P. G. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16, 2541–2547 (2005).
    [CrossRef]
  16. B. He, Z. Chen, and Y. Li, “Calibration method for a central catadioptric-perspective camera system,” J. Opt. Soc. Am. A 29, 2514–2524 (2012).
    [CrossRef]
  17. M. L. Dai, L. J. Chen, F. J. Yang, and X. Y. He, “Calibration of revolution axis for 360  deg surface measurement,” Appl. Opt. 52, 5440–5448 (2013).
    [CrossRef]
  18. Z. Xiong, J. Zhu, Z. Zhao, X. Yang, and S. Ye, “Workspace measuring and positioning system based on rotating laser planes,” Mechanics 18, 94–98 (2012).
  19. Z. X. Liu, J. G. Zhu, L. H. Yang, H. Q. Liu, J. Wu, and B. Xue, “A single-station multi-tasking 3D coordinate measurement method for large-scale metrology based on rotary-laser scanning,” Meas. Sci. Technol. 24, 105004 (2013).
  20. Z. X. Liu, J. G. Zhu, L. H. Yang, S. H. Ye, J. Wu, and B. Xue, “Real-time position and orientation measurement with occlusion handling for distributed optical large-scale metrology systems,” Opt. Eng. 52, 114101 (2013).
  21. W. Song, X. Hou, F. Wu, and Y. Wan, “Simple and rapid data-reduction method with pixel-level spatial frequency of shift-rotation method,” Appl. Opt. 52, 5974–5978 (2013).
    [CrossRef]
  22. D. W. Eggert, A. Lorusso, and R. B. Fisher, “Estimating 3-D rigid body transformations: a comparison of four major algorithms,” Mach. Vis. Appl. 9, 272–290 (1997).
    [CrossRef]
  23. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (SIAM, 1974), Vol. 161.
  24. S. J. Ahn, W. Rauh, and H.-J. Warnecke, “Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola,” Pattern Recogn. 34, 2283–2303 (2001).
    [CrossRef]
  25. H. Metrology, “PCMM system specifications Leica absolute tracker and Leica T-products,” [EB/OL] (2009). www.leica-geosystems.com/common/shared/downloads/inc/downloader.asp?id=9125 .

2013 (8)

B. Xue, J. Zhu, Z. Zhao, J. Wu, Z. Liu, and Q. Wang, “Validation and mathematical model of workspace measuring and positioning system as an integrated metrology system for improving industrial robot positioning,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 228, 422–440 (2013).

Z. X. Liu, J. G. Zhu, L. H. Yang, H. Q. Liu, J. Wu, and B. Xue, “A single-station multi-tasking 3D coordinate measurement method for large-scale metrology based on rotary-laser scanning,” Meas. Sci. Technol. 24, 105004 (2013).

Z. X. Liu, J. G. Zhu, L. H. Yang, S. H. Ye, J. Wu, and B. Xue, “Real-time position and orientation measurement with occlusion handling for distributed optical large-scale metrology systems,” Opt. Eng. 52, 114101 (2013).

M. L. Dai, L. J. Chen, F. J. Yang, and X. Y. He, “Calibration of revolution axis for 360  deg surface measurement,” Appl. Opt. 52, 5440–5448 (2013).
[CrossRef]

W. Song, X. Hou, F. Wu, and Y. Wan, “Simple and rapid data-reduction method with pixel-level spatial frequency of shift-rotation method,” Appl. Opt. 52, 5974–5978 (2013).
[CrossRef]

L. Huang, Q. C. Zhang, and A. Asundi, “Flexible camera calibration using not-measured imperfect target,” Appl. Opt. 52, 6278–6286 (2013).
[CrossRef]

T. Q. Su, S. S. Wang, R. E. Parks, P. Su, and J. H. Burge, “Measuring rough optical surfaces using scanning long-wave optical test system. 1. Principle and implementation,” Appl. Opt. 52, 7117–7126 (2013).
[CrossRef]

F. P. Zhu, H. J. Shi, P. X. Bai, D. Lei, and X. Y. He, “Nonlinear calibration for generalized fringe projection profilometry under large measuring depth range,” Appl. Opt. 52, 7718–7723 (2013).
[CrossRef]

2012 (2)

Z. Xiong, J. Zhu, Z. Zhao, X. Yang, and S. Ye, “Workspace measuring and positioning system based on rotating laser planes,” Mechanics 18, 94–98 (2012).

B. He, Z. Chen, and Y. Li, “Calibration method for a central catadioptric-perspective camera system,” J. Opt. Soc. Am. A 29, 2514–2524 (2012).
[CrossRef]

2011 (2)

Z. Wang, M. Liang, and P. G. Maropoulos, “High accuracy mobile robot positioning using external large volume metrology instruments,” Int. J. Comp. Integrated Manuf. 24, 37–41 (2011).

Z. Wang, L. Mastrogiacomo, F. Franceschini, and P. Maropoulos, “Experimental comparison of dynamic tracking performance of iGPS and laser tracker,” Int. J. Adv. Manuf. Technol. 56, 205–213 (2011).

2010 (2)

L. H. Yang, X. Y. Yang, J. G. Zhu, M. Q. Duan, and D. B. Lao, “Novel method for spatial angle measurement based on rotating planar laser beams,” Chin. J. Mech. Eng. 23, 758–764 (2010).
[CrossRef]

J. E. Muelaner, Z. Wang, O. Martin, J. Jamshidi, and P. G. Maropoulos, “Estimation of uncertainty in three-dimensional coordinate measurement by comparison with calibrated points,” Meas. Sci. Technol. 21, 025106 (2010).
[CrossRef]

2009 (2)

A. B. Mileham, “Study of the uncertainty of angle measurement for a rotary-laser automatic theodolite (R-LAT),” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223, 217–229 (2009).

G. N. Peggs, P. G. Maropoulos, E. B. Hughes, A. B. Forbes, S. Robson, M. Ziebart, and B. Muralikrishnan, “Recent developments in large-scale dimensional metrology,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 223, 571–595 (2009).
[CrossRef]

2008 (1)

D. A. Maisano, J. Jamshidi, F. Franceschini, P. G. Maropoulos, L. Mastrogiacomo, A. R. Mileham, and G. W. Owen, “A comparison of two distributed large-volume measurement systems: the mobile spatial co-ordinate measuring system and the indoor global positioning system,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223, 511–521 (2008).

2005 (1)

D. F. Zhang, S. Rolt, and P. G. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16, 2541–2547 (2005).
[CrossRef]

2001 (1)

S. J. Ahn, W. Rauh, and H.-J. Warnecke, “Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola,” Pattern Recogn. 34, 2283–2303 (2001).
[CrossRef]

1997 (1)

D. W. Eggert, A. Lorusso, and R. B. Fisher, “Estimating 3-D rigid body transformations: a comparison of four major algorithms,” Mach. Vis. Appl. 9, 272–290 (1997).
[CrossRef]

Ahn, S. J.

S. J. Ahn, W. Rauh, and H.-J. Warnecke, “Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola,” Pattern Recogn. 34, 2283–2303 (2001).
[CrossRef]

Asundi, A.

Bai, P. X.

Bosch, J. A.

J. A. Bosch, Coordinate Measuring Machines and Systems (CRC Press, 1995), Vol. 42.

Burge, J. H.

Chen, L. J.

Chen, Z.

Dai, M. L.

Duan, M. Q.

L. H. Yang, X. Y. Yang, J. G. Zhu, M. Q. Duan, and D. B. Lao, “Novel method for spatial angle measurement based on rotating planar laser beams,” Chin. J. Mech. Eng. 23, 758–764 (2010).
[CrossRef]

Eggert, D. W.

D. W. Eggert, A. Lorusso, and R. B. Fisher, “Estimating 3-D rigid body transformations: a comparison of four major algorithms,” Mach. Vis. Appl. 9, 272–290 (1997).
[CrossRef]

Fisher, R. B.

D. W. Eggert, A. Lorusso, and R. B. Fisher, “Estimating 3-D rigid body transformations: a comparison of four major algorithms,” Mach. Vis. Appl. 9, 272–290 (1997).
[CrossRef]

Forbes, A. B.

G. N. Peggs, P. G. Maropoulos, E. B. Hughes, A. B. Forbes, S. Robson, M. Ziebart, and B. Muralikrishnan, “Recent developments in large-scale dimensional metrology,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 223, 571–595 (2009).
[CrossRef]

Franceschini, F.

Z. Wang, L. Mastrogiacomo, F. Franceschini, and P. Maropoulos, “Experimental comparison of dynamic tracking performance of iGPS and laser tracker,” Int. J. Adv. Manuf. Technol. 56, 205–213 (2011).

D. A. Maisano, J. Jamshidi, F. Franceschini, P. G. Maropoulos, L. Mastrogiacomo, A. R. Mileham, and G. W. Owen, “A comparison of two distributed large-volume measurement systems: the mobile spatial co-ordinate measuring system and the indoor global positioning system,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223, 511–521 (2008).

Hanson, R. J.

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (SIAM, 1974), Vol. 161.

He, B.

He, X. Y.

Hou, X.

Huang, L.

Hughes, E. B.

G. N. Peggs, P. G. Maropoulos, E. B. Hughes, A. B. Forbes, S. Robson, M. Ziebart, and B. Muralikrishnan, “Recent developments in large-scale dimensional metrology,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 223, 571–595 (2009).
[CrossRef]

Jamshidi, J.

J. E. Muelaner, Z. Wang, O. Martin, J. Jamshidi, and P. G. Maropoulos, “Estimation of uncertainty in three-dimensional coordinate measurement by comparison with calibrated points,” Meas. Sci. Technol. 21, 025106 (2010).
[CrossRef]

D. A. Maisano, J. Jamshidi, F. Franceschini, P. G. Maropoulos, L. Mastrogiacomo, A. R. Mileham, and G. W. Owen, “A comparison of two distributed large-volume measurement systems: the mobile spatial co-ordinate measuring system and the indoor global positioning system,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223, 511–521 (2008).

Z. Wang, J. Jamshidi, P. Maropoulos, G. Owen, and T. Mileham, “Experimental deployment of the indoor gps large volume metrology system in a large scale production facility,” in Proceedings of the 3rd International Conference on Manufacturing Engineering, Chalkidiki, Greece, 2008.

J. E. Muelaner, Z. Wang, J. Jamshidi, and P. G. Maropoulos, “Verification of the indoor GPS system by comparison with points calibrated using a network of laser tracker measurements,” in Proceedings of the 6th CIRP-Sponsored International Conference on Digital Enterprise Technology (Springer, 2010), pp. 607–619.

Lao, D. B.

L. H. Yang, X. Y. Yang, J. G. Zhu, M. Q. Duan, and D. B. Lao, “Novel method for spatial angle measurement based on rotating planar laser beams,” Chin. J. Mech. Eng. 23, 758–764 (2010).
[CrossRef]

Lawson, C. L.

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (SIAM, 1974), Vol. 161.

Lei, D.

Li, Y.

Liang, M.

Z. Wang, M. Liang, and P. G. Maropoulos, “High accuracy mobile robot positioning using external large volume metrology instruments,” Int. J. Comp. Integrated Manuf. 24, 37–41 (2011).

Liu, H. Q.

Z. X. Liu, J. G. Zhu, L. H. Yang, H. Q. Liu, J. Wu, and B. Xue, “A single-station multi-tasking 3D coordinate measurement method for large-scale metrology based on rotary-laser scanning,” Meas. Sci. Technol. 24, 105004 (2013).

Liu, Z.

B. Xue, J. Zhu, Z. Zhao, J. Wu, Z. Liu, and Q. Wang, “Validation and mathematical model of workspace measuring and positioning system as an integrated metrology system for improving industrial robot positioning,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 228, 422–440 (2013).

Liu, Z. X.

Z. X. Liu, J. G. Zhu, L. H. Yang, S. H. Ye, J. Wu, and B. Xue, “Real-time position and orientation measurement with occlusion handling for distributed optical large-scale metrology systems,” Opt. Eng. 52, 114101 (2013).

Z. X. Liu, J. G. Zhu, L. H. Yang, H. Q. Liu, J. Wu, and B. Xue, “A single-station multi-tasking 3D coordinate measurement method for large-scale metrology based on rotary-laser scanning,” Meas. Sci. Technol. 24, 105004 (2013).

Lorusso, A.

D. W. Eggert, A. Lorusso, and R. B. Fisher, “Estimating 3-D rigid body transformations: a comparison of four major algorithms,” Mach. Vis. Appl. 9, 272–290 (1997).
[CrossRef]

Maisano, D. A.

D. A. Maisano, J. Jamshidi, F. Franceschini, P. G. Maropoulos, L. Mastrogiacomo, A. R. Mileham, and G. W. Owen, “A comparison of two distributed large-volume measurement systems: the mobile spatial co-ordinate measuring system and the indoor global positioning system,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223, 511–521 (2008).

Maropoulos, P.

Z. Wang, L. Mastrogiacomo, F. Franceschini, and P. Maropoulos, “Experimental comparison of dynamic tracking performance of iGPS and laser tracker,” Int. J. Adv. Manuf. Technol. 56, 205–213 (2011).

Z. Wang, J. Jamshidi, P. Maropoulos, G. Owen, and T. Mileham, “Experimental deployment of the indoor gps large volume metrology system in a large scale production facility,” in Proceedings of the 3rd International Conference on Manufacturing Engineering, Chalkidiki, Greece, 2008.

Maropoulos, P. G.

Z. Wang, M. Liang, and P. G. Maropoulos, “High accuracy mobile robot positioning using external large volume metrology instruments,” Int. J. Comp. Integrated Manuf. 24, 37–41 (2011).

J. E. Muelaner, Z. Wang, O. Martin, J. Jamshidi, and P. G. Maropoulos, “Estimation of uncertainty in three-dimensional coordinate measurement by comparison with calibrated points,” Meas. Sci. Technol. 21, 025106 (2010).
[CrossRef]

G. N. Peggs, P. G. Maropoulos, E. B. Hughes, A. B. Forbes, S. Robson, M. Ziebart, and B. Muralikrishnan, “Recent developments in large-scale dimensional metrology,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 223, 571–595 (2009).
[CrossRef]

D. A. Maisano, J. Jamshidi, F. Franceschini, P. G. Maropoulos, L. Mastrogiacomo, A. R. Mileham, and G. W. Owen, “A comparison of two distributed large-volume measurement systems: the mobile spatial co-ordinate measuring system and the indoor global positioning system,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223, 511–521 (2008).

D. F. Zhang, S. Rolt, and P. G. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16, 2541–2547 (2005).
[CrossRef]

J. E. Muelaner, Z. Wang, J. Jamshidi, and P. G. Maropoulos, “Verification of the indoor GPS system by comparison with points calibrated using a network of laser tracker measurements,” in Proceedings of the 6th CIRP-Sponsored International Conference on Digital Enterprise Technology (Springer, 2010), pp. 607–619.

Martin, O.

J. E. Muelaner, Z. Wang, O. Martin, J. Jamshidi, and P. G. Maropoulos, “Estimation of uncertainty in three-dimensional coordinate measurement by comparison with calibrated points,” Meas. Sci. Technol. 21, 025106 (2010).
[CrossRef]

Mastrogiacomo, L.

Z. Wang, L. Mastrogiacomo, F. Franceschini, and P. Maropoulos, “Experimental comparison of dynamic tracking performance of iGPS and laser tracker,” Int. J. Adv. Manuf. Technol. 56, 205–213 (2011).

D. A. Maisano, J. Jamshidi, F. Franceschini, P. G. Maropoulos, L. Mastrogiacomo, A. R. Mileham, and G. W. Owen, “A comparison of two distributed large-volume measurement systems: the mobile spatial co-ordinate measuring system and the indoor global positioning system,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223, 511–521 (2008).

Mileham, A. B.

A. B. Mileham, “Study of the uncertainty of angle measurement for a rotary-laser automatic theodolite (R-LAT),” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223, 217–229 (2009).

Mileham, A. R.

D. A. Maisano, J. Jamshidi, F. Franceschini, P. G. Maropoulos, L. Mastrogiacomo, A. R. Mileham, and G. W. Owen, “A comparison of two distributed large-volume measurement systems: the mobile spatial co-ordinate measuring system and the indoor global positioning system,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223, 511–521 (2008).

Mileham, T.

Z. Wang, J. Jamshidi, P. Maropoulos, G. Owen, and T. Mileham, “Experimental deployment of the indoor gps large volume metrology system in a large scale production facility,” in Proceedings of the 3rd International Conference on Manufacturing Engineering, Chalkidiki, Greece, 2008.

Muelaner, J. E.

J. E. Muelaner, Z. Wang, O. Martin, J. Jamshidi, and P. G. Maropoulos, “Estimation of uncertainty in three-dimensional coordinate measurement by comparison with calibrated points,” Meas. Sci. Technol. 21, 025106 (2010).
[CrossRef]

J. E. Muelaner, Z. Wang, J. Jamshidi, and P. G. Maropoulos, “Verification of the indoor GPS system by comparison with points calibrated using a network of laser tracker measurements,” in Proceedings of the 6th CIRP-Sponsored International Conference on Digital Enterprise Technology (Springer, 2010), pp. 607–619.

Muralikrishnan, B.

G. N. Peggs, P. G. Maropoulos, E. B. Hughes, A. B. Forbes, S. Robson, M. Ziebart, and B. Muralikrishnan, “Recent developments in large-scale dimensional metrology,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 223, 571–595 (2009).
[CrossRef]

Owen, G.

Z. Wang, J. Jamshidi, P. Maropoulos, G. Owen, and T. Mileham, “Experimental deployment of the indoor gps large volume metrology system in a large scale production facility,” in Proceedings of the 3rd International Conference on Manufacturing Engineering, Chalkidiki, Greece, 2008.

Owen, G. W.

D. A. Maisano, J. Jamshidi, F. Franceschini, P. G. Maropoulos, L. Mastrogiacomo, A. R. Mileham, and G. W. Owen, “A comparison of two distributed large-volume measurement systems: the mobile spatial co-ordinate measuring system and the indoor global positioning system,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223, 511–521 (2008).

Parks, R. E.

Peggs, G. N.

G. N. Peggs, P. G. Maropoulos, E. B. Hughes, A. B. Forbes, S. Robson, M. Ziebart, and B. Muralikrishnan, “Recent developments in large-scale dimensional metrology,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 223, 571–595 (2009).
[CrossRef]

Rauh, W.

S. J. Ahn, W. Rauh, and H.-J. Warnecke, “Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola,” Pattern Recogn. 34, 2283–2303 (2001).
[CrossRef]

Robson, S.

G. N. Peggs, P. G. Maropoulos, E. B. Hughes, A. B. Forbes, S. Robson, M. Ziebart, and B. Muralikrishnan, “Recent developments in large-scale dimensional metrology,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 223, 571–595 (2009).
[CrossRef]

Rolt, S.

D. F. Zhang, S. Rolt, and P. G. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16, 2541–2547 (2005).
[CrossRef]

Shi, H. J.

Song, W.

Su, P.

Su, T. Q.

Wan, Y.

Wang, Q.

B. Xue, J. Zhu, Z. Zhao, J. Wu, Z. Liu, and Q. Wang, “Validation and mathematical model of workspace measuring and positioning system as an integrated metrology system for improving industrial robot positioning,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 228, 422–440 (2013).

Wang, S. S.

Wang, Z.

Z. Wang, M. Liang, and P. G. Maropoulos, “High accuracy mobile robot positioning using external large volume metrology instruments,” Int. J. Comp. Integrated Manuf. 24, 37–41 (2011).

Z. Wang, L. Mastrogiacomo, F. Franceschini, and P. Maropoulos, “Experimental comparison of dynamic tracking performance of iGPS and laser tracker,” Int. J. Adv. Manuf. Technol. 56, 205–213 (2011).

J. E. Muelaner, Z. Wang, O. Martin, J. Jamshidi, and P. G. Maropoulos, “Estimation of uncertainty in three-dimensional coordinate measurement by comparison with calibrated points,” Meas. Sci. Technol. 21, 025106 (2010).
[CrossRef]

J. E. Muelaner, Z. Wang, J. Jamshidi, and P. G. Maropoulos, “Verification of the indoor GPS system by comparison with points calibrated using a network of laser tracker measurements,” in Proceedings of the 6th CIRP-Sponsored International Conference on Digital Enterprise Technology (Springer, 2010), pp. 607–619.

Z. Wang, J. Jamshidi, P. Maropoulos, G. Owen, and T. Mileham, “Experimental deployment of the indoor gps large volume metrology system in a large scale production facility,” in Proceedings of the 3rd International Conference on Manufacturing Engineering, Chalkidiki, Greece, 2008.

Warnecke, H.-J.

S. J. Ahn, W. Rauh, and H.-J. Warnecke, “Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola,” Pattern Recogn. 34, 2283–2303 (2001).
[CrossRef]

Wu, F.

Wu, J.

B. Xue, J. Zhu, Z. Zhao, J. Wu, Z. Liu, and Q. Wang, “Validation and mathematical model of workspace measuring and positioning system as an integrated metrology system for improving industrial robot positioning,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 228, 422–440 (2013).

Z. X. Liu, J. G. Zhu, L. H. Yang, S. H. Ye, J. Wu, and B. Xue, “Real-time position and orientation measurement with occlusion handling for distributed optical large-scale metrology systems,” Opt. Eng. 52, 114101 (2013).

Z. X. Liu, J. G. Zhu, L. H. Yang, H. Q. Liu, J. Wu, and B. Xue, “A single-station multi-tasking 3D coordinate measurement method for large-scale metrology based on rotary-laser scanning,” Meas. Sci. Technol. 24, 105004 (2013).

Xiong, Z.

Z. Xiong, J. Zhu, Z. Zhao, X. Yang, and S. Ye, “Workspace measuring and positioning system based on rotating laser planes,” Mechanics 18, 94–98 (2012).

Xue, B.

Z. X. Liu, J. G. Zhu, L. H. Yang, H. Q. Liu, J. Wu, and B. Xue, “A single-station multi-tasking 3D coordinate measurement method for large-scale metrology based on rotary-laser scanning,” Meas. Sci. Technol. 24, 105004 (2013).

Z. X. Liu, J. G. Zhu, L. H. Yang, S. H. Ye, J. Wu, and B. Xue, “Real-time position and orientation measurement with occlusion handling for distributed optical large-scale metrology systems,” Opt. Eng. 52, 114101 (2013).

B. Xue, J. Zhu, Z. Zhao, J. Wu, Z. Liu, and Q. Wang, “Validation and mathematical model of workspace measuring and positioning system as an integrated metrology system for improving industrial robot positioning,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 228, 422–440 (2013).

Yang, F. J.

Yang, L. H.

Z. X. Liu, J. G. Zhu, L. H. Yang, S. H. Ye, J. Wu, and B. Xue, “Real-time position and orientation measurement with occlusion handling for distributed optical large-scale metrology systems,” Opt. Eng. 52, 114101 (2013).

Z. X. Liu, J. G. Zhu, L. H. Yang, H. Q. Liu, J. Wu, and B. Xue, “A single-station multi-tasking 3D coordinate measurement method for large-scale metrology based on rotary-laser scanning,” Meas. Sci. Technol. 24, 105004 (2013).

L. H. Yang, X. Y. Yang, J. G. Zhu, M. Q. Duan, and D. B. Lao, “Novel method for spatial angle measurement based on rotating planar laser beams,” Chin. J. Mech. Eng. 23, 758–764 (2010).
[CrossRef]

Yang, X.

Z. Xiong, J. Zhu, Z. Zhao, X. Yang, and S. Ye, “Workspace measuring and positioning system based on rotating laser planes,” Mechanics 18, 94–98 (2012).

Yang, X. Y.

L. H. Yang, X. Y. Yang, J. G. Zhu, M. Q. Duan, and D. B. Lao, “Novel method for spatial angle measurement based on rotating planar laser beams,” Chin. J. Mech. Eng. 23, 758–764 (2010).
[CrossRef]

Ye, S.

Z. Xiong, J. Zhu, Z. Zhao, X. Yang, and S. Ye, “Workspace measuring and positioning system based on rotating laser planes,” Mechanics 18, 94–98 (2012).

Ye, S. H.

Z. X. Liu, J. G. Zhu, L. H. Yang, S. H. Ye, J. Wu, and B. Xue, “Real-time position and orientation measurement with occlusion handling for distributed optical large-scale metrology systems,” Opt. Eng. 52, 114101 (2013).

Zhang, D. F.

D. F. Zhang, S. Rolt, and P. G. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16, 2541–2547 (2005).
[CrossRef]

Zhang, Q. C.

Zhao, Z.

B. Xue, J. Zhu, Z. Zhao, J. Wu, Z. Liu, and Q. Wang, “Validation and mathematical model of workspace measuring and positioning system as an integrated metrology system for improving industrial robot positioning,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 228, 422–440 (2013).

Z. Xiong, J. Zhu, Z. Zhao, X. Yang, and S. Ye, “Workspace measuring and positioning system based on rotating laser planes,” Mechanics 18, 94–98 (2012).

Zhu, F. P.

Zhu, J.

B. Xue, J. Zhu, Z. Zhao, J. Wu, Z. Liu, and Q. Wang, “Validation and mathematical model of workspace measuring and positioning system as an integrated metrology system for improving industrial robot positioning,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 228, 422–440 (2013).

Z. Xiong, J. Zhu, Z. Zhao, X. Yang, and S. Ye, “Workspace measuring and positioning system based on rotating laser planes,” Mechanics 18, 94–98 (2012).

Zhu, J. G.

Z. X. Liu, J. G. Zhu, L. H. Yang, H. Q. Liu, J. Wu, and B. Xue, “A single-station multi-tasking 3D coordinate measurement method for large-scale metrology based on rotary-laser scanning,” Meas. Sci. Technol. 24, 105004 (2013).

Z. X. Liu, J. G. Zhu, L. H. Yang, S. H. Ye, J. Wu, and B. Xue, “Real-time position and orientation measurement with occlusion handling for distributed optical large-scale metrology systems,” Opt. Eng. 52, 114101 (2013).

L. H. Yang, X. Y. Yang, J. G. Zhu, M. Q. Duan, and D. B. Lao, “Novel method for spatial angle measurement based on rotating planar laser beams,” Chin. J. Mech. Eng. 23, 758–764 (2010).
[CrossRef]

Ziebart, M.

G. N. Peggs, P. G. Maropoulos, E. B. Hughes, A. B. Forbes, S. Robson, M. Ziebart, and B. Muralikrishnan, “Recent developments in large-scale dimensional metrology,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 223, 571–595 (2009).
[CrossRef]

Appl. Opt. (5)

Chin. J. Mech. Eng. (1)

L. H. Yang, X. Y. Yang, J. G. Zhu, M. Q. Duan, and D. B. Lao, “Novel method for spatial angle measurement based on rotating planar laser beams,” Chin. J. Mech. Eng. 23, 758–764 (2010).
[CrossRef]

Int. J. Adv. Manuf. Technol. (1)

Z. Wang, L. Mastrogiacomo, F. Franceschini, and P. Maropoulos, “Experimental comparison of dynamic tracking performance of iGPS and laser tracker,” Int. J. Adv. Manuf. Technol. 56, 205–213 (2011).

Int. J. Comp. Integrated Manuf. (1)

Z. Wang, M. Liang, and P. G. Maropoulos, “High accuracy mobile robot positioning using external large volume metrology instruments,” Int. J. Comp. Integrated Manuf. 24, 37–41 (2011).

J. Opt. Soc. Am. A (1)

Mach. Vis. Appl. (1)

D. W. Eggert, A. Lorusso, and R. B. Fisher, “Estimating 3-D rigid body transformations: a comparison of four major algorithms,” Mach. Vis. Appl. 9, 272–290 (1997).
[CrossRef]

Meas. Sci. Technol. (3)

Z. X. Liu, J. G. Zhu, L. H. Yang, H. Q. Liu, J. Wu, and B. Xue, “A single-station multi-tasking 3D coordinate measurement method for large-scale metrology based on rotary-laser scanning,” Meas. Sci. Technol. 24, 105004 (2013).

J. E. Muelaner, Z. Wang, O. Martin, J. Jamshidi, and P. G. Maropoulos, “Estimation of uncertainty in three-dimensional coordinate measurement by comparison with calibrated points,” Meas. Sci. Technol. 21, 025106 (2010).
[CrossRef]

D. F. Zhang, S. Rolt, and P. G. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16, 2541–2547 (2005).
[CrossRef]

Mechanics (1)

Z. Xiong, J. Zhu, Z. Zhao, X. Yang, and S. Ye, “Workspace measuring and positioning system based on rotating laser planes,” Mechanics 18, 94–98 (2012).

Opt. Eng. (1)

Z. X. Liu, J. G. Zhu, L. H. Yang, S. H. Ye, J. Wu, and B. Xue, “Real-time position and orientation measurement with occlusion handling for distributed optical large-scale metrology systems,” Opt. Eng. 52, 114101 (2013).

Pattern Recogn. (1)

S. J. Ahn, W. Rauh, and H.-J. Warnecke, “Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola,” Pattern Recogn. 34, 2283–2303 (2001).
[CrossRef]

Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. (3)

A. B. Mileham, “Study of the uncertainty of angle measurement for a rotary-laser automatic theodolite (R-LAT),” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223, 217–229 (2009).

D. A. Maisano, J. Jamshidi, F. Franceschini, P. G. Maropoulos, L. Mastrogiacomo, A. R. Mileham, and G. W. Owen, “A comparison of two distributed large-volume measurement systems: the mobile spatial co-ordinate measuring system and the indoor global positioning system,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223, 511–521 (2008).

B. Xue, J. Zhu, Z. Zhao, J. Wu, Z. Liu, and Q. Wang, “Validation and mathematical model of workspace measuring and positioning system as an integrated metrology system for improving industrial robot positioning,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 228, 422–440 (2013).

Proc. Inst. Mech. Eng., B J. Eng. Manuf. (1)

G. N. Peggs, P. G. Maropoulos, E. B. Hughes, A. B. Forbes, S. Robson, M. Ziebart, and B. Muralikrishnan, “Recent developments in large-scale dimensional metrology,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 223, 571–595 (2009).
[CrossRef]

Other (5)

J. A. Bosch, Coordinate Measuring Machines and Systems (CRC Press, 1995), Vol. 42.

J. E. Muelaner, Z. Wang, J. Jamshidi, and P. G. Maropoulos, “Verification of the indoor GPS system by comparison with points calibrated using a network of laser tracker measurements,” in Proceedings of the 6th CIRP-Sponsored International Conference on Digital Enterprise Technology (Springer, 2010), pp. 607–619.

Z. Wang, J. Jamshidi, P. Maropoulos, G. Owen, and T. Mileham, “Experimental deployment of the indoor gps large volume metrology system in a large scale production facility,” in Proceedings of the 3rd International Conference on Manufacturing Engineering, Chalkidiki, Greece, 2008.

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (SIAM, 1974), Vol. 161.

H. Metrology, “PCMM system specifications Leica absolute tracker and Leica T-products,” [EB/OL] (2009). www.leica-geosystems.com/common/shared/downloads/inc/downloader.asp?id=9125 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic configuration of LOMPS.

Fig. 2.
Fig. 2.

Mathematical model.

Fig. 3.
Fig. 3.

Scale bar.

Fig. 4.
Fig. 4.

Coordinate estimation of the initial iteration value.

Fig. 5.
Fig. 5.

Scale bar.

Fig. 6.
Fig. 6.

Schematic diagram of the calibration by using spherical constraint.

Fig. 7.
Fig. 7.

Computation time of the algorithms.

Fig. 8.
Fig. 8.

Results comparison.

Fig. 9.
Fig. 9.

Process of optimization of optical measurement network.

Fig. 10.
Fig. 10.

Distance errors of the three groups.

Fig. 11.
Fig. 11.

Environment of the comparison experiment with the laser tracker.

Fig. 12.
Fig. 12.

Measurement error compared with laser tracker.

Tables (6)

Tables Icon

Table 1. Errors of Measured Distance in Depth Direction of Systema

Tables Icon

Table 2. Errors of Measured Distance in Depth Direction of System after Optimizationa

Tables Icon

Table 3. Orientation Parameters of the Three Groups

Tables Icon

Table 4. Repeatability Evaluation of Coordinate Measurementa

Tables Icon

Table 5. Accuracy of 3D Coordinates Measurement between Optimized LOMPS and Laser Trackera

Tables Icon

Table 6. Accuracy of 3D Coordinates Measurement between Unoptimized LOMPS and Laser Trackera

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

{a1x+b1y+c1z+d1=0a2x+b2y+c2z+d2=0,
θm=w(tmt0);m=1,2,
(ai(θm)bi(θm)ci(θm)di(θm))=(R(θm)001)·(ambmcmdm);(m(1,2)),
R(θm)=[cosθmsinθm0sinθmcosθm0001].
[aijbijcij][cosθijsinθij0sinθijcosθij0001](Ri[xkykzk]+Ti)+dij=0;i=1,2,3.,j=1,2,
(aTxij(θij)bTxij(θij)cTxij(θij)dTxij(θij))=((R(θij)001)·(aijbijcijdij));(j(1,2),iN),
dij=(aTxij(θij)bTxij(θij)cTxij(θij)dTxij(θij))·(RTxiTTxi01)(xyz1)2,(j(1,2),iN),
((xHmxLm)2+(yHmyLm)2+(zHmzLm)2)12=L.
Fobm(RTXi,TTXi,PGHm,PGLm,λ)=j=12i=1Im=1Mk=12((dmkij)2)λ[(xHmxLm)2+(yHmyLm)2+(zHmzLm)2L]2.
{rn2×n1.αarctan(ry/rx).βarctan(rz/ry2+rx2).
(xTyTzT)T(L·cosαtanβTtanβBL·sinαtanβTtanβBL·tanβTtanβTtanβB)T(xByBzB)T(L·cosαtanβTtanβBL·sinαtanβTtanβBL·tanβBtanβTtanβB)T.
((xmnxn)2+(ymnyn)2+(zmnzn)2)12=R.
Fobm(RTXn,TTXn,PGmn,PGn,λ)=j=12i=1Im=1M((dmij)2)λ[(xTXGmnxRXGn)2+(yTXGmnyRXGn)2+(zTXGmnzRXGn)2R]2.
ERMSE=σx2+σy2+σz2+δx2+δy2+δz2,

Metrics