T. Shimobaba, K. Matsushima, T. Kakue, N. Masuda, and T. Ito, “Scaled angular spectrum method,” Opt. Lett. 37, 4128–4130 (2012).

[CrossRef]

D. Asoubar, Z. Site, F. Wyrowski, and M. Kuhn, “Parabasal field decomposition and its application to non-paraxial propagation,” Opt. Express 20, 23502–23517 (2012).

[CrossRef]

X. Yu, T. Xiahui, Q. Yingxiong, P. Hao, and W. Wei, “Band-limited angular spectrum numerical propagation method with selective scaling of observation window size and sample number,” J. Opt. Soc. Am. A 29, 2415–2420 (2012).

[CrossRef]

P. Lobaz, “Reference calculation of light propagation between parallel planes of different sizes and sampling rates,” Opt. Express 19, 32–39 (2011).

[CrossRef]

J. Lin, X. C. Yuan, S. S. Kou, C. J. R. Sheppard, O. G. Rodríguez-Herrera, and J. C. Dainty, “Direct calculation of a three-dimensional diffracted field,” Opt. Lett. 36, 1341–1343 (2011).

[CrossRef]

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

M. Kanka, A. Wuttig, C. Graulig, and R. Riesenberg, “Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit,” Opt. Lett. 35, 217–219 (2010).

[CrossRef]

K. Matsushima, “Shifted angular spectrum method for off-axis numerical propagation,” Opt. Express 18, 18453–18463 (2010).

[CrossRef]

A. Wuttig, M. Kanka, H. J. Kreuzer, and R. Riesenberg, “Packed domain Rayleigh-Sommerfeld wavefield propagation for large targets,” Opt. Express 18, 27036–27047 (2010).

[CrossRef]

M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34, 1162–1164 (2009).

[CrossRef]

V. Nascov and P. C. Logofatu, “Fast computation algorithm for the Rayleigh-Sommerfeld diffraction formula using a type of scaled convolution,” Appl. Opt. 48, 4310–4319 (2009).

[CrossRef]

D. G. Voelz and M. C. Roggemann, “Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences,” Appl. Opt. 48, 6132–6142 (2009).

[CrossRef]

L. F. Shampine, “Matlab program for quadrature in 2D,” Appl. Math. Comput. 202, 266–274 (2008).

J. J. Braat, S. van Haver, A. J. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions,” Prog. Opt. 51, 349–468 (2008).

[CrossRef]

T. Kozacki, “Numerical errors of diffraction computing using plane wave spectrum decomposition,” Opt. Commun. 281, 4219–4223 (2008).

[CrossRef]

D. P. Kelly, W. T. Rhodes, J. T. Sheridan, and B. M. Hennelly, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).

[CrossRef]

F. B. Shen and A. B. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45, 1102–1110 (2006).

[CrossRef]

F. Zhang, G. Pedrini, and W. Osten, “Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution,” Opt. Lett. 31, 1633–1635 (2006).

[CrossRef]

T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).

[CrossRef]

F. Gori, “Fresnel transform and sampling theorem,” Opt. Commun. 39, 293–297 (1981).

[CrossRef]

L. Bluestein, “A linear filtering approach to the computation of discrete Fourier transform,” IEEE Trans. Audio Electroacoust. 18, 451–455 (1970).

[CrossRef]

H. H. Hopkins and M. J. Yzuel, “The computation of diffraction patterns in the presence of aberrations,” Opt. Acta 17, 157–182 (1970).

[CrossRef]

L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm and its application,” Bell Syst. Tech. J. 48, 1249–1292 (1969).

[CrossRef]

T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).

[CrossRef]

L. Bluestein, “A linear filtering approach to the computation of discrete Fourier transform,” IEEE Trans. Audio Electroacoust. 18, 451–455 (1970).

[CrossRef]

J. J. Braat, S. van Haver, A. J. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions,” Prog. Opt. 51, 349–468 (2008).

[CrossRef]

E. O. Brigham, The Fast Fourier Transform and Its Applications, Prentice-Hall Signal Processing Series (Prentice-Hall, 1988).

T. R. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, 1996).

J. J. Braat, S. van Haver, A. J. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions,” Prog. Opt. 51, 349–468 (2008).

[CrossRef]

O. K. Ersoy, Diffraction, Fourier Optics and Imaging, Vol. 30 of Wiley Series in Pure and Applied Optics (Wiley-Interscience, 2007).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).

F. Gori, “Fresnel transform and sampling theorem,” Opt. Commun. 39, 293–297 (1981).

[CrossRef]

D. P. Kelly, W. T. Rhodes, J. T. Sheridan, and B. M. Hennelly, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).

[CrossRef]

B. M. Hennelly, D. P. Kelly, D. S. Monaghan, and N. Pandey, “Zoom algorithms for digital holography,” in Information Optics and Photonics, B. Javidi and T. Fournel, eds. (Springer, 2010), pp. 187–204.

H. H. Hopkins and M. J. Yzuel, “The computation of diffraction patterns in the presence of aberrations,” Opt. Acta 17, 157–182 (1970).

[CrossRef]

J. J. Braat, S. van Haver, A. J. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions,” Prog. Opt. 51, 349–468 (2008).

[CrossRef]

S. van Haver and A. J. E. M. Janssen, “Advanced analytic treatment and efficient computation of the diffraction integrals in the extended Nijboer-Zernike theory,” J. Eur. Opt. Soc. Rapid Pub. 8, 13044 (2013).

[CrossRef]

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).

[CrossRef]

A. Wuttig, M. Kanka, H. J. Kreuzer, and R. Riesenberg, “Packed domain Rayleigh-Sommerfeld wavefield propagation for large targets,” Opt. Express 18, 27036–27047 (2010).

[CrossRef]

M. Kanka, A. Wuttig, C. Graulig, and R. Riesenberg, “Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit,” Opt. Lett. 35, 217–219 (2010).

[CrossRef]

M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34, 1162–1164 (2009).

[CrossRef]

M. Kanka, “Bildrekonstruktion in der digitalen inline-holographischen Mikrsokopie,” Ph.D. thesis (Technische Universität Ilmenau, 2011).

D. P. Kelly, “Numerical calculation of the Fresnel transform,” J. Opt. Soc. Am. A 31, 755–764 (2014).

[CrossRef]

D. P. Kelly, W. T. Rhodes, J. T. Sheridan, and B. M. Hennelly, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).

[CrossRef]

B. M. Hennelly, D. P. Kelly, D. S. Monaghan, and N. Pandey, “Zoom algorithms for digital holography,” in Information Optics and Photonics, B. Javidi and T. Fournel, eds. (Springer, 2010), pp. 187–204.

D. P. Kelly, N. Sabitov, T. Meinecke, and S. Sinzinger, “Some considerations when numerically calculating diffraction patterns,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2011), paper DTuC5.

T. R. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, 1996).

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

T. Kozacki, “Numerical errors of diffraction computing using plane wave spectrum decomposition,” Opt. Commun. 281, 4219–4223 (2008).

[CrossRef]

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).

T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).

[CrossRef]

A. Wuttig, M. Kanka, H. J. Kreuzer, and R. Riesenberg, “Packed domain Rayleigh-Sommerfeld wavefield propagation for large targets,” Opt. Express 18, 27036–27047 (2010).

[CrossRef]

M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34, 1162–1164 (2009).

[CrossRef]

T. Shimobaba, K. Matsushima, T. Kakue, N. Masuda, and T. Ito, “Scaled angular spectrum method,” Opt. Lett. 37, 4128–4130 (2012).

[CrossRef]

K. Matsushima, “Shifted angular spectrum method for off-axis numerical propagation,” Opt. Express 18, 18453–18463 (2010).

[CrossRef]

D. P. Kelly, N. Sabitov, T. Meinecke, and S. Sinzinger, “Some considerations when numerically calculating diffraction patterns,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2011), paper DTuC5.

B. M. Hennelly, D. P. Kelly, D. S. Monaghan, and N. Pandey, “Zoom algorithms for digital holography,” in Information Optics and Photonics, B. Javidi and T. Fournel, eds. (Springer, 2010), pp. 187–204.

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

B. M. Hennelly, D. P. Kelly, D. S. Monaghan, and N. Pandey, “Zoom algorithms for digital holography,” in Information Optics and Photonics, B. Javidi and T. Fournel, eds. (Springer, 2010), pp. 187–204.

L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm and its application,” Bell Syst. Tech. J. 48, 1249–1292 (1969).

[CrossRef]

L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm and its application,” Bell Syst. Tech. J. 48, 1249–1292 (1969).

[CrossRef]

D. P. Kelly, W. T. Rhodes, J. T. Sheridan, and B. M. Hennelly, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).

[CrossRef]

M. Kanka, A. Wuttig, C. Graulig, and R. Riesenberg, “Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit,” Opt. Lett. 35, 217–219 (2010).

[CrossRef]

A. Wuttig, M. Kanka, H. J. Kreuzer, and R. Riesenberg, “Packed domain Rayleigh-Sommerfeld wavefield propagation for large targets,” Opt. Express 18, 27036–27047 (2010).

[CrossRef]

M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34, 1162–1164 (2009).

[CrossRef]

D. P. Kelly, N. Sabitov, T. Meinecke, and S. Sinzinger, “Some considerations when numerically calculating diffraction patterns,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2011), paper DTuC5.

L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm and its application,” Bell Syst. Tech. J. 48, 1249–1292 (1969).

[CrossRef]

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

L. F. Shampine, “Matlab program for quadrature in 2D,” Appl. Math. Comput. 202, 266–274 (2008).

J. Lin, X. C. Yuan, S. S. Kou, C. J. R. Sheppard, O. G. Rodríguez-Herrera, and J. C. Dainty, “Direct calculation of a three-dimensional diffracted field,” Opt. Lett. 36, 1341–1343 (2011).

[CrossRef]

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy, 2nd ed. (Academic, 1985).

D. P. Kelly, W. T. Rhodes, J. T. Sheridan, and B. M. Hennelly, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).

[CrossRef]

D. P. Kelly, N. Sabitov, T. Meinecke, and S. Sinzinger, “Some considerations when numerically calculating diffraction patterns,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2011), paper DTuC5.

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

S. van Haver and A. J. E. M. Janssen, “Advanced analytic treatment and efficient computation of the diffraction integrals in the extended Nijboer-Zernike theory,” J. Eur. Opt. Soc. Rapid Pub. 8, 13044 (2013).

[CrossRef]

J. J. Braat, S. van Haver, A. J. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions,” Prog. Opt. 51, 349–468 (2008).

[CrossRef]

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy, 2nd ed. (Academic, 1985).

M. Kanka, A. Wuttig, C. Graulig, and R. Riesenberg, “Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit,” Opt. Lett. 35, 217–219 (2010).

[CrossRef]

A. Wuttig, M. Kanka, H. J. Kreuzer, and R. Riesenberg, “Packed domain Rayleigh-Sommerfeld wavefield propagation for large targets,” Opt. Express 18, 27036–27047 (2010).

[CrossRef]

H. H. Hopkins and M. J. Yzuel, “The computation of diffraction patterns in the presence of aberrations,” Opt. Acta 17, 157–182 (1970).

[CrossRef]

L. F. Shampine, “Matlab program for quadrature in 2D,” Appl. Math. Comput. 202, 266–274 (2008).

L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm and its application,” Bell Syst. Tech. J. 48, 1249–1292 (1969).

[CrossRef]

L. Bluestein, “A linear filtering approach to the computation of discrete Fourier transform,” IEEE Trans. Audio Electroacoust. 18, 451–455 (1970).

[CrossRef]

S. van Haver and A. J. E. M. Janssen, “Advanced analytic treatment and efficient computation of the diffraction integrals in the extended Nijboer-Zernike theory,” J. Eur. Opt. Soc. Rapid Pub. 8, 13044 (2013).

[CrossRef]

N. Delen and B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach,” J. Opt. Soc. Am. A 15, 857–867 (1998).

[CrossRef]

J. J. Stamnes and H. A. Eide, “Exact and approximate solutions for focusing of two-dimensional waves. I. Theory,” J. Opt. Soc. Am. A 15, 1285–1291 (1998).

[CrossRef]

X. Yu, T. Xiahui, Q. Yingxiong, P. Hao, and W. Wei, “Band-limited angular spectrum numerical propagation method with selective scaling of observation window size and sample number,” J. Opt. Soc. Am. A 29, 2415–2420 (2012).

[CrossRef]

D. P. Kelly, “Numerical calculation of the Fresnel transform,” J. Opt. Soc. Am. A 31, 755–764 (2014).

[CrossRef]

H. H. Hopkins and M. J. Yzuel, “The computation of diffraction patterns in the presence of aberrations,” Opt. Acta 17, 157–182 (1970).

[CrossRef]

F. Gori, “Fresnel transform and sampling theorem,” Opt. Commun. 39, 293–297 (1981).

[CrossRef]

T. Kozacki, “Numerical errors of diffraction computing using plane wave spectrum decomposition,” Opt. Commun. 281, 4219–4223 (2008).

[CrossRef]

D. P. Kelly, W. T. Rhodes, J. T. Sheridan, and B. M. Hennelly, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006).

[CrossRef]

K. Matsushima, “Shifted angular spectrum method for off-axis numerical propagation,” Opt. Express 18, 18453–18463 (2010).

[CrossRef]

A. Wuttig, M. Kanka, H. J. Kreuzer, and R. Riesenberg, “Packed domain Rayleigh-Sommerfeld wavefield propagation for large targets,” Opt. Express 18, 27036–27047 (2010).

[CrossRef]

P. Lobaz, “Reference calculation of light propagation between parallel planes of different sizes and sampling rates,” Opt. Express 19, 32–39 (2011).

[CrossRef]

D. Asoubar, Z. Site, F. Wyrowski, and M. Kuhn, “Parabasal field decomposition and its application to non-paraxial propagation,” Opt. Express 20, 23502–23517 (2012).

[CrossRef]

P. Lobaz, “Memory-efficient reference calculation of light propagation using the convolution method,” Opt. Express 21, 2795–2806 (2013).

[CrossRef]

S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).

[CrossRef]

T. Shimobaba, K. Matsushima, T. Kakue, N. Masuda, and T. Ito, “Scaled angular spectrum method,” Opt. Lett. 37, 4128–4130 (2012).

[CrossRef]

M. Kanka, A. Wuttig, C. Graulig, and R. Riesenberg, “Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit,” Opt. Lett. 35, 217–219 (2010).

[CrossRef]

J. Lin, X. C. Yuan, S. S. Kou, C. J. R. Sheppard, O. G. Rodríguez-Herrera, and J. C. Dainty, “Direct calculation of a three-dimensional diffracted field,” Opt. Lett. 36, 1341–1343 (2011).

[CrossRef]

M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34, 1162–1164 (2009).

[CrossRef]

F. Zhang, G. Pedrini, and W. Osten, “Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution,” Opt. Lett. 31, 1633–1635 (2006).

[CrossRef]

T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).

[CrossRef]

J. J. Braat, S. van Haver, A. J. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions,” Prog. Opt. 51, 349–468 (2008).

[CrossRef]

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

J. J. Stamnes, Waves in Focal Regions: Propagation, Diffraction and Focusing of Light, Sound and Water Waves, The Adam Hilger Series on Optics and Optoelectronics (Hilger, 1986).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).

D. P. Kelly, N. Sabitov, T. Meinecke, and S. Sinzinger, “Some considerations when numerically calculating diffraction patterns,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2011), paper DTuC5.

M. Kanka, “Bildrekonstruktion in der digitalen inline-holographischen Mikrsokopie,” Ph.D. thesis (Technische Universität Ilmenau, 2011).

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy, 2nd ed. (Academic, 1985).

T. R. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, 1996).

B. M. Hennelly, D. P. Kelly, D. S. Monaghan, and N. Pandey, “Zoom algorithms for digital holography,” in Information Optics and Photonics, B. Javidi and T. Fournel, eds. (Springer, 2010), pp. 187–204.

E. O. Brigham, The Fast Fourier Transform and Its Applications, Prentice-Hall Signal Processing Series (Prentice-Hall, 1988).

O. K. Ersoy, Diffraction, Fourier Optics and Imaging, Vol. 30 of Wiley Series in Pure and Applied Optics (Wiley-Interscience, 2007).