Abstract

We provide an elaborate investigation on the role of a hybrid wave (HW) in electromagnetic enhancement by a groove doublet in metallic substrate. A simple HW model is built to explore the detailed effect of HW on electromagnetic enhancement. The effective range of electromagnetic enhancement is obtained within 0.1λ away from a metal surface. The excitation of HW by a single groove has a gentle growth (from 0.03 to 0.26) as the groove gets wide, which implies that the emerging field of HW launched by a single groove is quite weak for narrow ones. HW, being like an “energy porter,” takes away partial energy from the Fabry–Perot resonance, which will be further coupled into the fundamental mode in the other groove after traveling along the metal surface. Our analysis reveals a compensation of electromagnetic enhancement for wide grooves attributed to the appearance of HW. The dependence of HW and electromagnetic enhancement on the noble metal type is also discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Lalanne, J. P. Hugonin, H. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-l metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009).
    [CrossRef]
  2. P. Lalanne and J. P. Hugonin, “Interaction between optical nao-objects at metallo-dielectric interfaces,” Nature 2, 551–556 (2006).
  3. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
    [CrossRef]
  4. M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61, 14078–14088 (2000).
    [CrossRef]
  5. J. L. Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
    [CrossRef]
  6. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
    [CrossRef]
  7. J. Li, D. Fattal, and Z. Li, “Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 94, 263114 (2009).
    [CrossRef]
  8. M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003).
    [CrossRef]
  9. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
    [CrossRef]
  10. P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Phys. B 279, 52–55 (2000).
    [CrossRef]
  11. F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
    [CrossRef]
  12. H. Xu, J. Aizpirua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
    [CrossRef]
  13. S. Collin, F. Pardo, and J. L. Pelouard, “Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 83, 1521–1523 (2003).
    [CrossRef]
  14. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
    [CrossRef]
  15. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
    [CrossRef]
  16. W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett. 34, 3725–3727 (2009).
    [CrossRef]
  17. B. Zeng, Q. Gan, Z. H. Kafafi, and F. J. Bartoli, “Polymeric photovoltaics with various metallic plasmonic nanostructures,” J. Appl. Phys. 113, 063109 (2013).
    [CrossRef]
  18. C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
    [CrossRef]
  19. K. Liu, B. Zeng, H. Song, Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Super absorption of ultra-thin organic photovoltaic films,” Opt. Commun. 314, 48–56 (2014).
    [CrossRef]
  20. I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Sagnes, I. Robert-Philio, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
    [CrossRef]
  21. A. Curto, G. Volpe, T. Taminiau, M. Kreuzer, R. Quidant, and N. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [CrossRef]
  22. H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhance optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008).
    [CrossRef]
  23. E. Popov, N. Bonod, and S. Enoch, “Comparison of Plasmon surface waves on shallow and deep metallic 1D and 2D gratings,” Opt. Express 15, 4224–4237 (2007).
    [CrossRef]
  24. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 166408 (2008).
    [CrossRef]
  25. F. Llopis, I. Tobías, and M. Jakas, “Light intensity enhancement inside the grooves of metallic gratings,” J. Opt. Soc. Am. B 27, 1998–2006 (2010).
    [CrossRef]
  26. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [CrossRef]
  27. W. Yuan, H. P. Ho, R. K. Y. Lee, and S. Kong, “Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates,” Appl. Opt. 48, 4329–4337 (2009).
    [CrossRef]
  28. H. Tamaru, H. T. Miyazali, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
    [CrossRef]
  29. S. W. Zhang, H. T. Liu, and G. G. Mu, “Analysis of electromagnetic enhancement by a groove doublet in gold substrate,” Opt. Lett. 37, 4898–4900 (2012).
    [CrossRef]
  30. H. T. Liu and P. Lalanne, “Light scattering by metallic surfaces with subwavelength patterns,” Phys. Rev. B 82, 115418 (2010).
    [CrossRef]
  31. S. W. Zhang, H. T. Liu, and G. G. Mu, “Electromagnetic enhancement by a single nano-groove in metallic substrate,” J. Opt. Soc. Am. A 27, 1555–1560 (2010).
    [CrossRef]
  32. S. W. Zhang, H. T. Liu, and G. G. Mu, “Electromagnetic enhancement by a periodic array of nanogrooves in a metallic substrate,” J. Opt. Soc. Am. A 28, 879–886 (2011).
    [CrossRef]
  33. F. Beijnum, C. Rétif, C. Smiet, H. T. Liu, P. Lalanne, and M. Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
    [CrossRef]
  34. E. D. Palik, Handbook of Optical Constants of Solids Part II (Academic, 1985).
  35. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

2014 (1)

K. Liu, B. Zeng, H. Song, Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Super absorption of ultra-thin organic photovoltaic films,” Opt. Commun. 314, 48–56 (2014).
[CrossRef]

2013 (1)

B. Zeng, Q. Gan, Z. H. Kafafi, and F. J. Bartoli, “Polymeric photovoltaics with various metallic plasmonic nanostructures,” J. Appl. Phys. 113, 063109 (2013).
[CrossRef]

2012 (2)

F. Beijnum, C. Rétif, C. Smiet, H. T. Liu, P. Lalanne, and M. Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[CrossRef]

S. W. Zhang, H. T. Liu, and G. G. Mu, “Analysis of electromagnetic enhancement by a groove doublet in gold substrate,” Opt. Lett. 37, 4898–4900 (2012).
[CrossRef]

2011 (1)

2010 (8)

S. W. Zhang, H. T. Liu, and G. G. Mu, “Electromagnetic enhancement by a single nano-groove in metallic substrate,” J. Opt. Soc. Am. A 27, 1555–1560 (2010).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[CrossRef]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
[CrossRef]

F. Llopis, I. Tobías, and M. Jakas, “Light intensity enhancement inside the grooves of metallic gratings,” J. Opt. Soc. Am. B 27, 1998–2006 (2010).
[CrossRef]

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

H. T. Liu and P. Lalanne, “Light scattering by metallic surfaces with subwavelength patterns,” Phys. Rev. B 82, 115418 (2010).
[CrossRef]

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Sagnes, I. Robert-Philio, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

A. Curto, G. Volpe, T. Taminiau, M. Kreuzer, R. Quidant, and N. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

2009 (4)

J. Li, D. Fattal, and Z. Li, “Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 94, 263114 (2009).
[CrossRef]

P. Lalanne, J. P. Hugonin, H. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-l metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009).
[CrossRef]

W. Yuan, H. P. Ho, R. K. Y. Lee, and S. Kong, “Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates,” Appl. Opt. 48, 4329–4337 (2009).
[CrossRef]

W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett. 34, 3725–3727 (2009).
[CrossRef]

2008 (4)

H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhance optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008).
[CrossRef]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 166408 (2008).
[CrossRef]

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

2007 (1)

2006 (2)

J. L. Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef]

P. Lalanne and J. P. Hugonin, “Interaction between optical nao-objects at metallo-dielectric interfaces,” Nature 2, 551–556 (2006).

2004 (1)

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[CrossRef]

2003 (2)

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003).
[CrossRef]

S. Collin, F. Pardo, and J. L. Pelouard, “Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 83, 1521–1523 (2003).
[CrossRef]

2002 (1)

H. Tamaru, H. T. Miyazali, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[CrossRef]

2000 (3)

H. Xu, J. Aizpirua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Phys. B 279, 52–55 (2000).
[CrossRef]

M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61, 14078–14088 (2000).
[CrossRef]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

1996 (1)

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[CrossRef]

Aigouy, L.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Phys. B 279, 52–55 (2000).
[CrossRef]

Aizpirua, J.

H. Xu, J. Aizpirua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Allain, L. R.

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003).
[CrossRef]

Apell, P.

H. Xu, J. Aizpirua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Arctander, E.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[CrossRef]

Atwater, H. A.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Bai, W.

Barbara, A.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 166408 (2008).
[CrossRef]

J. L. Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef]

Bartoli, F.

Bartoli, F. J.

K. Liu, B. Zeng, H. Song, Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Super absorption of ultra-thin organic photovoltaic films,” Opt. Commun. 314, 48–56 (2014).
[CrossRef]

B. Zeng, Q. Gan, Z. H. Kafafi, and F. J. Bartoli, “Polymeric photovoltaics with various metallic plasmonic nanostructures,” J. Appl. Phys. 113, 063109 (2013).
[CrossRef]

Beijnum, F.

F. Beijnum, C. Rétif, C. Smiet, H. T. Liu, P. Lalanne, and M. Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[CrossRef]

Besbes, M.

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Sagnes, I. Robert-Philio, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

Beveratos, A.

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Sagnes, I. Robert-Philio, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

Bonod, N.

Brolo, A. G.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[CrossRef]

Cai, L.

Collin, S.

S. Collin, F. Pardo, and J. L. Pelouard, “Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 83, 1521–1523 (2003).
[CrossRef]

Culha, M.

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003).
[CrossRef]

Curto, A.

A. Curto, G. Volpe, T. Taminiau, M. Kreuzer, R. Quidant, and N. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Ducourtieux, S.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Phys. B 279, 52–55 (2000).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

Enoch, S.

Exter, M.

F. Beijnum, C. Rétif, C. Smiet, H. T. Liu, P. Lalanne, and M. Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[CrossRef]

Fan, S.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010).
[CrossRef]

Fattal, D.

J. Li, D. Fattal, and Z. Li, “Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 94, 263114 (2009).
[CrossRef]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Gadenne, P.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Phys. B 279, 52–55 (2000).
[CrossRef]

Gan, Q.

K. Liu, B. Zeng, H. Song, Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Super absorption of ultra-thin organic photovoltaic films,” Opt. Commun. 314, 48–56 (2014).
[CrossRef]

B. Zeng, Q. Gan, Z. H. Kafafi, and F. J. Bartoli, “Polymeric photovoltaics with various metallic plasmonic nanostructures,” J. Appl. Phys. 113, 063109 (2013).
[CrossRef]

W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett. 34, 3725–3727 (2009).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[CrossRef]

Gordon, R.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[CrossRef]

Gresillon, S.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Phys. B 279, 52–55 (2000).
[CrossRef]

Ho, H. P.

Huang, Y.

Hugonin, J. P.

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Sagnes, I. Robert-Philio, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

P. Lalanne, J. P. Hugonin, H. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-l metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009).
[CrossRef]

P. Lalanne and J. P. Hugonin, “Interaction between optical nao-objects at metallo-dielectric interfaces,” Nature 2, 551–556 (2006).

Hulst, N.

A. Curto, G. Volpe, T. Taminiau, M. Kreuzer, R. Quidant, and N. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Jakas, M.

Kafafi, Z. H.

K. Liu, B. Zeng, H. Song, Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Super absorption of ultra-thin organic photovoltaic films,” Opt. Commun. 314, 48–56 (2014).
[CrossRef]

B. Zeng, Q. Gan, Z. H. Kafafi, and F. J. Bartoli, “Polymeric photovoltaics with various metallic plasmonic nanostructures,” J. Appl. Phys. 113, 063109 (2013).
[CrossRef]

Kahl, M.

M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61, 14078–14088 (2000).
[CrossRef]

Käll, M.

H. Xu, J. Aizpirua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Kavanagh, K. L.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[CrossRef]

Kong, S.

Kreuzer, M.

A. Curto, G. Volpe, T. Taminiau, M. Kreuzer, R. Quidant, and N. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhance optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008).
[CrossRef]

Lalanne, P.

F. Beijnum, C. Rétif, C. Smiet, H. T. Liu, P. Lalanne, and M. Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[CrossRef]

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Sagnes, I. Robert-Philio, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

H. T. Liu and P. Lalanne, “Light scattering by metallic surfaces with subwavelength patterns,” Phys. Rev. B 82, 115418 (2010).
[CrossRef]

P. Lalanne, J. P. Hugonin, H. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-l metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009).
[CrossRef]

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

P. Lalanne and J. P. Hugonin, “Interaction between optical nao-objects at metallo-dielectric interfaces,” Nature 2, 551–556 (2006).

Le Perchec, J.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 166408 (2008).
[CrossRef]

Leathem, B.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[CrossRef]

Lee, J. Y.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Lee, R. K. Y.

Li, H. B. T.

Li, J.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

J. Li, D. Fattal, and Z. Li, “Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 94, 263114 (2009).
[CrossRef]

Li, Z.

J. Li, D. Fattal, and Z. Li, “Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 94, 263114 (2009).
[CrossRef]

Liu, H.

P. Lalanne, J. P. Hugonin, H. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-l metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009).
[CrossRef]

Liu, H. T.

S. W. Zhang, H. T. Liu, and G. G. Mu, “Analysis of electromagnetic enhancement by a groove doublet in gold substrate,” Opt. Lett. 37, 4898–4900 (2012).
[CrossRef]

F. Beijnum, C. Rétif, C. Smiet, H. T. Liu, P. Lalanne, and M. Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[CrossRef]

S. W. Zhang, H. T. Liu, and G. G. Mu, “Electromagnetic enhancement by a periodic array of nanogrooves in a metallic substrate,” J. Opt. Soc. Am. A 28, 879–886 (2011).
[CrossRef]

S. W. Zhang, H. T. Liu, and G. G. Mu, “Electromagnetic enhancement by a single nano-groove in metallic substrate,” J. Opt. Soc. Am. A 27, 1555–1560 (2010).
[CrossRef]

H. T. Liu and P. Lalanne, “Light scattering by metallic surfaces with subwavelength patterns,” Phys. Rev. B 82, 115418 (2010).
[CrossRef]

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

Liu, K.

K. Liu, B. Zeng, H. Song, Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Super absorption of ultra-thin organic photovoltaic films,” Opt. Commun. 314, 48–56 (2014).
[CrossRef]

Llopis, F.

López-Ríos, T.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 166408 (2008).
[CrossRef]

J. L. Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef]

Maksymov, I. S.

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Sagnes, I. Robert-Philio, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

Min, C.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Miyano, K.

H. Tamaru, H. T. Miyazali, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhance optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008).
[CrossRef]

Miyazali, H. T.

H. Tamaru, H. T. Miyazali, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[CrossRef]

Mu, G. G.

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids Part II (Academic, 1985).

Pardo, F.

S. Collin, F. Pardo, and J. L. Pelouard, “Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 83, 1521–1523 (2003).
[CrossRef]

Pelouard, J. L.

S. Collin, F. Pardo, and J. L. Pelouard, “Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 83, 1521–1523 (2003).
[CrossRef]

Pendry, J. B.

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[CrossRef]

Perchec, J. L.

J. L. Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef]

Peumans, P.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Polman, A.

Popov, E.

Quelin, X.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Phys. B 279, 52–55 (2000).
[CrossRef]

Quémerais, P.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 166408 (2008).
[CrossRef]

J. L. Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef]

Quidant, R.

A. Curto, G. Volpe, T. Taminiau, M. Kreuzer, R. Quidant, and N. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Raman, A.

Rétif, C.

F. Beijnum, C. Rétif, C. Smiet, H. T. Liu, P. Lalanne, and M. Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[CrossRef]

Rivoal, J. C.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Phys. B 279, 52–55 (2000).
[CrossRef]

Robert-Philio, I.

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Sagnes, I. Robert-Philio, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

Sagnes, I.

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Sagnes, I. Robert-Philio, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Sagnes, I. Robert-Philio, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

Sarychev, A.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Phys. B 279, 52–55 (2000).
[CrossRef]

Schropp, R. E. I.

Shalaev, V.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Phys. B 279, 52–55 (2000).
[CrossRef]

Smiet, C.

F. Beijnum, C. Rétif, C. Smiet, H. T. Liu, P. Lalanne, and M. Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[CrossRef]

Song, G.

Song, H.

K. Liu, B. Zeng, H. Song, Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Super absorption of ultra-thin organic photovoltaic films,” Opt. Commun. 314, 48–56 (2014).
[CrossRef]

Stokes, D.

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003).
[CrossRef]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Tamaru, H.

H. Tamaru, H. T. Miyazali, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[CrossRef]

Taminiau, T.

A. Curto, G. Volpe, T. Taminiau, M. Kreuzer, R. Quidant, and N. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Tobías, I.

Verhagen, E.

Veronis, G.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Verschuuren, M. A.

Vo-Dinh, T.

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003).
[CrossRef]

Voges, E.

M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61, 14078–14088 (2000).
[CrossRef]

Volpe, G.

A. Curto, G. Volpe, T. Taminiau, M. Kreuzer, R. Quidant, and N. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Walters, R. J.

Wang, B.

P. Lalanne, J. P. Hugonin, H. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-l metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009).
[CrossRef]

Xu, H.

H. Xu, J. Aizpirua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Yang, J.

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Sagnes, I. Robert-Philio, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

Yu, Z.

Yuan, W.

Zeng, B.

K. Liu, B. Zeng, H. Song, Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Super absorption of ultra-thin organic photovoltaic films,” Opt. Commun. 314, 48–56 (2014).
[CrossRef]

B. Zeng, Q. Gan, Z. H. Kafafi, and F. J. Bartoli, “Polymeric photovoltaics with various metallic plasmonic nanostructures,” J. Appl. Phys. 113, 063109 (2013).
[CrossRef]

Zhang, J.

Zhang, S. W.

Anal. Chem. (1)

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

H. Tamaru, H. T. Miyazali, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[CrossRef]

J. Li, D. Fattal, and Z. Li, “Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 94, 263114 (2009).
[CrossRef]

S. Collin, F. Pardo, and J. L. Pelouard, “Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 83, 1521–1523 (2003).
[CrossRef]

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhance optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008).
[CrossRef]

J. Appl. Phys. (1)

B. Zeng, Q. Gan, Z. H. Kafafi, and F. J. Bartoli, “Polymeric photovoltaics with various metallic plasmonic nanostructures,” J. Appl. Phys. 113, 063109 (2013).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[CrossRef]

Nature (3)

P. Lalanne and J. P. Hugonin, “Interaction between optical nao-objects at metallo-dielectric interfaces,” Nature 2, 551–556 (2006).

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

F. Beijnum, C. Rétif, C. Smiet, H. T. Liu, P. Lalanne, and M. Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[CrossRef]

Opt. Commun. (1)

K. Liu, B. Zeng, H. Song, Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Super absorption of ultra-thin organic photovoltaic films,” Opt. Commun. 314, 48–56 (2014).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. B (1)

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Phys. B 279, 52–55 (2000).
[CrossRef]

Phys. Rev. B (2)

M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61, 14078–14088 (2000).
[CrossRef]

H. T. Liu and P. Lalanne, “Light scattering by metallic surfaces with subwavelength patterns,” Phys. Rev. B 82, 115418 (2010).
[CrossRef]

Phys. Rev. E (1)

H. Xu, J. Aizpirua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Phys. Rev. Lett. (4)

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[CrossRef]

J. L. Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef]

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Sagnes, I. Robert-Philio, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010).
[CrossRef]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 166408 (2008).
[CrossRef]

Science (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

A. Curto, G. Volpe, T. Taminiau, M. Kreuzer, R. Quidant, and N. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Surf. Sci. Rep. (1)

P. Lalanne, J. P. Hugonin, H. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-l metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009).
[CrossRef]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids Part II (Academic, 1985).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Groove doublet in metal substrate and the coordinate chosen. (b)–(d) Scattering coefficients td, rd and rm of the fundamental mode by a groove doublet. (e)–(g) Scattering coefficients of the HW by an infinite slit.

Fig. 2.
Fig. 2.

xz distribution of normalized electromagnetic fields by a groove doublet in gold substrate under normal incidence with (a) a-FMM and (b) the HW model method for w=0.1λ, d=0.5λ, hres=0.1617λ, λ=1μm, nm=0.26+6.82i.

Fig. 3.
Fig. 3.

Absolute values of the scattering coefficients for HW as a function of w at λ=1μm, nm=0.26+6.82i with a-FMM for a single slit in gold substrate. The inset figure shows the phase of the scattering coefficients for HW. Different line styles refer to ρHW (dashed curve), βHW (solid curve), and βHW (dashed–dotted curve).

Fig. 4.
Fig. 4.

(a)–(c) EFres, |td| and |rd| as a function of d for w=0.05λ (dashed–dotted line), w=0.1λ (solid line), w=0.2λ (dashed line) by a groove doublet in gold substrate under the resonance condition for normal incidence λ=1μm, nm=0.26+6.82i. The arrows show the corresponding data of a single groove in the same illumination condition for w=0.05λ (arrows with dashed–dotted line), w=0.1λ (arrows with solid line), w=0.2λ (arrows with dashed line).

Fig. 5.
Fig. 5.

EFres, |td| and |rd| as a function of d by a groove doublet under normal illumination at λ=1μm, w=0.05λ with the groove depth fulfilling the resonance condition in gold substrate (solid curves, nm=0.26+6.82i), in silver substrate (dashed curves, nm=0.26+5.26i) and in copper substrate (dotted curves, nm=0.21+6.76i).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ψin(x,z)=aψ0(x)exp(ik0neffz)+bψ0+(x)exp[ik0neff(z+h)](hz0),
ψout(x,z)=ψi(x,z)+ψr(x,z)+bexp(ik0neffh)ψt(x,z)(0<z),
a=td+rdbexp(ik0neffh),b=rmaexp(ik0neffh),
HHW±(x)=exp(ikSPx)+H0(x/λ)mexp(ik0x),
td=t+βHWαHWHHW+(d)1ρHWHHW+(d),rd=ra+αHWαHWHHW+(d)1ρHWHHW+(d).
EF=|ηtd1rmexp(i2k0neffh)1rdrmexp(i2k0neffh)|2
2k0Re(neff)h+arg(rd)+arg(rm)=2mπ,
EFres=|ηtd|2|1|rm|exp[2k0Im(neff)hres]exp[iarg(rd)]|2|1|rd||rm|exp[2k0Im(neff)hres]|2.
tdt+αHWβHWHHW+(d),rdra+αHWαHWHHW+(d).

Metrics