Abstract

The study presented here optimizes several steps in the spectral printer modeling workflow based on a cellular Yule–Nielsen spectral Neugebauer (CYNSN) model. First, a printer subdividing method was developed that reduces the number of sub-models while maintaining the maximum device gamut. Second, the forward spectral prediction accuracy of the CYNSN model for each subspace of the printer was improved using back propagation artificial neural network (BPANN) estimated n values. Third, a sequential gamut judging method, which clearly reduced the complexity of the optimal sub-model and cell searching process during printer backward modeling, was proposed. After that, we further modified the use of the modeling color metric and comprehensively improved the spectral and perceptual accuracy of the spectral printer model. The experimental results show that the proposed optimization approaches provide obvious improvements in aspects of the modeling accuracy or efficiency for each of the corresponding steps, and an overall improvement of the optimized spectral printer modeling workflow was also demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Wyble and R. S. Berns, “A critical review of spectral models applied to binary color printing,” Color Res. Appl. 25, 4–19 (2000).
    [CrossRef]
  2. J. Guo, H. Xu, and M. R. Luo, “Novel spectral characterization method for color printer based on the cellular Neugebauer model,” Chin. Opt. Lett. 8, 1106–1109 (2010).
    [CrossRef]
  3. S. Bianco and R. Schettini, “Sampling optimization for printer characterization by direct search,” IEEE Trans. Image Process. 21, 4868–4873 (2012).
    [CrossRef]
  4. D. Tzeng, “Spectral-based color separation algorithm development for multi-ink color reproduction,” Ph.D. dissertation (Rochester Institute of Technology, 1999).
  5. J. Gerhardt and J. Y. Hardeberg, “Spectral color reproduction minimizing spectral and perceptual color differences,” Color Res. Appl. 33, 494–504 (2008).
    [CrossRef]
  6. B. Wang, H. Xu, M. Ronnier Luo, and J. Guo, “Maintaining accuracy of cellular Yule–Nielsen spectral Neugebauer models for different ink cartridges using principal component analysis,” J. Opt. Soc. Am. A 28, 1429–1435 (2011).
    [CrossRef]
  7. Y. Chen, R. S. Berns, L. A. Taplin, and F. Imai, “Six color printer characterization using an optimized cellular Yule–Nielsen spectral Neugebauer model,” J. Imaging Sci. Technol. 48, 519–528 (2004).
  8. P. Urban and R. R. Grigat, “Spectral based color separation using linear regression iteration,” Color Res. Appl. 31, 229–238 (2006).
    [CrossRef]
  9. Y. Chen, R. Berns, L. Taplin, and F. Imai, “Multi-ink color-separation algorithm improving image quality,” J. Imaging Sci. Technol. 52, 020604 (2008).
    [CrossRef]
  10. C. Li and M. R. Luo, “Further accelerating the inversion of the Yule-Nielson modified Neugebauer model,” in 16th Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications, Final Program and Proceedings—IS and T/SID Color Imaging Conference (Society for Imaging Science and Technology, 2008), pp. 84–88.
  11. L. A. Taplin, “Spectral modeling of a six-color inkjet printer,” Master thesis (Rochester Institute of Technology, 2001).
  12. M. Hebert and R. D. Hersch, “Analyzing halftone dot blurring by extended spectral prediction models,” J. Opt. Soc. Am. A 27, 6–12 (2010).
    [CrossRef]
  13. R. D. Hersch, P. Emmel, F. Collaud, and F. Crété, “Spectral reflection and dot surface prediction models for color halftone prints,” J. Electron. Imaging 14, 033001 (2005).
    [CrossRef]
  14. Q. Liu, X.-X. Wan, and H.-P. Xu, “Study on ink restriction of ink-jet printing based on spectral gamut maximization,” Spectrosc. Spect. Anal. 33, 1636–1641 (2013).
  15. P. Urban and R. Berns, “Paramer mismatch-based spectral gamut mapping,” IEEE Trans. Image Process. 20, 1599–1610 (2011).
    [CrossRef]
  16. P. Urban, M. R. Rosen, and R. S. Berns, “Spectral gamut mapping framework based on human color vision,” in Proceedings of the 4th European Conference on Colour in Graphics, Imaging, and Vision and 10th International Symposium on Multispectral Colour Science (Society for Imaging Science and Technology, 2008), pp. 548–553.
  17. B. Wang, H. Xu, M. R. Luo, and J. Guo, “Spectral-based color separation method for a multi-ink printer,” Chin. Opt. Lett. 9, 063301 (2011).
    [CrossRef]
  18. F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative study of metrics for spectral match quality,” in Proceedings of the First European Conference on Colour in Graphics, Imaging and Vision (Society for Imaging Science and Technology, 2002), pp. 492–496.
  19. B. Wang, H. Xu, and M. R. Luo, “Color separation criteria for spectral multi-ink printer characterization,” Chin. Opt. Lett. 10, 013301 (2012).
    [CrossRef]
  20. R. Rossier, T. Bugnon, and R. D. Hersch, “Introducing ink spreading within the cellular Yule–Nielsen modified Neugebauer model,” in Proceedings of the 18th Color and Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications, Technical Papers and Proceedings (Society for Imaging Science and Technology, 2010), pp. 295–300.
  21. P. Kubelka and F. Munk, “A contribution to the optics of pigments,” Z. Tech. Phys. 12, 593–599 (1931).
  22. E. Perales, F. M. Martínez-Verdú, V. Viqueira, J. Fernández-Reche, J. A. Díaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–336 (2009).
    [CrossRef]
  23. A. Lewandowski, M. Ludl, G. Byrne, and G. Dorffner, “Applying the Yule–Nielsen equation with negative n,” J. Opt. Soc. Am. A 23, 1827–1834 (2006).
    [CrossRef]
  24. J. D’Errico, “Inhull,” http://www.mathworks.com/matlabcentral/fileexchange/10226-inhull .
  25. E. K. Chong and S. H. Zak, An Introduction to Optimization (Wiley, 2013).

2013

Q. Liu, X.-X. Wan, and H.-P. Xu, “Study on ink restriction of ink-jet printing based on spectral gamut maximization,” Spectrosc. Spect. Anal. 33, 1636–1641 (2013).

2012

S. Bianco and R. Schettini, “Sampling optimization for printer characterization by direct search,” IEEE Trans. Image Process. 21, 4868–4873 (2012).
[CrossRef]

B. Wang, H. Xu, and M. R. Luo, “Color separation criteria for spectral multi-ink printer characterization,” Chin. Opt. Lett. 10, 013301 (2012).
[CrossRef]

2011

2010

2009

E. Perales, F. M. Martínez-Verdú, V. Viqueira, J. Fernández-Reche, J. A. Díaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–336 (2009).
[CrossRef]

2008

Y. Chen, R. Berns, L. Taplin, and F. Imai, “Multi-ink color-separation algorithm improving image quality,” J. Imaging Sci. Technol. 52, 020604 (2008).
[CrossRef]

J. Gerhardt and J. Y. Hardeberg, “Spectral color reproduction minimizing spectral and perceptual color differences,” Color Res. Appl. 33, 494–504 (2008).
[CrossRef]

2006

P. Urban and R. R. Grigat, “Spectral based color separation using linear regression iteration,” Color Res. Appl. 31, 229–238 (2006).
[CrossRef]

A. Lewandowski, M. Ludl, G. Byrne, and G. Dorffner, “Applying the Yule–Nielsen equation with negative n,” J. Opt. Soc. Am. A 23, 1827–1834 (2006).
[CrossRef]

2005

R. D. Hersch, P. Emmel, F. Collaud, and F. Crété, “Spectral reflection and dot surface prediction models for color halftone prints,” J. Electron. Imaging 14, 033001 (2005).
[CrossRef]

2004

Y. Chen, R. S. Berns, L. A. Taplin, and F. Imai, “Six color printer characterization using an optimized cellular Yule–Nielsen spectral Neugebauer model,” J. Imaging Sci. Technol. 48, 519–528 (2004).

2000

D. R. Wyble and R. S. Berns, “A critical review of spectral models applied to binary color printing,” Color Res. Appl. 25, 4–19 (2000).
[CrossRef]

1931

P. Kubelka and F. Munk, “A contribution to the optics of pigments,” Z. Tech. Phys. 12, 593–599 (1931).

Berns, R.

P. Urban and R. Berns, “Paramer mismatch-based spectral gamut mapping,” IEEE Trans. Image Process. 20, 1599–1610 (2011).
[CrossRef]

Y. Chen, R. Berns, L. Taplin, and F. Imai, “Multi-ink color-separation algorithm improving image quality,” J. Imaging Sci. Technol. 52, 020604 (2008).
[CrossRef]

Berns, R. S.

Y. Chen, R. S. Berns, L. A. Taplin, and F. Imai, “Six color printer characterization using an optimized cellular Yule–Nielsen spectral Neugebauer model,” J. Imaging Sci. Technol. 48, 519–528 (2004).

D. R. Wyble and R. S. Berns, “A critical review of spectral models applied to binary color printing,” Color Res. Appl. 25, 4–19 (2000).
[CrossRef]

F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative study of metrics for spectral match quality,” in Proceedings of the First European Conference on Colour in Graphics, Imaging and Vision (Society for Imaging Science and Technology, 2002), pp. 492–496.

P. Urban, M. R. Rosen, and R. S. Berns, “Spectral gamut mapping framework based on human color vision,” in Proceedings of the 4th European Conference on Colour in Graphics, Imaging, and Vision and 10th International Symposium on Multispectral Colour Science (Society for Imaging Science and Technology, 2008), pp. 548–553.

Bianco, S.

S. Bianco and R. Schettini, “Sampling optimization for printer characterization by direct search,” IEEE Trans. Image Process. 21, 4868–4873 (2012).
[CrossRef]

Bugnon, T.

R. Rossier, T. Bugnon, and R. D. Hersch, “Introducing ink spreading within the cellular Yule–Nielsen modified Neugebauer model,” in Proceedings of the 18th Color and Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications, Technical Papers and Proceedings (Society for Imaging Science and Technology, 2010), pp. 295–300.

Byrne, G.

Chen, Y.

Y. Chen, R. Berns, L. Taplin, and F. Imai, “Multi-ink color-separation algorithm improving image quality,” J. Imaging Sci. Technol. 52, 020604 (2008).
[CrossRef]

Y. Chen, R. S. Berns, L. A. Taplin, and F. Imai, “Six color printer characterization using an optimized cellular Yule–Nielsen spectral Neugebauer model,” J. Imaging Sci. Technol. 48, 519–528 (2004).

Chong, E. K.

E. K. Chong and S. H. Zak, An Introduction to Optimization (Wiley, 2013).

Collaud, F.

R. D. Hersch, P. Emmel, F. Collaud, and F. Crété, “Spectral reflection and dot surface prediction models for color halftone prints,” J. Electron. Imaging 14, 033001 (2005).
[CrossRef]

Crété, F.

R. D. Hersch, P. Emmel, F. Collaud, and F. Crété, “Spectral reflection and dot surface prediction models for color halftone prints,” J. Electron. Imaging 14, 033001 (2005).
[CrossRef]

Díaz, J. A.

E. Perales, F. M. Martínez-Verdú, V. Viqueira, J. Fernández-Reche, J. A. Díaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–336 (2009).
[CrossRef]

Dorffner, G.

Emmel, P.

R. D. Hersch, P. Emmel, F. Collaud, and F. Crété, “Spectral reflection and dot surface prediction models for color halftone prints,” J. Electron. Imaging 14, 033001 (2005).
[CrossRef]

Fernández-Reche, J.

E. Perales, F. M. Martínez-Verdú, V. Viqueira, J. Fernández-Reche, J. A. Díaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–336 (2009).
[CrossRef]

Gerhardt, J.

J. Gerhardt and J. Y. Hardeberg, “Spectral color reproduction minimizing spectral and perceptual color differences,” Color Res. Appl. 33, 494–504 (2008).
[CrossRef]

Grigat, R. R.

P. Urban and R. R. Grigat, “Spectral based color separation using linear regression iteration,” Color Res. Appl. 31, 229–238 (2006).
[CrossRef]

Guo, J.

Hardeberg, J. Y.

J. Gerhardt and J. Y. Hardeberg, “Spectral color reproduction minimizing spectral and perceptual color differences,” Color Res. Appl. 33, 494–504 (2008).
[CrossRef]

Hebert, M.

Hersch, R. D.

M. Hebert and R. D. Hersch, “Analyzing halftone dot blurring by extended spectral prediction models,” J. Opt. Soc. Am. A 27, 6–12 (2010).
[CrossRef]

R. D. Hersch, P. Emmel, F. Collaud, and F. Crété, “Spectral reflection and dot surface prediction models for color halftone prints,” J. Electron. Imaging 14, 033001 (2005).
[CrossRef]

R. Rossier, T. Bugnon, and R. D. Hersch, “Introducing ink spreading within the cellular Yule–Nielsen modified Neugebauer model,” in Proceedings of the 18th Color and Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications, Technical Papers and Proceedings (Society for Imaging Science and Technology, 2010), pp. 295–300.

Imai, F.

Y. Chen, R. Berns, L. Taplin, and F. Imai, “Multi-ink color-separation algorithm improving image quality,” J. Imaging Sci. Technol. 52, 020604 (2008).
[CrossRef]

Y. Chen, R. S. Berns, L. A. Taplin, and F. Imai, “Six color printer characterization using an optimized cellular Yule–Nielsen spectral Neugebauer model,” J. Imaging Sci. Technol. 48, 519–528 (2004).

Imai, F. H.

F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative study of metrics for spectral match quality,” in Proceedings of the First European Conference on Colour in Graphics, Imaging and Vision (Society for Imaging Science and Technology, 2002), pp. 492–496.

Kubelka, P.

P. Kubelka and F. Munk, “A contribution to the optics of pigments,” Z. Tech. Phys. 12, 593–599 (1931).

Lewandowski, A.

Li, C.

C. Li and M. R. Luo, “Further accelerating the inversion of the Yule-Nielson modified Neugebauer model,” in 16th Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications, Final Program and Proceedings—IS and T/SID Color Imaging Conference (Society for Imaging Science and Technology, 2008), pp. 84–88.

Liu, Q.

Q. Liu, X.-X. Wan, and H.-P. Xu, “Study on ink restriction of ink-jet printing based on spectral gamut maximization,” Spectrosc. Spect. Anal. 33, 1636–1641 (2013).

Ludl, M.

Luo, M. R.

B. Wang, H. Xu, and M. R. Luo, “Color separation criteria for spectral multi-ink printer characterization,” Chin. Opt. Lett. 10, 013301 (2012).
[CrossRef]

B. Wang, H. Xu, M. R. Luo, and J. Guo, “Spectral-based color separation method for a multi-ink printer,” Chin. Opt. Lett. 9, 063301 (2011).
[CrossRef]

J. Guo, H. Xu, and M. R. Luo, “Novel spectral characterization method for color printer based on the cellular Neugebauer model,” Chin. Opt. Lett. 8, 1106–1109 (2010).
[CrossRef]

C. Li and M. R. Luo, “Further accelerating the inversion of the Yule-Nielson modified Neugebauer model,” in 16th Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications, Final Program and Proceedings—IS and T/SID Color Imaging Conference (Society for Imaging Science and Technology, 2008), pp. 84–88.

Martínez-Verdú, F. M.

E. Perales, F. M. Martínez-Verdú, V. Viqueira, J. Fernández-Reche, J. A. Díaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–336 (2009).
[CrossRef]

Munk, F.

P. Kubelka and F. Munk, “A contribution to the optics of pigments,” Z. Tech. Phys. 12, 593–599 (1931).

Perales, E.

E. Perales, F. M. Martínez-Verdú, V. Viqueira, J. Fernández-Reche, J. A. Díaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–336 (2009).
[CrossRef]

Ronnier Luo, M.

Rosen, M. R.

P. Urban, M. R. Rosen, and R. S. Berns, “Spectral gamut mapping framework based on human color vision,” in Proceedings of the 4th European Conference on Colour in Graphics, Imaging, and Vision and 10th International Symposium on Multispectral Colour Science (Society for Imaging Science and Technology, 2008), pp. 548–553.

F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative study of metrics for spectral match quality,” in Proceedings of the First European Conference on Colour in Graphics, Imaging and Vision (Society for Imaging Science and Technology, 2002), pp. 492–496.

Rossier, R.

R. Rossier, T. Bugnon, and R. D. Hersch, “Introducing ink spreading within the cellular Yule–Nielsen modified Neugebauer model,” in Proceedings of the 18th Color and Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications, Technical Papers and Proceedings (Society for Imaging Science and Technology, 2010), pp. 295–300.

Schettini, R.

S. Bianco and R. Schettini, “Sampling optimization for printer characterization by direct search,” IEEE Trans. Image Process. 21, 4868–4873 (2012).
[CrossRef]

Taplin, L.

Y. Chen, R. Berns, L. Taplin, and F. Imai, “Multi-ink color-separation algorithm improving image quality,” J. Imaging Sci. Technol. 52, 020604 (2008).
[CrossRef]

Taplin, L. A.

Y. Chen, R. S. Berns, L. A. Taplin, and F. Imai, “Six color printer characterization using an optimized cellular Yule–Nielsen spectral Neugebauer model,” J. Imaging Sci. Technol. 48, 519–528 (2004).

L. A. Taplin, “Spectral modeling of a six-color inkjet printer,” Master thesis (Rochester Institute of Technology, 2001).

Tzeng, D.

D. Tzeng, “Spectral-based color separation algorithm development for multi-ink color reproduction,” Ph.D. dissertation (Rochester Institute of Technology, 1999).

Urban, P.

P. Urban and R. Berns, “Paramer mismatch-based spectral gamut mapping,” IEEE Trans. Image Process. 20, 1599–1610 (2011).
[CrossRef]

P. Urban and R. R. Grigat, “Spectral based color separation using linear regression iteration,” Color Res. Appl. 31, 229–238 (2006).
[CrossRef]

P. Urban, M. R. Rosen, and R. S. Berns, “Spectral gamut mapping framework based on human color vision,” in Proceedings of the 4th European Conference on Colour in Graphics, Imaging, and Vision and 10th International Symposium on Multispectral Colour Science (Society for Imaging Science and Technology, 2008), pp. 548–553.

Uroz, J.

E. Perales, F. M. Martínez-Verdú, V. Viqueira, J. Fernández-Reche, J. A. Díaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–336 (2009).
[CrossRef]

Viqueira, V.

E. Perales, F. M. Martínez-Verdú, V. Viqueira, J. Fernández-Reche, J. A. Díaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–336 (2009).
[CrossRef]

Wan, X.-X.

Q. Liu, X.-X. Wan, and H.-P. Xu, “Study on ink restriction of ink-jet printing based on spectral gamut maximization,” Spectrosc. Spect. Anal. 33, 1636–1641 (2013).

Wang, B.

Wyble, D. R.

D. R. Wyble and R. S. Berns, “A critical review of spectral models applied to binary color printing,” Color Res. Appl. 25, 4–19 (2000).
[CrossRef]

Xu, H.

Xu, H.-P.

Q. Liu, X.-X. Wan, and H.-P. Xu, “Study on ink restriction of ink-jet printing based on spectral gamut maximization,” Spectrosc. Spect. Anal. 33, 1636–1641 (2013).

Zak, S. H.

E. K. Chong and S. H. Zak, An Introduction to Optimization (Wiley, 2013).

Chin. Opt. Lett.

Color Res. Appl.

J. Gerhardt and J. Y. Hardeberg, “Spectral color reproduction minimizing spectral and perceptual color differences,” Color Res. Appl. 33, 494–504 (2008).
[CrossRef]

P. Urban and R. R. Grigat, “Spectral based color separation using linear regression iteration,” Color Res. Appl. 31, 229–238 (2006).
[CrossRef]

D. R. Wyble and R. S. Berns, “A critical review of spectral models applied to binary color printing,” Color Res. Appl. 25, 4–19 (2000).
[CrossRef]

E. Perales, F. M. Martínez-Verdú, V. Viqueira, J. Fernández-Reche, J. A. Díaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–336 (2009).
[CrossRef]

IEEE Trans. Image Process.

P. Urban and R. Berns, “Paramer mismatch-based spectral gamut mapping,” IEEE Trans. Image Process. 20, 1599–1610 (2011).
[CrossRef]

S. Bianco and R. Schettini, “Sampling optimization for printer characterization by direct search,” IEEE Trans. Image Process. 21, 4868–4873 (2012).
[CrossRef]

J. Electron. Imaging

R. D. Hersch, P. Emmel, F. Collaud, and F. Crété, “Spectral reflection and dot surface prediction models for color halftone prints,” J. Electron. Imaging 14, 033001 (2005).
[CrossRef]

J. Imaging Sci. Technol.

Y. Chen, R. S. Berns, L. A. Taplin, and F. Imai, “Six color printer characterization using an optimized cellular Yule–Nielsen spectral Neugebauer model,” J. Imaging Sci. Technol. 48, 519–528 (2004).

Y. Chen, R. Berns, L. Taplin, and F. Imai, “Multi-ink color-separation algorithm improving image quality,” J. Imaging Sci. Technol. 52, 020604 (2008).
[CrossRef]

J. Opt. Soc. Am. A

Spectrosc. Spect. Anal.

Q. Liu, X.-X. Wan, and H.-P. Xu, “Study on ink restriction of ink-jet printing based on spectral gamut maximization,” Spectrosc. Spect. Anal. 33, 1636–1641 (2013).

Z. Tech. Phys.

P. Kubelka and F. Munk, “A contribution to the optics of pigments,” Z. Tech. Phys. 12, 593–599 (1931).

Other

P. Urban, M. R. Rosen, and R. S. Berns, “Spectral gamut mapping framework based on human color vision,” in Proceedings of the 4th European Conference on Colour in Graphics, Imaging, and Vision and 10th International Symposium on Multispectral Colour Science (Society for Imaging Science and Technology, 2008), pp. 548–553.

J. D’Errico, “Inhull,” http://www.mathworks.com/matlabcentral/fileexchange/10226-inhull .

E. K. Chong and S. H. Zak, An Introduction to Optimization (Wiley, 2013).

F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative study of metrics for spectral match quality,” in Proceedings of the First European Conference on Colour in Graphics, Imaging and Vision (Society for Imaging Science and Technology, 2002), pp. 492–496.

R. Rossier, T. Bugnon, and R. D. Hersch, “Introducing ink spreading within the cellular Yule–Nielsen modified Neugebauer model,” in Proceedings of the 18th Color and Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications, Technical Papers and Proceedings (Society for Imaging Science and Technology, 2010), pp. 295–300.

C. Li and M. R. Luo, “Further accelerating the inversion of the Yule-Nielson modified Neugebauer model,” in 16th Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications, Final Program and Proceedings—IS and T/SID Color Imaging Conference (Society for Imaging Science and Technology, 2008), pp. 84–88.

L. A. Taplin, “Spectral modeling of a six-color inkjet printer,” Master thesis (Rochester Institute of Technology, 2001).

D. Tzeng, “Spectral-based color separation algorithm development for multi-ink color reproduction,” Ph.D. dissertation (Rochester Institute of Technology, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Prediction accuracy of the CYNSN model for CYRG subspace.

Fig. 2.
Fig. 2.

Prediction accuracy of the BPn-CYNSN model for CYRG subspace.

Fig. 3.
Fig. 3.

Flowchart of the proposed optimal sub-model searching approach for backward modeling.

Fig. 4.
Fig. 4.

Flowchart of the proposed optimal cell searching approach for backward modeling.

Fig. 5.
Fig. 5.

Flowchart of the proposed integrated spectral printer modeling workflow.

Fig. 6.
Fig. 6.

Performance of spectral gamut mapping and backward modeling.

Fig. 7.
Fig. 7.

Spectral reproductions of the traditional Chinese mineral pigment Red Coral using RMSE minimization and our combined metric approach.

Fig. 8.
Fig. 8.

Spectral accuracy (RMSE) of Colorchecker reproduction for minimizing RMSE and our combined metric approach.

Fig. 9.
Fig. 9.

Colorimetric accuracy ( Δ E 00 ) of Colorchecker reproduction for minimizing RMSE.

Fig. 10.
Fig. 10.

Colorimetric accuracy ( Δ E 00 ) of Colorchecker reproduction using the proposed combined metric approach.

Tables (7)

Tables Icon

Table 1. Spectral Predicting Performance for Cellular Single Constant Kubelka–Munk Theory

Tables Icon

Table 2. Simulated Maximum Gamut Covering Ratio for Different Number of Sub-Model Combinations

Tables Icon

Table 3. Performance of Proposed Printer Subdivision Method

Tables Icon

Table 4. Comparison of Three Kinds of Forward Models

Tables Icon

Table 5. Backward Modeling Performance of Proposed Workflow

Tables Icon

Table 6. Performance of Integrated Spectral Color Reproduction for Different Samples Using Different Metrics

Tables Icon

Table 7. Comparison of the Overall Performance for Different Spectral Modeling Workflows

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

( K / S ) λ = ( 1 P λ ) 2 2 P λ .
( K / S ) λ , i = ( K / S ) λ , i max ( K / S ) λ , paper .
( K / S ) λ , mix = ( K / S ) λ , paper + i c i ( K / S ) λ , i .
c i = c t c 0 c t , upper c 0 .
P ( λ ) = 1 + ( K / S ) λ , mix ( ( K / S ) λ , mix ) 2 + 2 ( K / S ) λ , mix .
P ( λ ) = [ i = 1 A i P i ( λ ) 1 / n ] n .
A paper = ( 1 c eff ) ( 1 m eff ) , A c = c eff ( 1 m eff ) , A m = c m . eff ( 1 m eff ) , A c m = c eff m eff .
c eff = f c ( c ) ( 1 m eff ) + f c / m ( c ) m eff , m eff = f m ( m ) ( 1 c eff ) + f m / c ( m ) c eff .
A paper = ( 1 c eff ) ( 1 m eff ) , A c = c eff ( 1 m eff ) , A m = c eff ( 1 m eff ) , A c m = c eff m eff .
min c RMSE ( P , B P n C Y N S N ( c ) ) ,
P = BPnCYNSN ( c ) .

Metrics