A. Martínez-Finkelshtein, D. Ramos-López, G. M. Castro-Luna, and J. L. Alió, “Adaptive corneal modeling from keratometric data,” Investig. Ophthalmol. Vis. Sci. 52, 4963–4970 (2011).

[CrossRef]

F. Yi, D. R. Iskander, and M. J. Collins, “Estimation of the depth of focus from wavefront measurements,” J. Vis. 10(4):3 (2010).

[CrossRef]

J. Tarrant, A. Roorda, and C. F. Wildsoet, “Determining the accommodative response from wavefront aberrations,” J. Vis. 10(5):4 (2010).

[CrossRef]

E. Candès, L. Demanet, and L. Ying, “A fast butterfly algorithm for the computation of Fourier integral operators,” Multiscale Model. Simul. 7, 1727–1750 (2009).

[CrossRef]

A. Martínez-Finkelshtein, A. M. Delgado, G. M. Castro-Luna, A. Zarzo, and J. L. Alió, “Comparative analysis of some modal reconstruction methods of the shape of the cornea from corneal elevation data,” Investig. Ophthalmol. Vis. Sci. 50, 5639–5645 (2009).

[CrossRef]

J. Nam, L. N. Thibos, and D. R. Iskander, “Zernike radial slope polynomials for wavefront reconstruction and refraction,” J. Opt. Soc. Am. A 26, 1035–1048 (2009).

[CrossRef]

J. Schwiegerling and J. Choi, “Application of the polychromatic defocus transfer function to multifocal lenses,” J. Refract. Surg. 24, 965–969 (2008

D. R. Iskander, B. A. Davis, M. J. Collins, and R. Franklin, “Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials,” Ophthalmic Physiolog. Opt. 27, 245–255 (2007).

J. Schwiegerling, “Analysis of the optical performance of presbyopia treatments with the defocus transfer function,” J. Refract. Surg. 23, 965–971 (2007).

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23, 374–384 (2007).

B. Vasudevan, J. K. Ciuffreda, and B. Wang, “Subjective and objective depth-of-focus,” J. Mod. Opt. 54, 1307–1316 (2007).

[CrossRef]

M. Gai and R. Cancelliere, “An efficient point spread function construction method,” Mon. Not. R. Astron. Soc. 377, 1337–1342 (2007).

[CrossRef]

M. J. Collins, T. Buehren, and D. R. Iskander, “Retinal image quality, reading and myopia,” Vis. Res. 46, 196–215 (2006).

[CrossRef]

B. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51, 75–85 (2006).

[CrossRef]

S. Marcos, S. Barbero, and I. Jimenez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21, 1–13 (2005).

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4):9 (2004).

[CrossRef]

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4):7 (2004).

[CrossRef]

L. Llorente, S. Barbero, J. Merayo, and S. Marcos, “Total and corneal optical aberrations induced by laser in situ keratomileusis for hyperopia,” J. Refract. Surg. 20, 203–216 (2004).

A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes: erratum,” J. Opt. Soc. Am. A 19, 620–628 (2002).

[CrossRef]

A. J. E. M. Janssen, “Extended Nijboer–Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 849–857 (2002).

[CrossRef]

J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an extended Nijboer–Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 858–870 (2002).

[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).

[CrossRef]

M. Montoya-Hernández, M. Servín, D. Malacara-Hernández, and G. Paez, “Wavefront fitting using Gaussian functions,” Opt. Commun. 163, 259–269 (1999).

[CrossRef]

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vis. Res. 39, 2039–2049 (1999).

[CrossRef]

N. M. Jansonius and A. C. Kooijman, “The effect of spherical and other aberrations upon the modulation transfer of the defocused human eye,” Ophthalmic Physiolog. Opt. 18, 504–513 (1998).

A. Artal, S. Marcos, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).

[CrossRef]

D. H. Bailey and P. N. Swartztrauber, “A fast method for the numerical evaluation of continuous Fourier and Laplace transforms,” SIAM J. Sci. Comput. 15, 1105–1110 (1994).

[CrossRef]

A. Martínez-Finkelshtein, D. Ramos-López, G. M. Castro-Luna, and J. L. Alió, “Adaptive corneal modeling from keratometric data,” Investig. Ophthalmol. Vis. Sci. 52, 4963–4970 (2011).

[CrossRef]

A. Martínez-Finkelshtein, A. M. Delgado, G. M. Castro-Luna, A. Zarzo, and J. L. Alió, “Comparative analysis of some modal reconstruction methods of the shape of the cornea from corneal elevation data,” Investig. Ophthalmol. Vis. Sci. 50, 5639–5645 (2009).

[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4):9 (2004).

[CrossRef]

A. Artal, S. Marcos, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).

[CrossRef]

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23, 374–384 (2007).

D. A. Atchison, “Depth of focus of the human eye,” in Presbyopia: Origins, Effects and Treatment, I. Pallikaris, S. Plainis, and W. N. Charman, eds. (Slack Incorporated, 2012).

D. H. Bailey and P. N. Swartztrauber, “A fast method for the numerical evaluation of continuous Fourier and Laplace transforms,” SIAM J. Sci. Comput. 15, 1105–1110 (1994).

[CrossRef]

S. Marcos, S. Barbero, and I. Jimenez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21, 1–13 (2005).

L. Llorente, S. Barbero, J. Merayo, and S. Marcos, “Total and corneal optical aberrations induced by laser in situ keratomileusis for hyperopia,” J. Refract. Surg. 20, 203–216 (2004).

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4):9 (2004).

[CrossRef]

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4):7 (2004).

[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).

[CrossRef]

M. J. Collins, T. Buehren, and D. R. Iskander, “Retinal image quality, reading and myopia,” Vis. Res. 46, 196–215 (2006).

[CrossRef]

M. Gai and R. Cancelliere, “An efficient point spread function construction method,” Mon. Not. R. Astron. Soc. 377, 1337–1342 (2007).

[CrossRef]

E. Candès, L. Demanet, and L. Ying, “A fast butterfly algorithm for the computation of Fourier integral operators,” Multiscale Model. Simul. 7, 1727–1750 (2009).

[CrossRef]

A. Martínez-Finkelshtein, D. Ramos-López, G. M. Castro-Luna, and J. L. Alió, “Adaptive corneal modeling from keratometric data,” Investig. Ophthalmol. Vis. Sci. 52, 4963–4970 (2011).

[CrossRef]

A. Martínez-Finkelshtein, A. M. Delgado, G. M. Castro-Luna, A. Zarzo, and J. L. Alió, “Comparative analysis of some modal reconstruction methods of the shape of the cornea from corneal elevation data,” Investig. Ophthalmol. Vis. Sci. 50, 5639–5645 (2009).

[CrossRef]

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4):7 (2004).

[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).

[CrossRef]

J. Schwiegerling and J. Choi, “Application of the polychromatic defocus transfer function to multifocal lenses,” J. Refract. Surg. 24, 965–969 (2008

B. Vasudevan, J. K. Ciuffreda, and B. Wang, “Subjective and objective depth-of-focus,” J. Mod. Opt. 54, 1307–1316 (2007).

[CrossRef]

B. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51, 75–85 (2006).

[CrossRef]

F. Yi, D. R. Iskander, and M. J. Collins, “Estimation of the depth of focus from wavefront measurements,” J. Vis. 10(4):3 (2010).

[CrossRef]

D. R. Iskander, B. A. Davis, M. J. Collins, and R. Franklin, “Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials,” Ophthalmic Physiolog. Opt. 27, 245–255 (2007).

M. J. Collins, T. Buehren, and D. R. Iskander, “Retinal image quality, reading and myopia,” Vis. Res. 46, 196–215 (2006).

[CrossRef]

D. R. Iskander, B. A. Davis, M. J. Collins, and R. Franklin, “Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials,” Ophthalmic Physiolog. Opt. 27, 245–255 (2007).

A. Martínez-Finkelshtein, A. M. Delgado, G. M. Castro-Luna, A. Zarzo, and J. L. Alió, “Comparative analysis of some modal reconstruction methods of the shape of the cornea from corneal elevation data,” Investig. Ophthalmol. Vis. Sci. 50, 5639–5645 (2009).

[CrossRef]

E. Candès, L. Demanet, and L. Ying, “A fast butterfly algorithm for the computation of Fourier integral operators,” Multiscale Model. Simul. 7, 1727–1750 (2009).

[CrossRef]

G. E. Fasshauer, Meshfree Approximation Methods with Matlab (World Scientific, 2007).

A. Artal, S. Marcos, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).

[CrossRef]

D. R. Iskander, B. A. Davis, M. J. Collins, and R. Franklin, “Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials,” Ophthalmic Physiolog. Opt. 27, 245–255 (2007).

M. Gai and R. Cancelliere, “An efficient point spread function construction method,” Mon. Not. R. Astron. Soc. 377, 1337–1342 (2007).

[CrossRef]

P. C. Hansen, V. Pereyra, and G. Scherer, Least Squares Data Fitting with Applications (Johns Hopkins University, 2013).

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4):9 (2004).

[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).

[CrossRef]

F. Yi, D. R. Iskander, and M. J. Collins, “Estimation of the depth of focus from wavefront measurements,” J. Vis. 10(4):3 (2010).

[CrossRef]

J. Nam, L. N. Thibos, and D. R. Iskander, “Zernike radial slope polynomials for wavefront reconstruction and refraction,” J. Opt. Soc. Am. A 26, 1035–1048 (2009).

[CrossRef]

D. R. Iskander, B. A. Davis, M. J. Collins, and R. Franklin, “Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials,” Ophthalmic Physiolog. Opt. 27, 245–255 (2007).

M. J. Collins, T. Buehren, and D. R. Iskander, “Retinal image quality, reading and myopia,” Vis. Res. 46, 196–215 (2006).

[CrossRef]

N. M. Jansonius and A. C. Kooijman, “The effect of spherical and other aberrations upon the modulation transfer of the defocused human eye,” Ophthalmic Physiolog. Opt. 18, 504–513 (1998).

S. Marcos, S. Barbero, and I. Jimenez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21, 1–13 (2005).

N. M. Jansonius and A. C. Kooijman, “The effect of spherical and other aberrations upon the modulation transfer of the defocused human eye,” Ophthalmic Physiolog. Opt. 18, 504–513 (1998).

L. Llorente, S. Barbero, J. Merayo, and S. Marcos, “Total and corneal optical aberrations induced by laser in situ keratomileusis for hyperopia,” J. Refract. Surg. 20, 203–216 (2004).

M. Montoya-Hernández, M. Servín, D. Malacara-Hernández, and G. Paez, “Wavefront fitting using Gaussian functions,” Opt. Commun. 163, 259–269 (1999).

[CrossRef]

S. Marcos, S. Barbero, and I. Jimenez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21, 1–13 (2005).

L. Llorente, S. Barbero, J. Merayo, and S. Marcos, “Total and corneal optical aberrations induced by laser in situ keratomileusis for hyperopia,” J. Refract. Surg. 20, 203–216 (2004).

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vis. Res. 39, 2039–2049 (1999).

[CrossRef]

A. Artal, S. Marcos, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).

[CrossRef]

A. Martínez-Finkelshtein, D. Ramos-López, G. M. Castro-Luna, and J. L. Alió, “Adaptive corneal modeling from keratometric data,” Investig. Ophthalmol. Vis. Sci. 52, 4963–4970 (2011).

[CrossRef]

A. Martínez-Finkelshtein, A. M. Delgado, G. M. Castro-Luna, A. Zarzo, and J. L. Alió, “Comparative analysis of some modal reconstruction methods of the shape of the cornea from corneal elevation data,” Investig. Ophthalmol. Vis. Sci. 50, 5639–5645 (2009).

[CrossRef]

L. Llorente, S. Barbero, J. Merayo, and S. Marcos, “Total and corneal optical aberrations induced by laser in situ keratomileusis for hyperopia,” J. Refract. Surg. 20, 203–216 (2004).

A. Artal, S. Marcos, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).

[CrossRef]

M. Montoya-Hernández, M. Servín, D. Malacara-Hernández, and G. Paez, “Wavefront fitting using Gaussian functions,” Opt. Commun. 163, 259–269 (1999).

[CrossRef]

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vis. Res. 39, 2039–2049 (1999).

[CrossRef]

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vis. Res. 39, 2039–2049 (1999).

[CrossRef]

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23, 374–384 (2007).

M. Montoya-Hernández, M. Servín, D. Malacara-Hernández, and G. Paez, “Wavefront fitting using Gaussian functions,” Opt. Commun. 163, 259–269 (1999).

[CrossRef]

P. C. Hansen, V. Pereyra, and G. Scherer, Least Squares Data Fitting with Applications (Johns Hopkins University, 2013).

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23, 374–384 (2007).

A. Martínez-Finkelshtein, D. Ramos-López, G. M. Castro-Luna, and J. L. Alió, “Adaptive corneal modeling from keratometric data,” Investig. Ophthalmol. Vis. Sci. 52, 4963–4970 (2011).

[CrossRef]

J. Tarrant, A. Roorda, and C. F. Wildsoet, “Determining the accommodative response from wavefront aberrations,” J. Vis. 10(5):4 (2010).

[CrossRef]

P. C. Hansen, V. Pereyra, and G. Scherer, Least Squares Data Fitting with Applications (Johns Hopkins University, 2013).

J. Schwiegerling and J. Choi, “Application of the polychromatic defocus transfer function to multifocal lenses,” J. Refract. Surg. 24, 965–969 (2008

J. Schwiegerling, “Analysis of the optical performance of presbyopia treatments with the defocus transfer function,” J. Refract. Surg. 23, 965–971 (2007).

M. Montoya-Hernández, M. Servín, D. Malacara-Hernández, and G. Paez, “Wavefront fitting using Gaussian functions,” Opt. Commun. 163, 259–269 (1999).

[CrossRef]

D. H. Bailey and P. N. Swartztrauber, “A fast method for the numerical evaluation of continuous Fourier and Laplace transforms,” SIAM J. Sci. Comput. 15, 1105–1110 (1994).

[CrossRef]

J. Tarrant, A. Roorda, and C. F. Wildsoet, “Determining the accommodative response from wavefront aberrations,” J. Vis. 10(5):4 (2010).

[CrossRef]

J. Nam, L. N. Thibos, and D. R. Iskander, “Zernike radial slope polynomials for wavefront reconstruction and refraction,” J. Opt. Soc. Am. A 26, 1035–1048 (2009).

[CrossRef]

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4):7 (2004).

[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4):9 (2004).

[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).

[CrossRef]

B. Vasudevan, J. K. Ciuffreda, and B. Wang, “Subjective and objective depth-of-focus,” J. Mod. Opt. 54, 1307–1316 (2007).

[CrossRef]

B. Vasudevan, J. K. Ciuffreda, and B. Wang, “Subjective and objective depth-of-focus,” J. Mod. Opt. 54, 1307–1316 (2007).

[CrossRef]

B. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51, 75–85 (2006).

[CrossRef]

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23, 374–384 (2007).

J. Tarrant, A. Roorda, and C. F. Wildsoet, “Determining the accommodative response from wavefront aberrations,” J. Vis. 10(5):4 (2010).

[CrossRef]

F. Yi, D. R. Iskander, and M. J. Collins, “Estimation of the depth of focus from wavefront measurements,” J. Vis. 10(4):3 (2010).

[CrossRef]

E. Candès, L. Demanet, and L. Ying, “A fast butterfly algorithm for the computation of Fourier integral operators,” Multiscale Model. Simul. 7, 1727–1750 (2009).

[CrossRef]

A. Martínez-Finkelshtein, A. M. Delgado, G. M. Castro-Luna, A. Zarzo, and J. L. Alió, “Comparative analysis of some modal reconstruction methods of the shape of the cornea from corneal elevation data,” Investig. Ophthalmol. Vis. Sci. 50, 5639–5645 (2009).

[CrossRef]

A. Martínez-Finkelshtein, A. M. Delgado, G. M. Castro-Luna, A. Zarzo, and J. L. Alió, “Comparative analysis of some modal reconstruction methods of the shape of the cornea from corneal elevation data,” Investig. Ophthalmol. Vis. Sci. 50, 5639–5645 (2009).

[CrossRef]

A. Martínez-Finkelshtein, D. Ramos-López, G. M. Castro-Luna, and J. L. Alió, “Adaptive corneal modeling from keratometric data,” Investig. Ophthalmol. Vis. Sci. 52, 4963–4970 (2011).

[CrossRef]

B. Vasudevan, J. K. Ciuffreda, and B. Wang, “Subjective and objective depth-of-focus,” J. Mod. Opt. 54, 1307–1316 (2007).

[CrossRef]

A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes: erratum,” J. Opt. Soc. Am. A 19, 620–628 (2002).

[CrossRef]

A. J. E. M. Janssen, “Extended Nijboer–Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 849–857 (2002).

[CrossRef]

J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an extended Nijboer–Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 858–870 (2002).

[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).

[CrossRef]

J. Nam, L. N. Thibos, and D. R. Iskander, “Zernike radial slope polynomials for wavefront reconstruction and refraction,” J. Opt. Soc. Am. A 26, 1035–1048 (2009).

[CrossRef]

G. E. Legge, K. T. Mullen, G. C. Woo, and F. W. Campbell, “Tolerance to visual defocus,” J. Opt. Soc. Am. A 4, 851–863 (1987).

[CrossRef]

A. J. Lang, V. Lakshminarayanan, and V. Portney, “Phenomenological model for interpreting the clinical significance of the in vitro optical transfer function,” J. Opt. Soc. Am. A 10, 1600–1610 (1993).

[CrossRef]

J. Schwiegerling, “Analysis of the optical performance of presbyopia treatments with the defocus transfer function,” J. Refract. Surg. 23, 965–971 (2007).

J. Schwiegerling and J. Choi, “Application of the polychromatic defocus transfer function to multifocal lenses,” J. Refract. Surg. 24, 965–969 (2008

S. Marcos, S. Barbero, and I. Jimenez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21, 1–13 (2005).

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23, 374–384 (2007).

L. Llorente, S. Barbero, J. Merayo, and S. Marcos, “Total and corneal optical aberrations induced by laser in situ keratomileusis for hyperopia,” J. Refract. Surg. 20, 203–216 (2004).

F. Yi, D. R. Iskander, and M. J. Collins, “Estimation of the depth of focus from wavefront measurements,” J. Vis. 10(4):3 (2010).

[CrossRef]

J. Tarrant, A. Roorda, and C. F. Wildsoet, “Determining the accommodative response from wavefront aberrations,” J. Vis. 10(5):4 (2010).

[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4):9 (2004).

[CrossRef]

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4):7 (2004).

[CrossRef]

M. Gai and R. Cancelliere, “An efficient point spread function construction method,” Mon. Not. R. Astron. Soc. 377, 1337–1342 (2007).

[CrossRef]

E. Candès, L. Demanet, and L. Ying, “A fast butterfly algorithm for the computation of Fourier integral operators,” Multiscale Model. Simul. 7, 1727–1750 (2009).

[CrossRef]

N. M. Jansonius and A. C. Kooijman, “The effect of spherical and other aberrations upon the modulation transfer of the defocused human eye,” Ophthalmic Physiolog. Opt. 18, 504–513 (1998).

D. R. Iskander, B. A. Davis, M. J. Collins, and R. Franklin, “Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials,” Ophthalmic Physiolog. Opt. 27, 245–255 (2007).

M. Montoya-Hernández, M. Servín, D. Malacara-Hernández, and G. Paez, “Wavefront fitting using Gaussian functions,” Opt. Commun. 163, 259–269 (1999).

[CrossRef]

A. Artal, S. Marcos, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).

[CrossRef]

D. H. Bailey and P. N. Swartztrauber, “A fast method for the numerical evaluation of continuous Fourier and Laplace transforms,” SIAM J. Sci. Comput. 15, 1105–1110 (1994).

[CrossRef]

B. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51, 75–85 (2006).

[CrossRef]

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vis. Res. 39, 2039–2049 (1999).

[CrossRef]

M. J. Collins, T. Buehren, and D. R. Iskander, “Retinal image quality, reading and myopia,” Vis. Res. 46, 196–215 (2006).

[CrossRef]

D. A. Atchison, “Depth of focus of the human eye,” in Presbyopia: Origins, Effects and Treatment, I. Pallikaris, S. Plainis, and W. N. Charman, eds. (Slack Incorporated, 2012).

F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, eds., NIST Handbook of Mathematical Functions (Cambridge University, 2010).

G. E. Fasshauer, Meshfree Approximation Methods with Matlab (World Scientific, 2007).

P. C. Hansen, V. Pereyra, and G. Scherer, Least Squares Data Fitting with Applications (Johns Hopkins University, 2013).