Abstract

In this paper the reconstruction of a shallow buried object is addressed by an electromagnetic inverse scattering method based on combining different imaging modalities. In particular, the proposed approach integrates the inexact Newton (IN) method with an iterative multiscaling approach. Moreover, the use of the second-order Born approximation is exploited. A numerical validation is provided concerning the potentialities arising by combining the regularization capabilities of the IN method and the effectiveness of the multifocusing strategy to mitigate the nonlinearity and ill-posedness of the inversion problem. Comparisons with the standard “bare” approach in terms of accuracy, robustness, noise levels, and computational efficiency are also included.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Zoughi, Microwave Nondestructive Testing and Evaluation (Kluwer Academic, 2000).
  2. M. Pastorino, Microwave Imaging (Wiley, 2010).
  3. G. C. Giakos, M. Pastorino, F. Russo, S. Chiwdhury, N. Shah, and D. Davros, “Noninvasive imaging for the new century,” IEEE Instrum. Meas. Mag. 2(2), 32–35 (1999).
    [CrossRef]
  4. O. Dorn and D. Lesselier, special issue on “Electromagnetic Inverse Problems: Emerging Methods and Novel Applications,” Inverse Probl. 26, 074001 (2010).
  5. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (IOP, 1998).
  6. Y. J. Kim, L. Jofre, F. De Flaviis, and M. Q. Feng, “Microwave reflection tomographic array for damage detection of civil structures,” IEEE Trans. Antennas Propag. 51, 3022–3032 (2003).
    [CrossRef]
  7. S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation: overview and recent advantages,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007).
    [CrossRef]
  8. G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Microwave imaging for nondestructive testing of dielectric structures: numerical simulations using an inexact Newton technique,” Mater. Eval. 65, 917–922 (2007).
  9. M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An innovative microwave-imaging technique for nondestructive evaluation: applications to civil structures monitoring and biological bodies inspection,” IEEE Trans. Instrum. Meas. 55, 1878–1884 (2006).
    [CrossRef]
  10. P. Kosmas, C. M. Rappaport, and E. Bishop, “Modeling with the FDTD method for microwave breast cancer detection,” IEEE Trans. Microw. Theory Technol. 52, 1890–1897 (2004).
    [CrossRef]
  11. P. Kosmas and C. M. Rappaport, “FDTD-based time reversal for microwave breast cancer detection-localization in three dimensions,” IEEE Trans. Microw. Theory Technol. 54, 1921–1927 (2006).
    [CrossRef]
  12. G. Bozza, M. Brignone, and M. Pastorino, “Application of the no-sampling linear sampling method for breast cancer detection,” IEEE Trans. Biomed. Eng. 57, 2525–2534 (2010).
    [CrossRef]
  13. C.-C. Chen, J. T. Johnson, M. Sato, and A. G. Yarovoy, special issue on “Subsurface Sensing Using Ground Penetrating Radar,” IEEE Trans. Geosci. Remote Sens. 45, 2423–2573 (2007).
  14. R. Firoozabadi, E. L. Miller, C. M. Rappaport, and A. W. Morgenthaler, “Subsurface sensing of buried objects under a randomly rough surface using scattered electromagnetic field data,” IEEE Trans. Geosci. Remote Sensing 45, 104–117 (2007).
    [CrossRef]
  15. T. Isernia, L. Crocco, and M. D’Urso, “New tools and series for forward and inverse scattering problems in lossy media,” IEEE Geosci. Remote Sens. Lett. 1, 327–331 (2004).
    [CrossRef]
  16. F. Soldovieri, O. Lopera, and S. Lambot, “Combination of advanced inversion techniques for an accurate target localization via GPR for demining applications,” IEEE Trans. Geosci. Remote Sens. 49, 451–461 (2011).
  17. I. Catapano, L. Crocco, and T. Isernia, “Improved sampling methods for shape reconstruction of 3-D buried targets,” IEEE Trans. Geosci. Remote Sensing 46, 3265–3273 (2008).
  18. A. P. Anderson and P. J. Richards, “Microwave imaging of subsurface cylindrical scatters from crosspolar backscatter,” Electron. Lett. 13, 617–619 (1977).
    [CrossRef]
  19. F. Soldovieri, R. Solimene, L. Lo Monte, and M. Bavusi, “Sparse reconstruction from GPR data with applications to Rebar detection,” IEEE Trans. Instrum. Meas. 60, 1070–1079 (2011).
    [CrossRef]
  20. T. M. Habashy and A. Abubakar, “A general framework for constraint minimization for the inversion of electromagnetic measurements,” PIER 46, 265–312 (2004).
  21. G. Oliveri, P. Rocca, and A. Massa, “A Bayesian compressive sampling-based inversion for imaging sparse scatterers,” IEEE Trans. Geosci. Remote Sens. 49, 3993–4006 (2011).
    [CrossRef]
  22. L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations,” IEEE Trans. Geosci. Remote Sensing 51, 2920–2936 (2013).
  23. L. Poli, G. Oliveri, F. Viani, and A. Massa, “MT-BCS-based microwave imaging approach through minimum-norm current expansion,” IEEE Trans. Antennas Propag. 61, 4722–4732 (2013).
    [CrossRef]
  24. G. Oliveri, L. Poli, P. Rocca, and A. Massa, “Bayesian compressive optical imaging within the Rytov approximation,” Opt. Lett. 37, 1760–1762 (2012).
    [CrossRef]
  25. L. Poli, G. Oliveri, and A. Massa, “Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing,” IEEE Trans. Antennas Propag. 60, 2865–2879 (2012).
    [CrossRef]
  26. T. J. Cui, W. C. Chew, A. A. Aydiner, and S. Chen, “Inverse scattering of two-dimensional dielectric objects in a lossy earth using the distorted Born iterative method,” IEEE Trans. Geosci. Remote Sens. 39, 339–346 (2001).
  27. R. Pierri and G. Leone, “Inverse scattering of dielectric cylinders by a second-order Born approximation,” IEEE Trans. Geosci. Remote Sensing 37, 374–382 (1999).
  28. G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Application of an inexact-Newton method within the second-order Born approximation to buried objects,” IEEE Geosci. Remote Sens. Lett. 4, 51–55 (2007).
  29. C. Estatico, M. Pastorino, and A. Randazzo, “An inexact-Newton method for short-range microwave imaging within the second-order Born approximation,” IEEE Trans. Geosci. Remote Sensing 43, 2593–2605 (2005).
  30. H. Harada, D. J. N. Wall, T. Takenaka, and T. Tanaka, “Conjugate gradient method applied to inverse scattering problems,” IEEE Trans. Antennas Propag. 43, 784–792 (1995).
    [CrossRef]
  31. T. Takenaka, H. Zhou, and T. Tanaka, “Inverse scattering for a three-dimensional object in the time domain,” J. Opt. Soc. Am. A 20, 1867–1874 (2003).
    [CrossRef]
  32. P. M. van Den Berg and A. Abubakar, “Contrast source inversion method: state of the art,” PIER 34, 189–218 (2001).
  33. S. Caorsi, A. Massa, M. Pastorino, and A. Randazzo, “Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm,” IEEE Trans. Geosci. Remote Sensing 41, 2745–2753 (2003).
  34. P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas Propag. Mag. 53(1), 38–49 (2011).
    [CrossRef]
  35. M. Pastorino, A. Massa, and S. Caorsi, “A microwave inverse scattering technique for image reconstruction based on a genetic algorithm,” IEEE Trans. Instrum. Meas. 49, 573–578 (2000).
    [CrossRef]
  36. S. Caorsi, A. Massa, and M. Pastorino, “A computational technique based on a real-coded genetic algorithm for microwave imaging purposes,” IEEE Trans. Geosci. Remote Sens. 38, 1697–1708 (2000).
  37. A. Massa, M. Pastorino, and A. Randazzo, “Reconstruction of two-dimensional buried objects by a hybrid differential evolution method,” Inverse Probl. 20, S135–S150 (2004).
    [CrossRef]
  38. M. Pastorino, S. Caorsi, A. Massa, and A. Randazzo, “Reconstruction algorithms for electromagnetic imaging,” IEEE Trans. Instrum. Meas. 53, 692–699 (2004).
    [CrossRef]
  39. A. Qing, “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Trans. Geosci. Remote Sens. 44, 116–125 (2005).
  40. A. Semnani, I. T. Rekanos, M. Kamyab, and T. G. Papadopoulos, “Two-dimensional microwave imaging based on hybrid scatterer representation and differential evolution,” IEEE Trans. Antenas Propag. 58, 3289–3298 (2010).
  41. P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25, 1–41 (2009).
  42. M. Pastorino, “Stochastic optimization methods applied to microwave imaging: a review,” IEEE Trans. Antennas Propag. 55, 538–548 (2007).
    [CrossRef]
  43. G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “An inexact Newton method for microwave reconstruction of strong scatterers,” IEEE Antennas Wireless Propag. Lett. 5, 61–64 (2006).
    [CrossRef]
  44. C. Estatico, G. Bozza, A. Massa, M. Pastorino, and A. Randazzo, “A two-step iterative inexact-Newton method for electromagnetic imaging of dielectric structures from real data,” Inverse Probl. 21, S81–S94 (2005).
    [CrossRef]
  45. G. Bozza, C. Estatico, A. Massa, M. Pastorino, and A. Randazzo, “Short-range image-based method for the inspection of strong scatterers using microwaves,” IEEE Trans. Instrum. Meas. 56, 1181–1188 (2007).
    [CrossRef]
  46. G. Bozza and M. Pastorino, “An inexact Newton-based approach to microwave imaging within the contrast source formulation,” IEEE Trans. Antennas Propag. 57, 1122–1132 (2009).
    [CrossRef]
  47. A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact-Newton method: experimental validation,” Microw. Opt. Technol. Lett. 53, 2834–2838 (2011).
  48. G. Oliveri, L. Lizzi, M. Pastorino, and A. Massa, “A nested multi-scaling inexact-Newton iterative approach for microwave imaging,” IEEE Trans. Antennas Propag. 60, 971–983 (2012).
    [CrossRef]
  49. G. Oliveri, A. Randazzo, M. Pastorino, and A. Massa, “Electromagnetic imaging within the contrast-source formulation by means of the multiscaling inexact Newton method,” J. Opt. Soc. Am. A 29, 945–958 (2012).
    [CrossRef]
  50. M. Lambert and D. Lesselier, “Binary-constrained inversion of a buried cylindrical obstacle from complete and phaseless magnetic fields,” Inverse Probl. 16, 563–576 (2000).
  51. A. Baussard, E. L. Miller, and D. Lesselier, “Adaptive multiscale reconstruction of buried objects,” Inverse Probl. 20, S1–S15 (2004).
    [CrossRef]
  52. D. Franceschini, A. Massa, M. Pastorino, and A. Zanetti, “Multi-resolution iterative retrieval of real inhomogeneous targets,” Inverse Probl. 21, S51–S63 (2005).
    [CrossRef]
  53. G. Oliveri, Y. Zhong, X. Chen, and A. Massa, “Multi-resolution subspace-based optimization for inverse scattering,” J. Opt. Soc. Am. A 28, 2057–2069 (2011).
    [CrossRef]
  54. S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microw. Theory Technol. 51, 1162–1173 (2003).
    [CrossRef]
  55. D. C. Stinson, Intermediate Mathematics of Electromagnetics (Prentice-Hall, 1976).
  56. L. Landweber, “An iteration formula for Fredholm integral equations of the first kind,” Am. J. Math. 73, 615–624 (1951).
    [CrossRef]
  57. J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross shape,” IEEE Trans. Antennas Propag. 13, 334–341 (1965).
    [CrossRef]
  58. O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antennas Propag. 37, 918–926 (1989).
    [CrossRef]
  59. O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, “Subsurface inverse scattering problems: quantifying qualifying and achieving the available information,” IEEE Trans. Geosci. Remote Sens. 39, 2527–2538 (2001).
    [CrossRef]

2013

L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations,” IEEE Trans. Geosci. Remote Sensing 51, 2920–2936 (2013).

L. Poli, G. Oliveri, F. Viani, and A. Massa, “MT-BCS-based microwave imaging approach through minimum-norm current expansion,” IEEE Trans. Antennas Propag. 61, 4722–4732 (2013).
[CrossRef]

2012

G. Oliveri, L. Poli, P. Rocca, and A. Massa, “Bayesian compressive optical imaging within the Rytov approximation,” Opt. Lett. 37, 1760–1762 (2012).
[CrossRef]

L. Poli, G. Oliveri, and A. Massa, “Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing,” IEEE Trans. Antennas Propag. 60, 2865–2879 (2012).
[CrossRef]

G. Oliveri, L. Lizzi, M. Pastorino, and A. Massa, “A nested multi-scaling inexact-Newton iterative approach for microwave imaging,” IEEE Trans. Antennas Propag. 60, 971–983 (2012).
[CrossRef]

G. Oliveri, A. Randazzo, M. Pastorino, and A. Massa, “Electromagnetic imaging within the contrast-source formulation by means of the multiscaling inexact Newton method,” J. Opt. Soc. Am. A 29, 945–958 (2012).
[CrossRef]

2011

A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact-Newton method: experimental validation,” Microw. Opt. Technol. Lett. 53, 2834–2838 (2011).

G. Oliveri, Y. Zhong, X. Chen, and A. Massa, “Multi-resolution subspace-based optimization for inverse scattering,” J. Opt. Soc. Am. A 28, 2057–2069 (2011).
[CrossRef]

G. Oliveri, P. Rocca, and A. Massa, “A Bayesian compressive sampling-based inversion for imaging sparse scatterers,” IEEE Trans. Geosci. Remote Sens. 49, 3993–4006 (2011).
[CrossRef]

P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas Propag. Mag. 53(1), 38–49 (2011).
[CrossRef]

F. Soldovieri, O. Lopera, and S. Lambot, “Combination of advanced inversion techniques for an accurate target localization via GPR for demining applications,” IEEE Trans. Geosci. Remote Sens. 49, 451–461 (2011).

F. Soldovieri, R. Solimene, L. Lo Monte, and M. Bavusi, “Sparse reconstruction from GPR data with applications to Rebar detection,” IEEE Trans. Instrum. Meas. 60, 1070–1079 (2011).
[CrossRef]

2010

G. Bozza, M. Brignone, and M. Pastorino, “Application of the no-sampling linear sampling method for breast cancer detection,” IEEE Trans. Biomed. Eng. 57, 2525–2534 (2010).
[CrossRef]

O. Dorn and D. Lesselier, special issue on “Electromagnetic Inverse Problems: Emerging Methods and Novel Applications,” Inverse Probl. 26, 074001 (2010).

A. Semnani, I. T. Rekanos, M. Kamyab, and T. G. Papadopoulos, “Two-dimensional microwave imaging based on hybrid scatterer representation and differential evolution,” IEEE Trans. Antenas Propag. 58, 3289–3298 (2010).

2009

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25, 1–41 (2009).

G. Bozza and M. Pastorino, “An inexact Newton-based approach to microwave imaging within the contrast source formulation,” IEEE Trans. Antennas Propag. 57, 1122–1132 (2009).
[CrossRef]

2008

I. Catapano, L. Crocco, and T. Isernia, “Improved sampling methods for shape reconstruction of 3-D buried targets,” IEEE Trans. Geosci. Remote Sensing 46, 3265–3273 (2008).

2007

C.-C. Chen, J. T. Johnson, M. Sato, and A. G. Yarovoy, special issue on “Subsurface Sensing Using Ground Penetrating Radar,” IEEE Trans. Geosci. Remote Sens. 45, 2423–2573 (2007).

R. Firoozabadi, E. L. Miller, C. M. Rappaport, and A. W. Morgenthaler, “Subsurface sensing of buried objects under a randomly rough surface using scattered electromagnetic field data,” IEEE Trans. Geosci. Remote Sensing 45, 104–117 (2007).
[CrossRef]

S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation: overview and recent advantages,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007).
[CrossRef]

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Microwave imaging for nondestructive testing of dielectric structures: numerical simulations using an inexact Newton technique,” Mater. Eval. 65, 917–922 (2007).

M. Pastorino, “Stochastic optimization methods applied to microwave imaging: a review,” IEEE Trans. Antennas Propag. 55, 538–548 (2007).
[CrossRef]

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Application of an inexact-Newton method within the second-order Born approximation to buried objects,” IEEE Geosci. Remote Sens. Lett. 4, 51–55 (2007).

G. Bozza, C. Estatico, A. Massa, M. Pastorino, and A. Randazzo, “Short-range image-based method for the inspection of strong scatterers using microwaves,” IEEE Trans. Instrum. Meas. 56, 1181–1188 (2007).
[CrossRef]

2006

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “An inexact Newton method for microwave reconstruction of strong scatterers,” IEEE Antennas Wireless Propag. Lett. 5, 61–64 (2006).
[CrossRef]

M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An innovative microwave-imaging technique for nondestructive evaluation: applications to civil structures monitoring and biological bodies inspection,” IEEE Trans. Instrum. Meas. 55, 1878–1884 (2006).
[CrossRef]

P. Kosmas and C. M. Rappaport, “FDTD-based time reversal for microwave breast cancer detection-localization in three dimensions,” IEEE Trans. Microw. Theory Technol. 54, 1921–1927 (2006).
[CrossRef]

2005

C. Estatico, G. Bozza, A. Massa, M. Pastorino, and A. Randazzo, “A two-step iterative inexact-Newton method for electromagnetic imaging of dielectric structures from real data,” Inverse Probl. 21, S81–S94 (2005).
[CrossRef]

C. Estatico, M. Pastorino, and A. Randazzo, “An inexact-Newton method for short-range microwave imaging within the second-order Born approximation,” IEEE Trans. Geosci. Remote Sensing 43, 2593–2605 (2005).

A. Qing, “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Trans. Geosci. Remote Sens. 44, 116–125 (2005).

D. Franceschini, A. Massa, M. Pastorino, and A. Zanetti, “Multi-resolution iterative retrieval of real inhomogeneous targets,” Inverse Probl. 21, S51–S63 (2005).
[CrossRef]

2004

A. Baussard, E. L. Miller, and D. Lesselier, “Adaptive multiscale reconstruction of buried objects,” Inverse Probl. 20, S1–S15 (2004).
[CrossRef]

A. Massa, M. Pastorino, and A. Randazzo, “Reconstruction of two-dimensional buried objects by a hybrid differential evolution method,” Inverse Probl. 20, S135–S150 (2004).
[CrossRef]

M. Pastorino, S. Caorsi, A. Massa, and A. Randazzo, “Reconstruction algorithms for electromagnetic imaging,” IEEE Trans. Instrum. Meas. 53, 692–699 (2004).
[CrossRef]

P. Kosmas, C. M. Rappaport, and E. Bishop, “Modeling with the FDTD method for microwave breast cancer detection,” IEEE Trans. Microw. Theory Technol. 52, 1890–1897 (2004).
[CrossRef]

T. Isernia, L. Crocco, and M. D’Urso, “New tools and series for forward and inverse scattering problems in lossy media,” IEEE Geosci. Remote Sens. Lett. 1, 327–331 (2004).
[CrossRef]

T. M. Habashy and A. Abubakar, “A general framework for constraint minimization for the inversion of electromagnetic measurements,” PIER 46, 265–312 (2004).

2003

Y. J. Kim, L. Jofre, F. De Flaviis, and M. Q. Feng, “Microwave reflection tomographic array for damage detection of civil structures,” IEEE Trans. Antennas Propag. 51, 3022–3032 (2003).
[CrossRef]

T. Takenaka, H. Zhou, and T. Tanaka, “Inverse scattering for a three-dimensional object in the time domain,” J. Opt. Soc. Am. A 20, 1867–1874 (2003).
[CrossRef]

S. Caorsi, A. Massa, M. Pastorino, and A. Randazzo, “Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm,” IEEE Trans. Geosci. Remote Sensing 41, 2745–2753 (2003).

S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microw. Theory Technol. 51, 1162–1173 (2003).
[CrossRef]

2001

O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, “Subsurface inverse scattering problems: quantifying qualifying and achieving the available information,” IEEE Trans. Geosci. Remote Sens. 39, 2527–2538 (2001).
[CrossRef]

P. M. van Den Berg and A. Abubakar, “Contrast source inversion method: state of the art,” PIER 34, 189–218 (2001).

T. J. Cui, W. C. Chew, A. A. Aydiner, and S. Chen, “Inverse scattering of two-dimensional dielectric objects in a lossy earth using the distorted Born iterative method,” IEEE Trans. Geosci. Remote Sens. 39, 339–346 (2001).

2000

M. Pastorino, A. Massa, and S. Caorsi, “A microwave inverse scattering technique for image reconstruction based on a genetic algorithm,” IEEE Trans. Instrum. Meas. 49, 573–578 (2000).
[CrossRef]

S. Caorsi, A. Massa, and M. Pastorino, “A computational technique based on a real-coded genetic algorithm for microwave imaging purposes,” IEEE Trans. Geosci. Remote Sens. 38, 1697–1708 (2000).

M. Lambert and D. Lesselier, “Binary-constrained inversion of a buried cylindrical obstacle from complete and phaseless magnetic fields,” Inverse Probl. 16, 563–576 (2000).

1999

R. Pierri and G. Leone, “Inverse scattering of dielectric cylinders by a second-order Born approximation,” IEEE Trans. Geosci. Remote Sensing 37, 374–382 (1999).

G. C. Giakos, M. Pastorino, F. Russo, S. Chiwdhury, N. Shah, and D. Davros, “Noninvasive imaging for the new century,” IEEE Instrum. Meas. Mag. 2(2), 32–35 (1999).
[CrossRef]

1995

H. Harada, D. J. N. Wall, T. Takenaka, and T. Tanaka, “Conjugate gradient method applied to inverse scattering problems,” IEEE Trans. Antennas Propag. 43, 784–792 (1995).
[CrossRef]

1989

O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antennas Propag. 37, 918–926 (1989).
[CrossRef]

1977

A. P. Anderson and P. J. Richards, “Microwave imaging of subsurface cylindrical scatters from crosspolar backscatter,” Electron. Lett. 13, 617–619 (1977).
[CrossRef]

1965

J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross shape,” IEEE Trans. Antennas Propag. 13, 334–341 (1965).
[CrossRef]

1951

L. Landweber, “An iteration formula for Fredholm integral equations of the first kind,” Am. J. Math. 73, 615–624 (1951).
[CrossRef]

Abubakar, A.

T. M. Habashy and A. Abubakar, “A general framework for constraint minimization for the inversion of electromagnetic measurements,” PIER 46, 265–312 (2004).

P. M. van Den Berg and A. Abubakar, “Contrast source inversion method: state of the art,” PIER 34, 189–218 (2001).

Anderson, A. P.

A. P. Anderson and P. J. Richards, “Microwave imaging of subsurface cylindrical scatters from crosspolar backscatter,” Electron. Lett. 13, 617–619 (1977).
[CrossRef]

Aydiner, A. A.

T. J. Cui, W. C. Chew, A. A. Aydiner, and S. Chen, “Inverse scattering of two-dimensional dielectric objects in a lossy earth using the distorted Born iterative method,” IEEE Trans. Geosci. Remote Sens. 39, 339–346 (2001).

Baussard, A.

A. Baussard, E. L. Miller, and D. Lesselier, “Adaptive multiscale reconstruction of buried objects,” Inverse Probl. 20, S1–S15 (2004).
[CrossRef]

Bavusi, M.

F. Soldovieri, R. Solimene, L. Lo Monte, and M. Bavusi, “Sparse reconstruction from GPR data with applications to Rebar detection,” IEEE Trans. Instrum. Meas. 60, 1070–1079 (2011).
[CrossRef]

Benedetti, M.

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25, 1–41 (2009).

M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An innovative microwave-imaging technique for nondestructive evaluation: applications to civil structures monitoring and biological bodies inspection,” IEEE Trans. Instrum. Meas. 55, 1878–1884 (2006).
[CrossRef]

Bertero, M.

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (IOP, 1998).

Bishop, E.

P. Kosmas, C. M. Rappaport, and E. Bishop, “Modeling with the FDTD method for microwave breast cancer detection,” IEEE Trans. Microw. Theory Technol. 52, 1890–1897 (2004).
[CrossRef]

Boccacci, P.

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (IOP, 1998).

Bozza, G.

G. Bozza, M. Brignone, and M. Pastorino, “Application of the no-sampling linear sampling method for breast cancer detection,” IEEE Trans. Biomed. Eng. 57, 2525–2534 (2010).
[CrossRef]

G. Bozza and M. Pastorino, “An inexact Newton-based approach to microwave imaging within the contrast source formulation,” IEEE Trans. Antennas Propag. 57, 1122–1132 (2009).
[CrossRef]

G. Bozza, C. Estatico, A. Massa, M. Pastorino, and A. Randazzo, “Short-range image-based method for the inspection of strong scatterers using microwaves,” IEEE Trans. Instrum. Meas. 56, 1181–1188 (2007).
[CrossRef]

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Application of an inexact-Newton method within the second-order Born approximation to buried objects,” IEEE Geosci. Remote Sens. Lett. 4, 51–55 (2007).

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Microwave imaging for nondestructive testing of dielectric structures: numerical simulations using an inexact Newton technique,” Mater. Eval. 65, 917–922 (2007).

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “An inexact Newton method for microwave reconstruction of strong scatterers,” IEEE Antennas Wireless Propag. Lett. 5, 61–64 (2006).
[CrossRef]

C. Estatico, G. Bozza, A. Massa, M. Pastorino, and A. Randazzo, “A two-step iterative inexact-Newton method for electromagnetic imaging of dielectric structures from real data,” Inverse Probl. 21, S81–S94 (2005).
[CrossRef]

Brignone, M.

G. Bozza, M. Brignone, and M. Pastorino, “Application of the no-sampling linear sampling method for breast cancer detection,” IEEE Trans. Biomed. Eng. 57, 2525–2534 (2010).
[CrossRef]

Bucci, O. M.

O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, “Subsurface inverse scattering problems: quantifying qualifying and achieving the available information,” IEEE Trans. Geosci. Remote Sens. 39, 2527–2538 (2001).
[CrossRef]

O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antennas Propag. 37, 918–926 (1989).
[CrossRef]

Caorsi, S.

M. Pastorino, S. Caorsi, A. Massa, and A. Randazzo, “Reconstruction algorithms for electromagnetic imaging,” IEEE Trans. Instrum. Meas. 53, 692–699 (2004).
[CrossRef]

S. Caorsi, A. Massa, M. Pastorino, and A. Randazzo, “Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm,” IEEE Trans. Geosci. Remote Sensing 41, 2745–2753 (2003).

S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microw. Theory Technol. 51, 1162–1173 (2003).
[CrossRef]

M. Pastorino, A. Massa, and S. Caorsi, “A microwave inverse scattering technique for image reconstruction based on a genetic algorithm,” IEEE Trans. Instrum. Meas. 49, 573–578 (2000).
[CrossRef]

S. Caorsi, A. Massa, and M. Pastorino, “A computational technique based on a real-coded genetic algorithm for microwave imaging purposes,” IEEE Trans. Geosci. Remote Sens. 38, 1697–1708 (2000).

Catapano, I.

I. Catapano, L. Crocco, and T. Isernia, “Improved sampling methods for shape reconstruction of 3-D buried targets,” IEEE Trans. Geosci. Remote Sensing 46, 3265–3273 (2008).

Chen, C.-C.

C.-C. Chen, J. T. Johnson, M. Sato, and A. G. Yarovoy, special issue on “Subsurface Sensing Using Ground Penetrating Radar,” IEEE Trans. Geosci. Remote Sens. 45, 2423–2573 (2007).

Chen, S.

T. J. Cui, W. C. Chew, A. A. Aydiner, and S. Chen, “Inverse scattering of two-dimensional dielectric objects in a lossy earth using the distorted Born iterative method,” IEEE Trans. Geosci. Remote Sens. 39, 339–346 (2001).

Chen, X.

Chew, W. C.

T. J. Cui, W. C. Chew, A. A. Aydiner, and S. Chen, “Inverse scattering of two-dimensional dielectric objects in a lossy earth using the distorted Born iterative method,” IEEE Trans. Geosci. Remote Sens. 39, 339–346 (2001).

Chiwdhury, S.

G. C. Giakos, M. Pastorino, F. Russo, S. Chiwdhury, N. Shah, and D. Davros, “Noninvasive imaging for the new century,” IEEE Instrum. Meas. Mag. 2(2), 32–35 (1999).
[CrossRef]

Crocco, L.

I. Catapano, L. Crocco, and T. Isernia, “Improved sampling methods for shape reconstruction of 3-D buried targets,” IEEE Trans. Geosci. Remote Sensing 46, 3265–3273 (2008).

T. Isernia, L. Crocco, and M. D’Urso, “New tools and series for forward and inverse scattering problems in lossy media,” IEEE Geosci. Remote Sens. Lett. 1, 327–331 (2004).
[CrossRef]

O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, “Subsurface inverse scattering problems: quantifying qualifying and achieving the available information,” IEEE Trans. Geosci. Remote Sens. 39, 2527–2538 (2001).
[CrossRef]

Cui, T. J.

T. J. Cui, W. C. Chew, A. A. Aydiner, and S. Chen, “Inverse scattering of two-dimensional dielectric objects in a lossy earth using the distorted Born iterative method,” IEEE Trans. Geosci. Remote Sens. 39, 339–346 (2001).

D’Urso, M.

T. Isernia, L. Crocco, and M. D’Urso, “New tools and series for forward and inverse scattering problems in lossy media,” IEEE Geosci. Remote Sens. Lett. 1, 327–331 (2004).
[CrossRef]

Davros, D.

G. C. Giakos, M. Pastorino, F. Russo, S. Chiwdhury, N. Shah, and D. Davros, “Noninvasive imaging for the new century,” IEEE Instrum. Meas. Mag. 2(2), 32–35 (1999).
[CrossRef]

De Flaviis, F.

Y. J. Kim, L. Jofre, F. De Flaviis, and M. Q. Feng, “Microwave reflection tomographic array for damage detection of civil structures,” IEEE Trans. Antennas Propag. 51, 3022–3032 (2003).
[CrossRef]

Donelli, M.

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25, 1–41 (2009).

M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An innovative microwave-imaging technique for nondestructive evaluation: applications to civil structures monitoring and biological bodies inspection,” IEEE Trans. Instrum. Meas. 55, 1878–1884 (2006).
[CrossRef]

S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microw. Theory Technol. 51, 1162–1173 (2003).
[CrossRef]

Dorn, O.

O. Dorn and D. Lesselier, special issue on “Electromagnetic Inverse Problems: Emerging Methods and Novel Applications,” Inverse Probl. 26, 074001 (2010).

Estatico, C.

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Microwave imaging for nondestructive testing of dielectric structures: numerical simulations using an inexact Newton technique,” Mater. Eval. 65, 917–922 (2007).

G. Bozza, C. Estatico, A. Massa, M. Pastorino, and A. Randazzo, “Short-range image-based method for the inspection of strong scatterers using microwaves,” IEEE Trans. Instrum. Meas. 56, 1181–1188 (2007).
[CrossRef]

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Application of an inexact-Newton method within the second-order Born approximation to buried objects,” IEEE Geosci. Remote Sens. Lett. 4, 51–55 (2007).

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “An inexact Newton method for microwave reconstruction of strong scatterers,” IEEE Antennas Wireless Propag. Lett. 5, 61–64 (2006).
[CrossRef]

C. Estatico, M. Pastorino, and A. Randazzo, “An inexact-Newton method for short-range microwave imaging within the second-order Born approximation,” IEEE Trans. Geosci. Remote Sensing 43, 2593–2605 (2005).

C. Estatico, G. Bozza, A. Massa, M. Pastorino, and A. Randazzo, “A two-step iterative inexact-Newton method for electromagnetic imaging of dielectric structures from real data,” Inverse Probl. 21, S81–S94 (2005).
[CrossRef]

Feng, M. Q.

Y. J. Kim, L. Jofre, F. De Flaviis, and M. Q. Feng, “Microwave reflection tomographic array for damage detection of civil structures,” IEEE Trans. Antennas Propag. 51, 3022–3032 (2003).
[CrossRef]

Firoozabadi, R.

R. Firoozabadi, E. L. Miller, C. M. Rappaport, and A. W. Morgenthaler, “Subsurface sensing of buried objects under a randomly rough surface using scattered electromagnetic field data,” IEEE Trans. Geosci. Remote Sensing 45, 104–117 (2007).
[CrossRef]

Franceschetti, G.

O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antennas Propag. 37, 918–926 (1989).
[CrossRef]

Franceschini, D.

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25, 1–41 (2009).

D. Franceschini, A. Massa, M. Pastorino, and A. Zanetti, “Multi-resolution iterative retrieval of real inhomogeneous targets,” Inverse Probl. 21, S51–S63 (2005).
[CrossRef]

S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microw. Theory Technol. 51, 1162–1173 (2003).
[CrossRef]

Giakos, G. C.

G. C. Giakos, M. Pastorino, F. Russo, S. Chiwdhury, N. Shah, and D. Davros, “Noninvasive imaging for the new century,” IEEE Instrum. Meas. Mag. 2(2), 32–35 (1999).
[CrossRef]

Habashy, T. M.

T. M. Habashy and A. Abubakar, “A general framework for constraint minimization for the inversion of electromagnetic measurements,” PIER 46, 265–312 (2004).

Harada, H.

H. Harada, D. J. N. Wall, T. Takenaka, and T. Tanaka, “Conjugate gradient method applied to inverse scattering problems,” IEEE Trans. Antennas Propag. 43, 784–792 (1995).
[CrossRef]

Isernia, T.

I. Catapano, L. Crocco, and T. Isernia, “Improved sampling methods for shape reconstruction of 3-D buried targets,” IEEE Trans. Geosci. Remote Sensing 46, 3265–3273 (2008).

T. Isernia, L. Crocco, and M. D’Urso, “New tools and series for forward and inverse scattering problems in lossy media,” IEEE Geosci. Remote Sens. Lett. 1, 327–331 (2004).
[CrossRef]

O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, “Subsurface inverse scattering problems: quantifying qualifying and achieving the available information,” IEEE Trans. Geosci. Remote Sens. 39, 2527–2538 (2001).
[CrossRef]

Jofre, L.

Y. J. Kim, L. Jofre, F. De Flaviis, and M. Q. Feng, “Microwave reflection tomographic array for damage detection of civil structures,” IEEE Trans. Antennas Propag. 51, 3022–3032 (2003).
[CrossRef]

Johnson, J. T.

C.-C. Chen, J. T. Johnson, M. Sato, and A. G. Yarovoy, special issue on “Subsurface Sensing Using Ground Penetrating Radar,” IEEE Trans. Geosci. Remote Sens. 45, 2423–2573 (2007).

Kamyab, M.

A. Semnani, I. T. Rekanos, M. Kamyab, and T. G. Papadopoulos, “Two-dimensional microwave imaging based on hybrid scatterer representation and differential evolution,” IEEE Trans. Antenas Propag. 58, 3289–3298 (2010).

Kharkovsky, S.

S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation: overview and recent advantages,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007).
[CrossRef]

Kim, Y. J.

Y. J. Kim, L. Jofre, F. De Flaviis, and M. Q. Feng, “Microwave reflection tomographic array for damage detection of civil structures,” IEEE Trans. Antennas Propag. 51, 3022–3032 (2003).
[CrossRef]

Kosmas, P.

P. Kosmas and C. M. Rappaport, “FDTD-based time reversal for microwave breast cancer detection-localization in three dimensions,” IEEE Trans. Microw. Theory Technol. 54, 1921–1927 (2006).
[CrossRef]

P. Kosmas, C. M. Rappaport, and E. Bishop, “Modeling with the FDTD method for microwave breast cancer detection,” IEEE Trans. Microw. Theory Technol. 52, 1890–1897 (2004).
[CrossRef]

Lambert, M.

M. Lambert and D. Lesselier, “Binary-constrained inversion of a buried cylindrical obstacle from complete and phaseless magnetic fields,” Inverse Probl. 16, 563–576 (2000).

Lambot, S.

F. Soldovieri, O. Lopera, and S. Lambot, “Combination of advanced inversion techniques for an accurate target localization via GPR for demining applications,” IEEE Trans. Geosci. Remote Sens. 49, 451–461 (2011).

Landweber, L.

L. Landweber, “An iteration formula for Fredholm integral equations of the first kind,” Am. J. Math. 73, 615–624 (1951).
[CrossRef]

Leone, G.

R. Pierri and G. Leone, “Inverse scattering of dielectric cylinders by a second-order Born approximation,” IEEE Trans. Geosci. Remote Sensing 37, 374–382 (1999).

Lesselier, D.

O. Dorn and D. Lesselier, special issue on “Electromagnetic Inverse Problems: Emerging Methods and Novel Applications,” Inverse Probl. 26, 074001 (2010).

A. Baussard, E. L. Miller, and D. Lesselier, “Adaptive multiscale reconstruction of buried objects,” Inverse Probl. 20, S1–S15 (2004).
[CrossRef]

M. Lambert and D. Lesselier, “Binary-constrained inversion of a buried cylindrical obstacle from complete and phaseless magnetic fields,” Inverse Probl. 16, 563–576 (2000).

Lizzi, L.

G. Oliveri, L. Lizzi, M. Pastorino, and A. Massa, “A nested multi-scaling inexact-Newton iterative approach for microwave imaging,” IEEE Trans. Antennas Propag. 60, 971–983 (2012).
[CrossRef]

Lo Monte, L.

F. Soldovieri, R. Solimene, L. Lo Monte, and M. Bavusi, “Sparse reconstruction from GPR data with applications to Rebar detection,” IEEE Trans. Instrum. Meas. 60, 1070–1079 (2011).
[CrossRef]

Lopera, O.

F. Soldovieri, O. Lopera, and S. Lambot, “Combination of advanced inversion techniques for an accurate target localization via GPR for demining applications,” IEEE Trans. Geosci. Remote Sens. 49, 451–461 (2011).

Martini, A.

M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An innovative microwave-imaging technique for nondestructive evaluation: applications to civil structures monitoring and biological bodies inspection,” IEEE Trans. Instrum. Meas. 55, 1878–1884 (2006).
[CrossRef]

Massa, A.

L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations,” IEEE Trans. Geosci. Remote Sensing 51, 2920–2936 (2013).

L. Poli, G. Oliveri, F. Viani, and A. Massa, “MT-BCS-based microwave imaging approach through minimum-norm current expansion,” IEEE Trans. Antennas Propag. 61, 4722–4732 (2013).
[CrossRef]

G. Oliveri, L. Poli, P. Rocca, and A. Massa, “Bayesian compressive optical imaging within the Rytov approximation,” Opt. Lett. 37, 1760–1762 (2012).
[CrossRef]

L. Poli, G. Oliveri, and A. Massa, “Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing,” IEEE Trans. Antennas Propag. 60, 2865–2879 (2012).
[CrossRef]

G. Oliveri, L. Lizzi, M. Pastorino, and A. Massa, “A nested multi-scaling inexact-Newton iterative approach for microwave imaging,” IEEE Trans. Antennas Propag. 60, 971–983 (2012).
[CrossRef]

G. Oliveri, A. Randazzo, M. Pastorino, and A. Massa, “Electromagnetic imaging within the contrast-source formulation by means of the multiscaling inexact Newton method,” J. Opt. Soc. Am. A 29, 945–958 (2012).
[CrossRef]

A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact-Newton method: experimental validation,” Microw. Opt. Technol. Lett. 53, 2834–2838 (2011).

G. Oliveri, Y. Zhong, X. Chen, and A. Massa, “Multi-resolution subspace-based optimization for inverse scattering,” J. Opt. Soc. Am. A 28, 2057–2069 (2011).
[CrossRef]

P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas Propag. Mag. 53(1), 38–49 (2011).
[CrossRef]

G. Oliveri, P. Rocca, and A. Massa, “A Bayesian compressive sampling-based inversion for imaging sparse scatterers,” IEEE Trans. Geosci. Remote Sens. 49, 3993–4006 (2011).
[CrossRef]

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25, 1–41 (2009).

G. Bozza, C. Estatico, A. Massa, M. Pastorino, and A. Randazzo, “Short-range image-based method for the inspection of strong scatterers using microwaves,” IEEE Trans. Instrum. Meas. 56, 1181–1188 (2007).
[CrossRef]

M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An innovative microwave-imaging technique for nondestructive evaluation: applications to civil structures monitoring and biological bodies inspection,” IEEE Trans. Instrum. Meas. 55, 1878–1884 (2006).
[CrossRef]

C. Estatico, G. Bozza, A. Massa, M. Pastorino, and A. Randazzo, “A two-step iterative inexact-Newton method for electromagnetic imaging of dielectric structures from real data,” Inverse Probl. 21, S81–S94 (2005).
[CrossRef]

D. Franceschini, A. Massa, M. Pastorino, and A. Zanetti, “Multi-resolution iterative retrieval of real inhomogeneous targets,” Inverse Probl. 21, S51–S63 (2005).
[CrossRef]

M. Pastorino, S. Caorsi, A. Massa, and A. Randazzo, “Reconstruction algorithms for electromagnetic imaging,” IEEE Trans. Instrum. Meas. 53, 692–699 (2004).
[CrossRef]

A. Massa, M. Pastorino, and A. Randazzo, “Reconstruction of two-dimensional buried objects by a hybrid differential evolution method,” Inverse Probl. 20, S135–S150 (2004).
[CrossRef]

S. Caorsi, A. Massa, M. Pastorino, and A. Randazzo, “Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm,” IEEE Trans. Geosci. Remote Sensing 41, 2745–2753 (2003).

S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microw. Theory Technol. 51, 1162–1173 (2003).
[CrossRef]

M. Pastorino, A. Massa, and S. Caorsi, “A microwave inverse scattering technique for image reconstruction based on a genetic algorithm,” IEEE Trans. Instrum. Meas. 49, 573–578 (2000).
[CrossRef]

S. Caorsi, A. Massa, and M. Pastorino, “A computational technique based on a real-coded genetic algorithm for microwave imaging purposes,” IEEE Trans. Geosci. Remote Sens. 38, 1697–1708 (2000).

Miller, E. L.

R. Firoozabadi, E. L. Miller, C. M. Rappaport, and A. W. Morgenthaler, “Subsurface sensing of buried objects under a randomly rough surface using scattered electromagnetic field data,” IEEE Trans. Geosci. Remote Sensing 45, 104–117 (2007).
[CrossRef]

A. Baussard, E. L. Miller, and D. Lesselier, “Adaptive multiscale reconstruction of buried objects,” Inverse Probl. 20, S1–S15 (2004).
[CrossRef]

Morgenthaler, A. W.

R. Firoozabadi, E. L. Miller, C. M. Rappaport, and A. W. Morgenthaler, “Subsurface sensing of buried objects under a randomly rough surface using scattered electromagnetic field data,” IEEE Trans. Geosci. Remote Sensing 45, 104–117 (2007).
[CrossRef]

Oliveri, G.

L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations,” IEEE Trans. Geosci. Remote Sensing 51, 2920–2936 (2013).

L. Poli, G. Oliveri, F. Viani, and A. Massa, “MT-BCS-based microwave imaging approach through minimum-norm current expansion,” IEEE Trans. Antennas Propag. 61, 4722–4732 (2013).
[CrossRef]

G. Oliveri, L. Poli, P. Rocca, and A. Massa, “Bayesian compressive optical imaging within the Rytov approximation,” Opt. Lett. 37, 1760–1762 (2012).
[CrossRef]

L. Poli, G. Oliveri, and A. Massa, “Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing,” IEEE Trans. Antennas Propag. 60, 2865–2879 (2012).
[CrossRef]

G. Oliveri, L. Lizzi, M. Pastorino, and A. Massa, “A nested multi-scaling inexact-Newton iterative approach for microwave imaging,” IEEE Trans. Antennas Propag. 60, 971–983 (2012).
[CrossRef]

G. Oliveri, A. Randazzo, M. Pastorino, and A. Massa, “Electromagnetic imaging within the contrast-source formulation by means of the multiscaling inexact Newton method,” J. Opt. Soc. Am. A 29, 945–958 (2012).
[CrossRef]

A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact-Newton method: experimental validation,” Microw. Opt. Technol. Lett. 53, 2834–2838 (2011).

G. Oliveri, Y. Zhong, X. Chen, and A. Massa, “Multi-resolution subspace-based optimization for inverse scattering,” J. Opt. Soc. Am. A 28, 2057–2069 (2011).
[CrossRef]

P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas Propag. Mag. 53(1), 38–49 (2011).
[CrossRef]

G. Oliveri, P. Rocca, and A. Massa, “A Bayesian compressive sampling-based inversion for imaging sparse scatterers,” IEEE Trans. Geosci. Remote Sens. 49, 3993–4006 (2011).
[CrossRef]

Papadopoulos, T. G.

A. Semnani, I. T. Rekanos, M. Kamyab, and T. G. Papadopoulos, “Two-dimensional microwave imaging based on hybrid scatterer representation and differential evolution,” IEEE Trans. Antenas Propag. 58, 3289–3298 (2010).

Pascazio, V.

O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, “Subsurface inverse scattering problems: quantifying qualifying and achieving the available information,” IEEE Trans. Geosci. Remote Sens. 39, 2527–2538 (2001).
[CrossRef]

Pastorino, M.

G. Oliveri, L. Lizzi, M. Pastorino, and A. Massa, “A nested multi-scaling inexact-Newton iterative approach for microwave imaging,” IEEE Trans. Antennas Propag. 60, 971–983 (2012).
[CrossRef]

G. Oliveri, A. Randazzo, M. Pastorino, and A. Massa, “Electromagnetic imaging within the contrast-source formulation by means of the multiscaling inexact Newton method,” J. Opt. Soc. Am. A 29, 945–958 (2012).
[CrossRef]

A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact-Newton method: experimental validation,” Microw. Opt. Technol. Lett. 53, 2834–2838 (2011).

G. Bozza, M. Brignone, and M. Pastorino, “Application of the no-sampling linear sampling method for breast cancer detection,” IEEE Trans. Biomed. Eng. 57, 2525–2534 (2010).
[CrossRef]

G. Bozza and M. Pastorino, “An inexact Newton-based approach to microwave imaging within the contrast source formulation,” IEEE Trans. Antennas Propag. 57, 1122–1132 (2009).
[CrossRef]

G. Bozza, C. Estatico, A. Massa, M. Pastorino, and A. Randazzo, “Short-range image-based method for the inspection of strong scatterers using microwaves,” IEEE Trans. Instrum. Meas. 56, 1181–1188 (2007).
[CrossRef]

M. Pastorino, “Stochastic optimization methods applied to microwave imaging: a review,” IEEE Trans. Antennas Propag. 55, 538–548 (2007).
[CrossRef]

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Application of an inexact-Newton method within the second-order Born approximation to buried objects,” IEEE Geosci. Remote Sens. Lett. 4, 51–55 (2007).

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Microwave imaging for nondestructive testing of dielectric structures: numerical simulations using an inexact Newton technique,” Mater. Eval. 65, 917–922 (2007).

M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An innovative microwave-imaging technique for nondestructive evaluation: applications to civil structures monitoring and biological bodies inspection,” IEEE Trans. Instrum. Meas. 55, 1878–1884 (2006).
[CrossRef]

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “An inexact Newton method for microwave reconstruction of strong scatterers,” IEEE Antennas Wireless Propag. Lett. 5, 61–64 (2006).
[CrossRef]

C. Estatico, G. Bozza, A. Massa, M. Pastorino, and A. Randazzo, “A two-step iterative inexact-Newton method for electromagnetic imaging of dielectric structures from real data,” Inverse Probl. 21, S81–S94 (2005).
[CrossRef]

C. Estatico, M. Pastorino, and A. Randazzo, “An inexact-Newton method for short-range microwave imaging within the second-order Born approximation,” IEEE Trans. Geosci. Remote Sensing 43, 2593–2605 (2005).

D. Franceschini, A. Massa, M. Pastorino, and A. Zanetti, “Multi-resolution iterative retrieval of real inhomogeneous targets,” Inverse Probl. 21, S51–S63 (2005).
[CrossRef]

M. Pastorino, S. Caorsi, A. Massa, and A. Randazzo, “Reconstruction algorithms for electromagnetic imaging,” IEEE Trans. Instrum. Meas. 53, 692–699 (2004).
[CrossRef]

A. Massa, M. Pastorino, and A. Randazzo, “Reconstruction of two-dimensional buried objects by a hybrid differential evolution method,” Inverse Probl. 20, S135–S150 (2004).
[CrossRef]

S. Caorsi, A. Massa, M. Pastorino, and A. Randazzo, “Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm,” IEEE Trans. Geosci. Remote Sensing 41, 2745–2753 (2003).

M. Pastorino, A. Massa, and S. Caorsi, “A microwave inverse scattering technique for image reconstruction based on a genetic algorithm,” IEEE Trans. Instrum. Meas. 49, 573–578 (2000).
[CrossRef]

S. Caorsi, A. Massa, and M. Pastorino, “A computational technique based on a real-coded genetic algorithm for microwave imaging purposes,” IEEE Trans. Geosci. Remote Sens. 38, 1697–1708 (2000).

G. C. Giakos, M. Pastorino, F. Russo, S. Chiwdhury, N. Shah, and D. Davros, “Noninvasive imaging for the new century,” IEEE Instrum. Meas. Mag. 2(2), 32–35 (1999).
[CrossRef]

M. Pastorino, Microwave Imaging (Wiley, 2010).

Pierri, R.

R. Pierri and G. Leone, “Inverse scattering of dielectric cylinders by a second-order Born approximation,” IEEE Trans. Geosci. Remote Sensing 37, 374–382 (1999).

Poli, L.

L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations,” IEEE Trans. Geosci. Remote Sensing 51, 2920–2936 (2013).

L. Poli, G. Oliveri, F. Viani, and A. Massa, “MT-BCS-based microwave imaging approach through minimum-norm current expansion,” IEEE Trans. Antennas Propag. 61, 4722–4732 (2013).
[CrossRef]

G. Oliveri, L. Poli, P. Rocca, and A. Massa, “Bayesian compressive optical imaging within the Rytov approximation,” Opt. Lett. 37, 1760–1762 (2012).
[CrossRef]

L. Poli, G. Oliveri, and A. Massa, “Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing,” IEEE Trans. Antennas Propag. 60, 2865–2879 (2012).
[CrossRef]

Qing, A.

A. Qing, “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Trans. Geosci. Remote Sens. 44, 116–125 (2005).

Randazzo, A.

G. Oliveri, A. Randazzo, M. Pastorino, and A. Massa, “Electromagnetic imaging within the contrast-source formulation by means of the multiscaling inexact Newton method,” J. Opt. Soc. Am. A 29, 945–958 (2012).
[CrossRef]

A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact-Newton method: experimental validation,” Microw. Opt. Technol. Lett. 53, 2834–2838 (2011).

G. Bozza, C. Estatico, A. Massa, M. Pastorino, and A. Randazzo, “Short-range image-based method for the inspection of strong scatterers using microwaves,” IEEE Trans. Instrum. Meas. 56, 1181–1188 (2007).
[CrossRef]

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Application of an inexact-Newton method within the second-order Born approximation to buried objects,” IEEE Geosci. Remote Sens. Lett. 4, 51–55 (2007).

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Microwave imaging for nondestructive testing of dielectric structures: numerical simulations using an inexact Newton technique,” Mater. Eval. 65, 917–922 (2007).

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “An inexact Newton method for microwave reconstruction of strong scatterers,” IEEE Antennas Wireless Propag. Lett. 5, 61–64 (2006).
[CrossRef]

C. Estatico, G. Bozza, A. Massa, M. Pastorino, and A. Randazzo, “A two-step iterative inexact-Newton method for electromagnetic imaging of dielectric structures from real data,” Inverse Probl. 21, S81–S94 (2005).
[CrossRef]

C. Estatico, M. Pastorino, and A. Randazzo, “An inexact-Newton method for short-range microwave imaging within the second-order Born approximation,” IEEE Trans. Geosci. Remote Sensing 43, 2593–2605 (2005).

A. Massa, M. Pastorino, and A. Randazzo, “Reconstruction of two-dimensional buried objects by a hybrid differential evolution method,” Inverse Probl. 20, S135–S150 (2004).
[CrossRef]

M. Pastorino, S. Caorsi, A. Massa, and A. Randazzo, “Reconstruction algorithms for electromagnetic imaging,” IEEE Trans. Instrum. Meas. 53, 692–699 (2004).
[CrossRef]

S. Caorsi, A. Massa, M. Pastorino, and A. Randazzo, “Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm,” IEEE Trans. Geosci. Remote Sensing 41, 2745–2753 (2003).

Rappaport, C. M.

R. Firoozabadi, E. L. Miller, C. M. Rappaport, and A. W. Morgenthaler, “Subsurface sensing of buried objects under a randomly rough surface using scattered electromagnetic field data,” IEEE Trans. Geosci. Remote Sensing 45, 104–117 (2007).
[CrossRef]

P. Kosmas and C. M. Rappaport, “FDTD-based time reversal for microwave breast cancer detection-localization in three dimensions,” IEEE Trans. Microw. Theory Technol. 54, 1921–1927 (2006).
[CrossRef]

P. Kosmas, C. M. Rappaport, and E. Bishop, “Modeling with the FDTD method for microwave breast cancer detection,” IEEE Trans. Microw. Theory Technol. 52, 1890–1897 (2004).
[CrossRef]

Rekanos, I. T.

A. Semnani, I. T. Rekanos, M. Kamyab, and T. G. Papadopoulos, “Two-dimensional microwave imaging based on hybrid scatterer representation and differential evolution,” IEEE Trans. Antenas Propag. 58, 3289–3298 (2010).

Richards, P. J.

A. P. Anderson and P. J. Richards, “Microwave imaging of subsurface cylindrical scatters from crosspolar backscatter,” Electron. Lett. 13, 617–619 (1977).
[CrossRef]

Richmond, J. H.

J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross shape,” IEEE Trans. Antennas Propag. 13, 334–341 (1965).
[CrossRef]

Rocca, P.

L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations,” IEEE Trans. Geosci. Remote Sensing 51, 2920–2936 (2013).

G. Oliveri, L. Poli, P. Rocca, and A. Massa, “Bayesian compressive optical imaging within the Rytov approximation,” Opt. Lett. 37, 1760–1762 (2012).
[CrossRef]

G. Oliveri, P. Rocca, and A. Massa, “A Bayesian compressive sampling-based inversion for imaging sparse scatterers,” IEEE Trans. Geosci. Remote Sens. 49, 3993–4006 (2011).
[CrossRef]

P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas Propag. Mag. 53(1), 38–49 (2011).
[CrossRef]

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25, 1–41 (2009).

Rosani, A.

M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An innovative microwave-imaging technique for nondestructive evaluation: applications to civil structures monitoring and biological bodies inspection,” IEEE Trans. Instrum. Meas. 55, 1878–1884 (2006).
[CrossRef]

Russo, F.

G. C. Giakos, M. Pastorino, F. Russo, S. Chiwdhury, N. Shah, and D. Davros, “Noninvasive imaging for the new century,” IEEE Instrum. Meas. Mag. 2(2), 32–35 (1999).
[CrossRef]

Sato, M.

C.-C. Chen, J. T. Johnson, M. Sato, and A. G. Yarovoy, special issue on “Subsurface Sensing Using Ground Penetrating Radar,” IEEE Trans. Geosci. Remote Sens. 45, 2423–2573 (2007).

Semnani, A.

A. Semnani, I. T. Rekanos, M. Kamyab, and T. G. Papadopoulos, “Two-dimensional microwave imaging based on hybrid scatterer representation and differential evolution,” IEEE Trans. Antenas Propag. 58, 3289–3298 (2010).

Shah, N.

G. C. Giakos, M. Pastorino, F. Russo, S. Chiwdhury, N. Shah, and D. Davros, “Noninvasive imaging for the new century,” IEEE Instrum. Meas. Mag. 2(2), 32–35 (1999).
[CrossRef]

Soldovieri, F.

F. Soldovieri, R. Solimene, L. Lo Monte, and M. Bavusi, “Sparse reconstruction from GPR data with applications to Rebar detection,” IEEE Trans. Instrum. Meas. 60, 1070–1079 (2011).
[CrossRef]

F. Soldovieri, O. Lopera, and S. Lambot, “Combination of advanced inversion techniques for an accurate target localization via GPR for demining applications,” IEEE Trans. Geosci. Remote Sens. 49, 451–461 (2011).

Solimene, R.

F. Soldovieri, R. Solimene, L. Lo Monte, and M. Bavusi, “Sparse reconstruction from GPR data with applications to Rebar detection,” IEEE Trans. Instrum. Meas. 60, 1070–1079 (2011).
[CrossRef]

Stinson, D. C.

D. C. Stinson, Intermediate Mathematics of Electromagnetics (Prentice-Hall, 1976).

Takenaka, T.

T. Takenaka, H. Zhou, and T. Tanaka, “Inverse scattering for a three-dimensional object in the time domain,” J. Opt. Soc. Am. A 20, 1867–1874 (2003).
[CrossRef]

H. Harada, D. J. N. Wall, T. Takenaka, and T. Tanaka, “Conjugate gradient method applied to inverse scattering problems,” IEEE Trans. Antennas Propag. 43, 784–792 (1995).
[CrossRef]

Tanaka, T.

T. Takenaka, H. Zhou, and T. Tanaka, “Inverse scattering for a three-dimensional object in the time domain,” J. Opt. Soc. Am. A 20, 1867–1874 (2003).
[CrossRef]

H. Harada, D. J. N. Wall, T. Takenaka, and T. Tanaka, “Conjugate gradient method applied to inverse scattering problems,” IEEE Trans. Antennas Propag. 43, 784–792 (1995).
[CrossRef]

van Den Berg, P. M.

P. M. van Den Berg and A. Abubakar, “Contrast source inversion method: state of the art,” PIER 34, 189–218 (2001).

Viani, F.

L. Poli, G. Oliveri, F. Viani, and A. Massa, “MT-BCS-based microwave imaging approach through minimum-norm current expansion,” IEEE Trans. Antennas Propag. 61, 4722–4732 (2013).
[CrossRef]

Wall, D. J. N.

H. Harada, D. J. N. Wall, T. Takenaka, and T. Tanaka, “Conjugate gradient method applied to inverse scattering problems,” IEEE Trans. Antennas Propag. 43, 784–792 (1995).
[CrossRef]

Yarovoy, A. G.

C.-C. Chen, J. T. Johnson, M. Sato, and A. G. Yarovoy, special issue on “Subsurface Sensing Using Ground Penetrating Radar,” IEEE Trans. Geosci. Remote Sens. 45, 2423–2573 (2007).

Zanetti, A.

D. Franceschini, A. Massa, M. Pastorino, and A. Zanetti, “Multi-resolution iterative retrieval of real inhomogeneous targets,” Inverse Probl. 21, S51–S63 (2005).
[CrossRef]

Zhong, Y.

Zhou, H.

Zoughi, R.

S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation: overview and recent advantages,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007).
[CrossRef]

R. Zoughi, Microwave Nondestructive Testing and Evaluation (Kluwer Academic, 2000).

Am. J. Math.

L. Landweber, “An iteration formula for Fredholm integral equations of the first kind,” Am. J. Math. 73, 615–624 (1951).
[CrossRef]

Electron. Lett.

A. P. Anderson and P. J. Richards, “Microwave imaging of subsurface cylindrical scatters from crosspolar backscatter,” Electron. Lett. 13, 617–619 (1977).
[CrossRef]

IEEE Antennas Propag. Mag.

P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas Propag. Mag. 53(1), 38–49 (2011).
[CrossRef]

IEEE Antennas Wireless Propag. Lett.

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “An inexact Newton method for microwave reconstruction of strong scatterers,” IEEE Antennas Wireless Propag. Lett. 5, 61–64 (2006).
[CrossRef]

IEEE Geosci. Remote Sens. Lett.

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Application of an inexact-Newton method within the second-order Born approximation to buried objects,” IEEE Geosci. Remote Sens. Lett. 4, 51–55 (2007).

T. Isernia, L. Crocco, and M. D’Urso, “New tools and series for forward and inverse scattering problems in lossy media,” IEEE Geosci. Remote Sens. Lett. 1, 327–331 (2004).
[CrossRef]

IEEE Instrum. Meas. Mag.

G. C. Giakos, M. Pastorino, F. Russo, S. Chiwdhury, N. Shah, and D. Davros, “Noninvasive imaging for the new century,” IEEE Instrum. Meas. Mag. 2(2), 32–35 (1999).
[CrossRef]

S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation: overview and recent advantages,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007).
[CrossRef]

IEEE Trans. Antenas Propag.

A. Semnani, I. T. Rekanos, M. Kamyab, and T. G. Papadopoulos, “Two-dimensional microwave imaging based on hybrid scatterer representation and differential evolution,” IEEE Trans. Antenas Propag. 58, 3289–3298 (2010).

IEEE Trans. Antennas Propag.

M. Pastorino, “Stochastic optimization methods applied to microwave imaging: a review,” IEEE Trans. Antennas Propag. 55, 538–548 (2007).
[CrossRef]

G. Bozza and M. Pastorino, “An inexact Newton-based approach to microwave imaging within the contrast source formulation,” IEEE Trans. Antennas Propag. 57, 1122–1132 (2009).
[CrossRef]

G. Oliveri, L. Lizzi, M. Pastorino, and A. Massa, “A nested multi-scaling inexact-Newton iterative approach for microwave imaging,” IEEE Trans. Antennas Propag. 60, 971–983 (2012).
[CrossRef]

J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross shape,” IEEE Trans. Antennas Propag. 13, 334–341 (1965).
[CrossRef]

O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antennas Propag. 37, 918–926 (1989).
[CrossRef]

H. Harada, D. J. N. Wall, T. Takenaka, and T. Tanaka, “Conjugate gradient method applied to inverse scattering problems,” IEEE Trans. Antennas Propag. 43, 784–792 (1995).
[CrossRef]

L. Poli, G. Oliveri, F. Viani, and A. Massa, “MT-BCS-based microwave imaging approach through minimum-norm current expansion,” IEEE Trans. Antennas Propag. 61, 4722–4732 (2013).
[CrossRef]

L. Poli, G. Oliveri, and A. Massa, “Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing,” IEEE Trans. Antennas Propag. 60, 2865–2879 (2012).
[CrossRef]

Y. J. Kim, L. Jofre, F. De Flaviis, and M. Q. Feng, “Microwave reflection tomographic array for damage detection of civil structures,” IEEE Trans. Antennas Propag. 51, 3022–3032 (2003).
[CrossRef]

IEEE Trans. Biomed. Eng.

G. Bozza, M. Brignone, and M. Pastorino, “Application of the no-sampling linear sampling method for breast cancer detection,” IEEE Trans. Biomed. Eng. 57, 2525–2534 (2010).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

C.-C. Chen, J. T. Johnson, M. Sato, and A. G. Yarovoy, special issue on “Subsurface Sensing Using Ground Penetrating Radar,” IEEE Trans. Geosci. Remote Sens. 45, 2423–2573 (2007).

F. Soldovieri, O. Lopera, and S. Lambot, “Combination of advanced inversion techniques for an accurate target localization via GPR for demining applications,” IEEE Trans. Geosci. Remote Sens. 49, 451–461 (2011).

G. Oliveri, P. Rocca, and A. Massa, “A Bayesian compressive sampling-based inversion for imaging sparse scatterers,” IEEE Trans. Geosci. Remote Sens. 49, 3993–4006 (2011).
[CrossRef]

S. Caorsi, A. Massa, and M. Pastorino, “A computational technique based on a real-coded genetic algorithm for microwave imaging purposes,” IEEE Trans. Geosci. Remote Sens. 38, 1697–1708 (2000).

A. Qing, “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Trans. Geosci. Remote Sens. 44, 116–125 (2005).

T. J. Cui, W. C. Chew, A. A. Aydiner, and S. Chen, “Inverse scattering of two-dimensional dielectric objects in a lossy earth using the distorted Born iterative method,” IEEE Trans. Geosci. Remote Sens. 39, 339–346 (2001).

O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, “Subsurface inverse scattering problems: quantifying qualifying and achieving the available information,” IEEE Trans. Geosci. Remote Sens. 39, 2527–2538 (2001).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing

R. Pierri and G. Leone, “Inverse scattering of dielectric cylinders by a second-order Born approximation,” IEEE Trans. Geosci. Remote Sensing 37, 374–382 (1999).

C. Estatico, M. Pastorino, and A. Randazzo, “An inexact-Newton method for short-range microwave imaging within the second-order Born approximation,” IEEE Trans. Geosci. Remote Sensing 43, 2593–2605 (2005).

S. Caorsi, A. Massa, M. Pastorino, and A. Randazzo, “Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm,” IEEE Trans. Geosci. Remote Sensing 41, 2745–2753 (2003).

L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations,” IEEE Trans. Geosci. Remote Sensing 51, 2920–2936 (2013).

I. Catapano, L. Crocco, and T. Isernia, “Improved sampling methods for shape reconstruction of 3-D buried targets,” IEEE Trans. Geosci. Remote Sensing 46, 3265–3273 (2008).

R. Firoozabadi, E. L. Miller, C. M. Rappaport, and A. W. Morgenthaler, “Subsurface sensing of buried objects under a randomly rough surface using scattered electromagnetic field data,” IEEE Trans. Geosci. Remote Sensing 45, 104–117 (2007).
[CrossRef]

IEEE Trans. Instrum. Meas.

F. Soldovieri, R. Solimene, L. Lo Monte, and M. Bavusi, “Sparse reconstruction from GPR data with applications to Rebar detection,” IEEE Trans. Instrum. Meas. 60, 1070–1079 (2011).
[CrossRef]

M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An innovative microwave-imaging technique for nondestructive evaluation: applications to civil structures monitoring and biological bodies inspection,” IEEE Trans. Instrum. Meas. 55, 1878–1884 (2006).
[CrossRef]

M. Pastorino, A. Massa, and S. Caorsi, “A microwave inverse scattering technique for image reconstruction based on a genetic algorithm,” IEEE Trans. Instrum. Meas. 49, 573–578 (2000).
[CrossRef]

M. Pastorino, S. Caorsi, A. Massa, and A. Randazzo, “Reconstruction algorithms for electromagnetic imaging,” IEEE Trans. Instrum. Meas. 53, 692–699 (2004).
[CrossRef]

G. Bozza, C. Estatico, A. Massa, M. Pastorino, and A. Randazzo, “Short-range image-based method for the inspection of strong scatterers using microwaves,” IEEE Trans. Instrum. Meas. 56, 1181–1188 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Technol.

S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microw. Theory Technol. 51, 1162–1173 (2003).
[CrossRef]

P. Kosmas, C. M. Rappaport, and E. Bishop, “Modeling with the FDTD method for microwave breast cancer detection,” IEEE Trans. Microw. Theory Technol. 52, 1890–1897 (2004).
[CrossRef]

P. Kosmas and C. M. Rappaport, “FDTD-based time reversal for microwave breast cancer detection-localization in three dimensions,” IEEE Trans. Microw. Theory Technol. 54, 1921–1927 (2006).
[CrossRef]

Inverse Probl.

O. Dorn and D. Lesselier, special issue on “Electromagnetic Inverse Problems: Emerging Methods and Novel Applications,” Inverse Probl. 26, 074001 (2010).

A. Massa, M. Pastorino, and A. Randazzo, “Reconstruction of two-dimensional buried objects by a hybrid differential evolution method,” Inverse Probl. 20, S135–S150 (2004).
[CrossRef]

M. Lambert and D. Lesselier, “Binary-constrained inversion of a buried cylindrical obstacle from complete and phaseless magnetic fields,” Inverse Probl. 16, 563–576 (2000).

A. Baussard, E. L. Miller, and D. Lesselier, “Adaptive multiscale reconstruction of buried objects,” Inverse Probl. 20, S1–S15 (2004).
[CrossRef]

D. Franceschini, A. Massa, M. Pastorino, and A. Zanetti, “Multi-resolution iterative retrieval of real inhomogeneous targets,” Inverse Probl. 21, S51–S63 (2005).
[CrossRef]

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25, 1–41 (2009).

C. Estatico, G. Bozza, A. Massa, M. Pastorino, and A. Randazzo, “A two-step iterative inexact-Newton method for electromagnetic imaging of dielectric structures from real data,” Inverse Probl. 21, S81–S94 (2005).
[CrossRef]

J. Opt. Soc. Am. A

Mater. Eval.

G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Microwave imaging for nondestructive testing of dielectric structures: numerical simulations using an inexact Newton technique,” Mater. Eval. 65, 917–922 (2007).

Microw. Opt. Technol. Lett.

A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact-Newton method: experimental validation,” Microw. Opt. Technol. Lett. 53, 2834–2838 (2011).

Opt. Lett.

PIER

P. M. van Den Berg and A. Abubakar, “Contrast source inversion method: state of the art,” PIER 34, 189–218 (2001).

T. M. Habashy and A. Abubakar, “A general framework for constraint minimization for the inversion of electromagnetic measurements,” PIER 46, 265–312 (2004).

Other

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (IOP, 1998).

R. Zoughi, Microwave Nondestructive Testing and Evaluation (Kluwer Academic, 2000).

M. Pastorino, Microwave Imaging (Wiley, 2010).

D. C. Stinson, Intermediate Mathematics of Electromagnetics (Prentice-Hall, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Geometry of the problem and imaging setup.

Fig. 2.
Fig. 2.

Sensitivity analysis (homogeneous square scatterer; (λb/3), τ=1.5, SNR=20dB). Behavior of the integral error Ξtot versus η and W when K=K*, S=S* (a), and versus K when η=η*, W=W*, and S=S* (b). (c) Plot of the total, internal, and external error as a function of S when K=K*, η=η*, and W=W*.

Fig. 3.
Fig. 3.

Sensitivity analysis (homogeneous square scatterer; (λb/3), τ=1.5, SNR=20dB, S=S*). Actual (a) and retrieved (b), (c) contrast profiles when (b) K=K*, W=W*, η=104; and (c) K=K*, W=40, η=η*.

Fig. 4.
Fig. 4.

Sensitivity analysis (homogeneous square scatterer; (λb/3), τ=1.5, SNR=20dB, K=K*, W=W*, η=η*). (a) Behavior of Φ and ζ versus the IMSA-IN iteration number. Plot of the retrieved contrast profiles when (b) S=1, (c) S=2, (d) S=3, and (e) S=4=S*.

Fig. 5.
Fig. 5.

Performance assessment (τ=1.5, SNR[10,40] dB). (a) Behavior of Ξtot as a function of SNR when dealing with square or L-shaped targets. Plot of the contrast profiles retrieved by (b), (c) BARE-IN-SOBA and (d), (e) IMSA-IN-SOBA when SNR=10dB. (b), (d) square scatterer; (c), (e) L-shaped scatterer.

Fig. 6.
Fig. 6.

Performance assessment (O-shaped scatterer; (λb/2) SNR[10,30]dB). Behavior of Ξtot as a function of τ obtained by BARE-IN-SOBA and IMSA-IN-SOBA.

Fig. 7.
Fig. 7.

Performance assessment (O-shaped scatterer; (λb/2), SNR=20dB). Plot of the contrast profiles retrieved by (a), (c), (e) BARE-IN-SOBA and (b), (d), (f) IMSA-IN-SOBA when (a), (b) τ=0.2; (c), (d) τ=1.0; and (e), (f) τ=2.2.

Fig. 8.
Fig. 8.

Performance assessment (inhomogeneous scatterers, SNR=20dB). Plot of the actual (a), (b) and retrieved (c)–(f) contrast profiles by (c), (d) BARE-IN-SOBA and (e), (f) IMSA-IN-SOBA for (a), (c), (e) double-L and (b), (d), (f) concentric targets.

Fig. 9.
Fig. 9.

Performance assessment (homogeneous square scatterer; (λb/3), R{τ}=1.5, SNR[10,30]dB). (a) Behavior of Ξtot as a function of σc. Plot of the (b), (c) real and (d), (e) imaginary parts of the contrast profiles retrieved by (b), (d) BARE-IN-SOBA and (c), (e) IMSA-IN-SOBA when SNR=20dB.

Tables (1)

Tables Icon

Table 1. Performance Assessment (O-Shaped Scatterer; (λb/2), SNR[10,30]dB): Error Values and Computational Indexes

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

τ(x)=1εb[ε(x)εb]
Ψscatp(x)=Ψtotp(x)Ψincp(x)=kb2Dinvτ(y)Ψtotp(y)Ghs(x/y)dy,
Ψscatp(x)FB1pτ(x)kb2Dinvτ(y)FB1pτ(y)Ghs(x/y)dy=FB2p(τ)(x),
FB1pτ(x)=kb2Dinvτ(y)Ψincp(y)Ghs(x/y)dy.
FB2(τ)=[FB21(τ)FB2P(τ)]=[Ψscat1ΨscatP]=Ψscat.
Fτiu=ΨscatFB2(τi),
Fτiu=[Fτi1uFτiPu],
Fτipu(x)=FB1pu(x)kb2Dinvτi(y)FB1pu(y)Ghs(x/y)dykb2Dinvu(y)FB1pτi(y)Ghs(x/y)dy.
ui,0=0ui,k+1=ui,kρiFτi*(Fτiui,kΨscat+FB2(τi)),
τi+1=τi+ui,
(Fτi(s))u(s)=ΨscatFB2(s)(τi(s)).
ui,k+1(s)=ui,k(s)ρi(s)(Fτi(s))*[(Fτi(s))ui,k(s)Ψscat+FB2(s)(τi(s))],k=0,,K1.
Φi=p=1Pm=1MΨscatp(xm)Ψ˜scat,ip(xm)22p=1Pm=1MΨscatp(xm)22,
ζi=|WΦij=1WΦij|Φiη,
Ξα=1Nαn=1Nα|τ˜(xn,yn)τ(xn,yn)||τ(xn,yn)+1|α=tot,ext,int,
η*=102,
W*=5,
K*=60,
S*=4

Metrics