K. P. Thompson, “Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: the astigmatic aberrations,” J. Opt. Soc. Am. A 28, 821–836 (2011).

[CrossRef]

G. Esser, W. Becken, W. Muller, P. Baumbach, J. Arasa, and D. Uttenweiler, “Derivation of the propagation equations for higher order aberrations of local wavefronts,” J. Opt. Soc. Am. A 28, 2442–2458 (2011).

[CrossRef]

G. M. Dai, C. E. Campbell, L. Chen, H. Zhao, and D. Chernyak, “Wavefront propagation from one plane to another with the use of Zernike polynomials and Taylor monomials,” Appl. Opt. 48, 477–488 (2009).

[CrossRef]

K. P. Thompson, “Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: spherical aberration,” J. Opt. Soc. Am. A 26, 1090–1100 (2009).

[CrossRef]

W. F. Harris, “Power vectors versus power matrices, and the mathematical nature of dioptric power,” Optom. Vis. Sci. 84, 1060–1063 (2007).

[CrossRef]

E. Acosta and R. Blendowske, “Paraxial optics of astigmatic systems: relations between the wavefront and the ray picture approaches,” Optom. Vis. Sci. 84, E72–E78 (2007).

[CrossRef]

R. Blendowske and E. Acosta, “Paraxial propagation of astigmatic wavefronts through noncoaxial astigmatic optical systems,” Optom. Vis. Sci. 83, 119–122 (2006).

[CrossRef]

E. Acosta and R. Blendowske, “Paraxial propagation of astigmatic wavefronts in optical systems by an augmented step along method for vergences,” Optom. Vis. Sci. 82, 923–932 (2005).

[CrossRef]

L. N. Thibos, “Propagation of astigmatic wavefronts using power vectors,” South African Optometrist 62, 111–113 (2003).

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Report from the VSIA taskforce on standards for reporting optical aberrations of the eye,” J. Refract. Surg. 16, S654–S655 (2000).

W. F. Harris, “Dioptric power: its nature and its representation in three- and four-dimensional space,” Optom. Vis. Sci. 74, 349–366 (1997).

[CrossRef]

W. F. Harris, “Wavefronts and their propagation in astigmatic optical systems,” Optom. Vis. Sci. 73, 606–612 (1996).

W. F. Harris, “Ray vector fields, prismatic effect, and thick astigmatic optical systems,” Optom. Vis. Sci. 73, 418–423 (1996).

[CrossRef]

W. F. Harris, “Torsional analogue of Prentice’s equation and torsional prismatic effect in astigmatic lenses,” Ophthalmic Physiolog. Opt. 10, 203–204 (1990).

[CrossRef]

M. P. Keating, “Advantages of a block matrix formulation for an astigmatic system,” Am. J. Optom. Physiol. Opt. 59, 851–857 (1982).

[CrossRef]

M. P. Keating, “A system matrix for astigmatic optical systems: II. Corrected systems including an astigmatic eye,” Am. J. Optom. Physiol. Opt. 58, 919–929 (1981).

M. P. Keating, “A system matrix for astigmatic optical systems: I. Introduction and dioptric power relations,” Am. J. Optom. Physiol. Opt. 58, 810–819 (1981).

M. P. Keating, “Lens effectivity in terms of dioptric power matrices,” Am. J. Optom. Physiol. Opt. 58, 1154–1160 (1981).

W. F. Long, “A matrix formalism for decentration problems,” Am. J. Optom. Physiol. Opt. 53, 27–33 (1976).

[CrossRef]

E. Acosta and R. Blendowske, “Paraxial optics of astigmatic systems: relations between the wavefront and the ray picture approaches,” Optom. Vis. Sci. 84, E72–E78 (2007).

[CrossRef]

R. Blendowske and E. Acosta, “Paraxial propagation of astigmatic wavefronts through noncoaxial astigmatic optical systems,” Optom. Vis. Sci. 83, 119–122 (2006).

[CrossRef]

E. Acosta and R. Blendowske, “Paraxial propagation of astigmatic wavefronts in optical systems by an augmented step along method for vergences,” Optom. Vis. Sci. 82, 923–932 (2005).

[CrossRef]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Report from the VSIA taskforce on standards for reporting optical aberrations of the eye,” J. Refract. Surg. 16, S654–S655 (2000).

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, K. Chang, ed., Wiley Series in Microwave and Optical Engineering (Wiley, 2006).

E. Acosta and R. Blendowske, “Paraxial optics of astigmatic systems: relations between the wavefront and the ray picture approaches,” Optom. Vis. Sci. 84, E72–E78 (2007).

[CrossRef]

R. Blendowske and E. Acosta, “Paraxial propagation of astigmatic wavefronts through noncoaxial astigmatic optical systems,” Optom. Vis. Sci. 83, 119–122 (2006).

[CrossRef]

E. Acosta and R. Blendowske, “Paraxial propagation of astigmatic wavefronts in optical systems by an augmented step along method for vergences,” Optom. Vis. Sci. 82, 923–932 (2005).

[CrossRef]

A. Gerrard and J. Burch, Introduction to Matrix Methods in Optics (Wiley, 1975).

A. Gerrard and J. Burch, Introduction to Matrix Methods in Optics (Wiley, 1975).

W. F. Harris, “Power vectors versus power matrices, and the mathematical nature of dioptric power,” Optom. Vis. Sci. 84, 1060–1063 (2007).

[CrossRef]

W. F. Harris, “Dioptric power: its nature and its representation in three- and four-dimensional space,” Optom. Vis. Sci. 74, 349–366 (1997).

[CrossRef]

W. F. Harris, “Ray vector fields, prismatic effect, and thick astigmatic optical systems,” Optom. Vis. Sci. 73, 418–423 (1996).

[CrossRef]

W. F. Harris, “Wavefronts and their propagation in astigmatic optical systems,” Optom. Vis. Sci. 73, 606–612 (1996).

W. F. Harris, “Torsional analogue of Prentice’s equation and torsional prismatic effect in astigmatic lenses,” Ophthalmic Physiolog. Opt. 10, 203–204 (1990).

[CrossRef]

M. P. Keating, “Advantages of a block matrix formulation for an astigmatic system,” Am. J. Optom. Physiol. Opt. 59, 851–857 (1982).

[CrossRef]

M. P. Keating, “Lens effectivity in terms of dioptric power matrices,” Am. J. Optom. Physiol. Opt. 58, 1154–1160 (1981).

M. P. Keating, “A system matrix for astigmatic optical systems: I. Introduction and dioptric power relations,” Am. J. Optom. Physiol. Opt. 58, 810–819 (1981).

M. P. Keating, “A system matrix for astigmatic optical systems: II. Corrected systems including an astigmatic eye,” Am. J. Optom. Physiol. Opt. 58, 919–929 (1981).

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, K. Chang, ed., Wiley Series in Microwave and Optical Engineering (Wiley, 2006).

W. F. Long, “A matrix formalism for decentration problems,” Am. J. Optom. Physiol. Opt. 53, 27–33 (1976).

[CrossRef]

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, K. Chang, ed., Wiley Series in Microwave and Optical Engineering (Wiley, 2006).

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, K. Chang, ed., Wiley Series in Microwave and Optical Engineering (Wiley, 2006).

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Report from the VSIA taskforce on standards for reporting optical aberrations of the eye,” J. Refract. Surg. 16, S654–S655 (2000).

L. N. Thibos, “Propagation of astigmatic wavefronts using power vectors,” South African Optometrist 62, 111–113 (2003).

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Report from the VSIA taskforce on standards for reporting optical aberrations of the eye,” J. Refract. Surg. 16, S654–S655 (2000).

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, K. Chang, ed., Wiley Series in Microwave and Optical Engineering (Wiley, 2006).

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Report from the VSIA taskforce on standards for reporting optical aberrations of the eye,” J. Refract. Surg. 16, S654–S655 (2000).

W. F. Long, “A matrix formalism for decentration problems,” Am. J. Optom. Physiol. Opt. 53, 27–33 (1976).

[CrossRef]

M. P. Keating, “A system matrix for astigmatic optical systems: II. Corrected systems including an astigmatic eye,” Am. J. Optom. Physiol. Opt. 58, 919–929 (1981).

M. P. Keating, “A system matrix for astigmatic optical systems: I. Introduction and dioptric power relations,” Am. J. Optom. Physiol. Opt. 58, 810–819 (1981).

M. P. Keating, “Advantages of a block matrix formulation for an astigmatic system,” Am. J. Optom. Physiol. Opt. 59, 851–857 (1982).

[CrossRef]

M. P. Keating, “Lens effectivity in terms of dioptric power matrices,” Am. J. Optom. Physiol. Opt. 58, 1154–1160 (1981).

K. P. Thompson, “Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: spherical aberration,” J. Opt. Soc. Am. A 26, 1090–1100 (2009).

[CrossRef]

K. P. Thompson, “Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: the comatic aberrations,” J. Opt. Soc. Am. A 27, 1490–1504 (2010).

[CrossRef]

K. P. Thompson, “Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: the astigmatic aberrations,” J. Opt. Soc. Am. A 28, 821–836 (2011).

[CrossRef]

G. Esser, W. Becken, W. Muller, P. Baumbach, J. Arasa, and D. Uttenweiler, “Derivation of the propagation equations for higher order aberrations of local wavefronts,” J. Opt. Soc. Am. A 28, 2442–2458 (2011).

[CrossRef]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Report from the VSIA taskforce on standards for reporting optical aberrations of the eye,” J. Refract. Surg. 16, S654–S655 (2000).

W. F. Harris, “Torsional analogue of Prentice’s equation and torsional prismatic effect in astigmatic lenses,” Ophthalmic Physiolog. Opt. 10, 203–204 (1990).

[CrossRef]

W. F. Harris, “Ray vector fields, prismatic effect, and thick astigmatic optical systems,” Optom. Vis. Sci. 73, 418–423 (1996).

[CrossRef]

W. F. Harris, “Dioptric power: its nature and its representation in three- and four-dimensional space,” Optom. Vis. Sci. 74, 349–366 (1997).

[CrossRef]

W. F. Harris, “Power vectors versus power matrices, and the mathematical nature of dioptric power,” Optom. Vis. Sci. 84, 1060–1063 (2007).

[CrossRef]

E. Acosta and R. Blendowske, “Paraxial propagation of astigmatic wavefronts in optical systems by an augmented step along method for vergences,” Optom. Vis. Sci. 82, 923–932 (2005).

[CrossRef]

W. F. Harris, “Wavefronts and their propagation in astigmatic optical systems,” Optom. Vis. Sci. 73, 606–612 (1996).

E. Acosta and R. Blendowske, “Paraxial optics of astigmatic systems: relations between the wavefront and the ray picture approaches,” Optom. Vis. Sci. 84, E72–E78 (2007).

[CrossRef]

R. Blendowske and E. Acosta, “Paraxial propagation of astigmatic wavefronts through noncoaxial astigmatic optical systems,” Optom. Vis. Sci. 83, 119–122 (2006).

[CrossRef]

L. N. Thibos, “Propagation of astigmatic wavefronts using power vectors,” South African Optometrist 62, 111–113 (2003).

A. Gerrard and J. Burch, Introduction to Matrix Methods in Optics (Wiley, 1975).

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, K. Chang, ed., Wiley Series in Microwave and Optical Engineering (Wiley, 2006).