Abstract

Modeling the field produced by a point-like dipole with an arbitrary location in the presence of a rotationally invariant nanostructure is an important issue in the context of designing nanoantennas. This is a challenging problem, as rotational symmetry is broken when introducing a noncentered dipole. Antennas larger than the wavelength are required for directivity, whereas the dipole–antenna distance is highly subwavelength, so there are two different length scales in the problem. In this paper, we introduce an original S-matrix approach based on an aperiodic-Fourier modal method. The potential of the technique is illustrated by considering three examples. We compare our results with a finite element technique.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  2. S. Obayya, Computational Photonics (Wiley, 2010).
  3. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
    [CrossRef]
  4. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “On the use of grating theory in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001).
    [CrossRef]
  5. P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” Ph.D. dissertation (University of Ghent, 2001).
  6. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  7. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
    [CrossRef]
  8. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996).
    [CrossRef]
  9. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000).
    [CrossRef]
  10. J.-P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844–1849 (2005).
    [CrossRef]
  11. G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–11060 (2007).
    [CrossRef]
  12. J. Ctyroky, P. Kwiecien, and I. Richter, “Fourier series-based bidirectional propagation algorithm with adaptive spatial resolution,” J. Lightwave Technol. 28, 2969–2976 (2010).
    [CrossRef]
  13. M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Aperiodic-Fourier modal method in contrast-field formulation for simulation of scattering from finite structures,” J. Opt. Soc. Am. A 27, 2423–2431 (2010).
    [CrossRef]
  14. M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
    [CrossRef]
  15. N. Bonod, E. Popov, and M. Nevière, “Differential theory of diffraction by finite cylindrical objects,” J. Opt. Soc. Am. A 22, 481–490 (2005).
    [CrossRef]
  16. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
    [CrossRef]
  17. I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33, 2635–2637 (2008).
    [CrossRef]
  18. I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009).
    [CrossRef]
  19. I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
    [CrossRef]
  20. C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
    [CrossRef]
  21. A. Armaroli, A. Morand, P. Benech, G. Bellanca, and S. Trillo, “Three-dimensional analysis of cylindrical microresonators based on the aperiodic-Fourier modal method,” J. Opt. Soc. Am. A 25, 667 (2008).
    [CrossRef]
  22. A. Armaroli, A. Morand, P. Benech, G. Bellanca, and S. Trillo, “Comparative analysis of a planar slotted microdisk resonator,” J. Lightwave Technol. 27, 4009–4016 (2009).
    [CrossRef]
  23. D. Elvira, R. Braive, G. Beaudoin, I. Sagnes, J.-P. Hugonin, I. Abram, I. Robert-Philip, P. Lalanne, and A. Beveratos, “Broadband enhancement and inhibition of single quantum dot emission in plasmonic nano-cavities operating at telecommunications wavelengths,” Appl. Phys. Lett. 103, 061113 (2013).
    [CrossRef]
  24. C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
  25. F. Bigourdan, F. Marquier, J.-P. Hugonin, and J.-J. Greffet, “Design of highly efficient metallo-dielectric patch antennas for single-photon emission,” Opt. Express 22, 2337–2347 (2014).
    [CrossRef]
  26. P. Bienstman and R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34, 523–540 (2002).
  27. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [CrossRef]
  28. M. Abramovitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1964).
  29. P. Lalanne and M.-P. Jurek, “Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization,” J. Mod. Opt. 45, 1357–1374 (1998).
    [CrossRef]
  30. Q. Bai, M. Perrin, C. Sauvan, J.-P. Hugonin, and P. Lalanne, “Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure,” Opt. Express 21, 27371–27382 (2013).
    [CrossRef]
  31. R. Esteban, T. V. Teperik, and J.-J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 026802 (2010).
    [CrossRef]
  32. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  33. G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510–2516 (1999).
    [CrossRef]

2014 (1)

2013 (4)

Q. Bai, M. Perrin, C. Sauvan, J.-P. Hugonin, and P. Lalanne, “Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure,” Opt. Express 21, 27371–27382 (2013).
[CrossRef]

D. Elvira, R. Braive, G. Beaudoin, I. Sagnes, J.-P. Hugonin, I. Abram, I. Robert-Philip, P. Lalanne, and A. Beveratos, “Broadband enhancement and inhibition of single quantum dot emission in plasmonic nano-cavities operating at telecommunications wavelengths,” Appl. Phys. Lett. 103, 061113 (2013).
[CrossRef]

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[CrossRef]

2010 (4)

J. Ctyroky, P. Kwiecien, and I. Richter, “Fourier series-based bidirectional propagation algorithm with adaptive spatial resolution,” J. Lightwave Technol. 28, 2969–2976 (2010).
[CrossRef]

M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Aperiodic-Fourier modal method in contrast-field formulation for simulation of scattering from finite structures,” J. Opt. Soc. Am. A 27, 2423–2431 (2010).
[CrossRef]

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

R. Esteban, T. V. Teperik, and J.-J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 026802 (2010).
[CrossRef]

2009 (2)

2008 (2)

2007 (2)

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–11060 (2007).
[CrossRef]

2005 (2)

2002 (1)

P. Bienstman and R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34, 523–540 (2002).

2001 (1)

2000 (2)

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000).
[CrossRef]

1999 (1)

1998 (1)

P. Lalanne and M.-P. Jurek, “Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization,” J. Mod. Opt. 45, 1357–1374 (1998).
[CrossRef]

1996 (4)

1995 (1)

Abram, I.

D. Elvira, R. Braive, G. Beaudoin, I. Sagnes, J.-P. Hugonin, I. Abram, I. Robert-Philip, P. Lalanne, and A. Beveratos, “Broadband enhancement and inhibition of single quantum dot emission in plasmonic nano-cavities operating at telecommunications wavelengths,” Appl. Phys. Lett. 103, 061113 (2013).
[CrossRef]

Abramovitz, M.

M. Abramovitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1964).

Armaroli, A.

Baets, R.

P. Bienstman and R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34, 523–540 (2002).

Bai, Q.

Baida, F. I.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

Beaudoin, G.

D. Elvira, R. Braive, G. Beaudoin, I. Sagnes, J.-P. Hugonin, I. Abram, I. Robert-Philip, P. Lalanne, and A. Beveratos, “Broadband enhancement and inhibition of single quantum dot emission in plasmonic nano-cavities operating at telecommunications wavelengths,” Appl. Phys. Lett. 103, 061113 (2013).
[CrossRef]

Belacel, C.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).

Bellanca, G.

Benech, P.

Besbes, M.

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

Beveratos, A.

D. Elvira, R. Braive, G. Beaudoin, I. Sagnes, J.-P. Hugonin, I. Abram, I. Robert-Philip, P. Lalanne, and A. Beveratos, “Broadband enhancement and inhibition of single quantum dot emission in plasmonic nano-cavities operating at telecommunications wavelengths,” Appl. Phys. Lett. 103, 061113 (2013).
[CrossRef]

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33, 2635–2637 (2008).
[CrossRef]

Bienstman, P.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

P. Bienstman and R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34, 523–540 (2002).

P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” Ph.D. dissertation (University of Ghent, 2001).

Bigourdan, F.

F. Bigourdan, F. Marquier, J.-P. Hugonin, and J.-J. Greffet, “Design of highly efficient metallo-dielectric patch antennas for single-photon emission,” Opt. Express 22, 2337–2347 (2014).
[CrossRef]

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).

Bonod, N.

Braive, R.

D. Elvira, R. Braive, G. Beaudoin, I. Sagnes, J.-P. Hugonin, I. Abram, I. Robert-Philip, P. Lalanne, and A. Beveratos, “Broadband enhancement and inhibition of single quantum dot emission in plasmonic nano-cavities operating at telecommunications wavelengths,” Appl. Phys. Lett. 103, 061113 (2013).
[CrossRef]

Cao, Q.

Claudon, J.

Coolen, L.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).

Ctyroky, J.

Dubertret, B.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).

Elvira, D.

D. Elvira, R. Braive, G. Beaudoin, I. Sagnes, J.-P. Hugonin, I. Abram, I. Robert-Philip, P. Lalanne, and A. Beveratos, “Broadband enhancement and inhibition of single quantum dot emission in plasmonic nano-cavities operating at telecommunications wavelengths,” Appl. Phys. Lett. 103, 061113 (2013).
[CrossRef]

Esteban, R.

R. Esteban, T. V. Teperik, and J.-J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 026802 (2010).
[CrossRef]

Friedler, I.

Gaylord, T. K.

Gérard, J. M.

Gopinath, A.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

Granet, G.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510–2516 (1999).
[CrossRef]

G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996).
[CrossRef]

Grann, E. B.

Greffet, J.-J.

F. Bigourdan, F. Marquier, J.-P. Hugonin, and J.-J. Greffet, “Design of highly efficient metallo-dielectric patch antennas for single-photon emission,” Opt. Express 22, 2337–2347 (2014).
[CrossRef]

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).

R. Esteban, T. V. Teperik, and J.-J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 026802 (2010).
[CrossRef]

Guizal, B.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996).
[CrossRef]

Habert, B.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).

Hagness, S.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Helfert, S.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

Hugonin, J. P.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[CrossRef]

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009).
[CrossRef]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33, 2635–2637 (2008).
[CrossRef]

G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–11060 (2007).
[CrossRef]

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “On the use of grating theory in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001).
[CrossRef]

Hugonin, J.-P.

F. Bigourdan, F. Marquier, J.-P. Hugonin, and J.-J. Greffet, “Design of highly efficient metallo-dielectric patch antennas for single-photon emission,” Opt. Express 22, 2337–2347 (2014).
[CrossRef]

Q. Bai, M. Perrin, C. Sauvan, J.-P. Hugonin, and P. Lalanne, “Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure,” Opt. Express 21, 27371–27382 (2013).
[CrossRef]

D. Elvira, R. Braive, G. Beaudoin, I. Sagnes, J.-P. Hugonin, I. Abram, I. Robert-Philip, P. Lalanne, and A. Beveratos, “Broadband enhancement and inhibition of single quantum dot emission in plasmonic nano-cavities operating at telecommunications wavelengths,” Appl. Phys. Lett. 103, 061113 (2013).
[CrossRef]

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).

J.-P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844–1849 (2005).
[CrossRef]

Janssen, O. T. A.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

Javaux, C.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).

Jurek, M.-P.

P. Lalanne and M.-P. Jurek, “Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization,” J. Mod. Opt. 45, 1357–1374 (1998).
[CrossRef]

Kwiecien, P.

Lafosse,

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).

Lalanne, P.

Q. Bai, M. Perrin, C. Sauvan, J.-P. Hugonin, and P. Lalanne, “Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure,” Opt. Express 21, 27371–27382 (2013).
[CrossRef]

D. Elvira, R. Braive, G. Beaudoin, I. Sagnes, J.-P. Hugonin, I. Abram, I. Robert-Philip, P. Lalanne, and A. Beveratos, “Broadband enhancement and inhibition of single quantum dot emission in plasmonic nano-cavities operating at telecommunications wavelengths,” Appl. Phys. Lett. 103, 061113 (2013).
[CrossRef]

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[CrossRef]

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009).
[CrossRef]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33, 2635–2637 (2008).
[CrossRef]

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–11060 (2007).
[CrossRef]

J.-P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844–1849 (2005).
[CrossRef]

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “On the use of grating theory in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001).
[CrossRef]

P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000).
[CrossRef]

P. Lalanne and M.-P. Jurek, “Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization,” J. Mod. Opt. 45, 1357–1374 (1998).
[CrossRef]

P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
[CrossRef]

Lecamp, G.

Li, L.

Maitre, A.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).

Maksymov, I. S.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[CrossRef]

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

Marquier, F.

F. Bigourdan, F. Marquier, J.-P. Hugonin, and J.-J. Greffet, “Design of highly efficient metallo-dielectric patch antennas for single-photon emission,” Opt. Express 22, 2337–2347 (2014).
[CrossRef]

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).

Mattheij, R.

Maubach, J.

Michaelis de Vasconcellos, S.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).

Moharam, M. G.

Morand, A.

Moreau, A.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

Morris, G. M.

Nevière, M.

Nugrowati, A. M.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

Obayya, S.

S. Obayya, Computational Photonics (Wiley, 2010).

Palik, E.

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pereira, S. F.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

Perrin, M.

Pisarenco, M.

Pommet, D. A.

Popov, E.

Pregla, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

Richter, I.

Robert-Philip, I.

D. Elvira, R. Braive, G. Beaudoin, I. Sagnes, J.-P. Hugonin, I. Abram, I. Robert-Philip, P. Lalanne, and A. Beveratos, “Broadband enhancement and inhibition of single quantum dot emission in plasmonic nano-cavities operating at telecommunications wavelengths,” Appl. Phys. Lett. 103, 061113 (2013).
[CrossRef]

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33, 2635–2637 (2008).
[CrossRef]

Sagnes, I.

D. Elvira, R. Braive, G. Beaudoin, I. Sagnes, J.-P. Hugonin, I. Abram, I. Robert-Philip, P. Lalanne, and A. Beveratos, “Broadband enhancement and inhibition of single quantum dot emission in plasmonic nano-cavities operating at telecommunications wavelengths,” Appl. Phys. Lett. 103, 061113 (2013).
[CrossRef]

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

Sauvan, C.

Scarmozzino, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

Schwob, C.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).

Seideman, T.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

Senellart, P.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).

Setija, I.

Silberstein, E.

Stegun, I.

M. Abramovitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1964).

Sukharev, M.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

Taflove, A.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Teperik, T. V.

R. Esteban, T. V. Teperik, and J.-J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 026802 (2010).
[CrossRef]

Trillo, S.

Urbach, H. P.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

van de Nes, A. S.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

van Haver, S.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

Van Labeke, D.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

Xu, M.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

Yang, J.

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

D. Elvira, R. Braive, G. Beaudoin, I. Sagnes, J.-P. Hugonin, I. Abram, I. Robert-Philip, P. Lalanne, and A. Beveratos, “Broadband enhancement and inhibition of single quantum dot emission in plasmonic nano-cavities operating at telecommunications wavelengths,” Appl. Phys. Lett. 103, 061113 (2013).
[CrossRef]

J. Eur. Opt. Soc. Rapid Pub. (1)

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007).
[CrossRef]

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

P. Lalanne and M.-P. Jurek, “Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization,” J. Mod. Opt. 45, 1357–1374 (1998).
[CrossRef]

J. Opt. Soc. Am. A (11)

G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510–2516 (1999).
[CrossRef]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
[CrossRef]

A. Armaroli, A. Morand, P. Benech, G. Bellanca, and S. Trillo, “Three-dimensional analysis of cylindrical microresonators based on the aperiodic-Fourier modal method,” J. Opt. Soc. Am. A 25, 667 (2008).
[CrossRef]

M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Aperiodic-Fourier modal method in contrast-field formulation for simulation of scattering from finite structures,” J. Opt. Soc. Am. A 27, 2423–2431 (2010).
[CrossRef]

J.-P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844–1849 (2005).
[CrossRef]

N. Bonod, E. Popov, and M. Nevière, “Differential theory of diffraction by finite cylindrical objects,” J. Opt. Soc. Am. A 22, 481–490 (2005).
[CrossRef]

L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
[CrossRef]

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “On the use of grating theory in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001).
[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
[CrossRef]

P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
[CrossRef]

G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996).
[CrossRef]

J. Sel. Top. Quantum Electron. (1)

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[CrossRef]

Nano Lett. (1)

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).

Opt. Express (4)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

P. Bienstman and R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34, 523–540 (2002).

Phys. Rev. Lett. (3)

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[CrossRef]

R. Esteban, T. V. Teperik, and J.-J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 026802 (2010).
[CrossRef]

Other (5)

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

M. Abramovitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1964).

P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” Ph.D. dissertation (University of Ghent, 2001).

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

S. Obayya, Computational Photonics (Wiley, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Left, example of a physical structure studied, with a finite size along z. Right (numerical structure), the object has been periodized along the z direction with the introduction of PMLs between two supercells.

Fig. 2.
Fig. 2.

Definition of a structure by its layers. In this example, one defines the structure in four layers: the first for ]0,r1[, the last for ]r3,+[.

Fig. 3.
Fig. 3.

Horizontal cross section of the imaginary part of the electric field (see Table 1). Calculations were carried out with 2N+1=301 Fourier terms and 2Lmax+1=19 azimuthal numbers.

Fig. 4.
Fig. 4.

Convergence of the complex wavelength λ˜ calculated as a function of the truncation order N used to expand the field in the z direction. The converged value λ is obtained by extrapolation for N.

Fig. 5.
Fig. 5.

Vertical cross section of the modulus of the Ez z component of the fundamental dipole resonance mode of a gold nanorod represented by the blue rectangle. The nanorod is 100 nm long and 30 nm wide. Computations are carried out with 2N+1=251 Fourier terms. The intensity map has been saturated and normalized by its maximum value.

Fig. 6.
Fig. 6.

Up, Schematics of the metallic patch antenna. Down, Vertical cross section of the square modulus of the z component Ez of the electric field radiated by a vertically polarized, 10 nm off-centered electric dipole. The emission wavelength is λ=1550nm.The patch antenna comprises a 30 nm thick silica layer and a 100 nm thick, 1550 nm wide gold disk. Calculations were carried out with 2N+1=401 Fourier terms and 2Lmax+1=15 azimuthal numbers. The intensity map has been saturated and normalized by its maximum value.

Fig. 7.
Fig. 7.

Blue solid line (left axis), total decay rate of an electric dipole coupled with a patch antenna (see Fig. 6) normalized by the decay rate of a dipole in a bulk of silica at λ=1550nm. Red dotted line (right axis), radiative efficiency associated. Calculations were carried out with 2N+1=401 Fourier terms and 2Lmax+1=81 azimuthal numbers.

Fig. 8.
Fig. 8.

Radiation pattern of a vertically polarized, electric dipole coupled with a patch antenna (see Fig. 6) at λ=1550nm. Blue solid line, radiation pattern for a 10 nm off-centered dipole (to the right). Calculations were carried out with 2N+1=401 Fourier terms and 2Lmax+1=15 azimuthal numbers. Red dotted line, radiation pattern for a 775 nm off-centered dipole (to the right) in the vertical plane containing the source. Calculations were carried out with 2N+1=401 Fourier terms and 2Lmax+1=81 azimuthal numbers.

Tables (1)

Tables Icon

Table 1. Contribution of the First Ten Azimuthal Numbersa

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

{∇⃗×H⃗=iωεE⃗+j⃗E·δ(r⃗r⃗s),∇⃗×E⃗=iωμH⃗+j⃗H·δ(r⃗r⃗s),
{∇⃗×H⃗=ωϵE⃗+j⃗E·δ(r⃗r⃗s),∇⃗×E⃗=ωμH⃗+j⃗H·δ(r⃗r⃗s),
{1rHzθHθz=ωϵEr+jE,rδ(r⃗r⃗s),HrzHzr=ωϵEθ+jE,θδ(r⃗r⃗s),1r(rHθrHrθ)=ωϵzEz+jE,zδ(r⃗r⃗s).
{iLrH˜ziKH˜θ=ω[ϵ]E˜r,iKH˜rH˜zr=ω[ϵ]E˜θ,1rrH˜θriLrH˜r=ω[1ϵz]1E˜z,
1rrrH˜zr+(ZH[1μz]1L2r2)H˜z=0,
ZH[1μz]1=PHDH2PH1,
1rrrPH1H˜zr+(DH2L2r2)PH1H˜z=0.
H˜z=PHBL+(DHr)χH++PHBL(DHr)χH,
{H˜θ=ZE1(E˜zr+LK[ϵ]1H˜zr),H˜r=i[μ]1(LE˜zrKE˜θ),
{dBL(Dr)dr=D2(BL1(Dr)BL+1(Dr)),LBL(Dr)r=D2(BL1(Dr)+BL+1(Dr)),
B^L±(x)=exp(ix±)BL±(x)with{x+=xx=i|Im(x)|,
(E˜z(r)E˜θ(r)H˜z(r)H˜θ(r))=M(r)(χ^E+(r)χ^H+(r)χ^E(r)χ^H(r)),
(E˜r(r)H˜r(r))=O(r)(χ^E+(r)χ^H+(r)χ^E(r)χ^H(r)).
(E˜z(r+Δr)E˜θ(r+Δr)H˜z(r)H˜θ(r))=S(Δr,r)(E˜z(r)E˜θ(r)H˜z(r+Δr)H˜θ(r+Δr)),
(E˜z(rj)E˜θ(rj)H˜z(ri)H˜θ(ri))=Seq(rjri,ri)(E˜z(ri)E˜θ(ri)H˜z(rj)H˜θ(rj)),
{iLrHzHθz=ωϵEr+δ(rrs)JE,rΓβ(z),HrzHzr=ωϵEθ+δ(rrs)JE,θΓβ(z),1r(rHθriLHr)=ωϵzEz+δ(rrs)JE,zΓβ(z),
H˜zr=LKωrE˜z(ω[ϵ]+K[μ]1Kω)E˜θδ(rrs)(JE,θ+iKJH,rωμS)exp(iβzs),
rH˜θr=r(ω[1ϵz]1L2r2)E˜z+L[μ]1KωE˜θ+δ(rrs)(rJE,ziLJH,rωμS)exp(iβzs),
{H˜z(rs+)=H˜z(rs)(JE,θ+iKJH,rωμS)exp(iβzs),H˜θ(rs+)=H˜θ(rs)+(JE,ziLJH,rωμsrs)exp(iβzs).
PemittedL=12Real(J⃗source·Φ⃗L*(rs)),
J⃗source=12πrS(jE,rjE,θjE,zjH,rjH,θjH,z)andΦ⃗L=(ErLEθLEzLHrLHθLHzL),
M(r)=(A+AC+C),
A+(r)=(0A12+A21+A22+),A(r)=(0A12A21A22),C+(r)=(C11+0C21+C22+),C(r)=(C110C21C22),
{A12±=PEB^L±(DEr)A21±=QHH(B^L1±(DHr)B^L+1±(DHr))A21±=QHE(B^L1±(DEr)+B^L+1±(DEr))C11±=PHB^L±(DHr)C21±=QEH(B^L1±(DHr)+B^L+1±(DHr))C21±=QEE(B^L1±(DEr)B^L+1±(DEr))
{QHH=12ZH1PHDHQEE=12ZE1PEDEQHE=12ZH1[μ]1PEDEQEH=12ZE1[ϵ]1PHDH.
S(Δr,r)=T1(Δr,r)U(Δr,r),
T(Δr,r)=(A+1(r+Δr)e(iD+Δr)A1(r)e(iDΔr)C+1(r+Δr)C1(r)),U(Δr,r)=(e(iD+Δr)A+1(r)A1(r+Δr)C+1(r)e(iDΔr)C1(r+Δr)),
O=(O11+O12+O11O12O21+O22+O21O22)
{O11±=OEH(B^L1±(DHr)+B^L+1±(DHr))O12±=OEE(B^L1±(DEr)B^L+1±(DEr))O21±=OHH(B^L1±(DHr)B^L+1±(DHr))O22±=OHE(B^L1±(DEr)+B^L+1±(DEr))
{OEH=i2ω([ϵ]1KZE1K[ϵ]1+[ϵ]1)PHDHOHE=i2ω([μ]1KZH1K[μ]1+[μ]1)PEDEOEE=i2[ϵ]1KZE1PEDEOHH=i2[μ]1KZH1PHDH

Metrics