Abstract

By using the formal analogy between the evolution of the state vector in quantum mechanics and the Jones vector in polarization optics, we construct and demonstrate experimentally efficient broadband half-wave polarization retarders and tunable narrowband polarization filters. Both the broadband retarders and the filters are constructed by the same set of stacked standard multiorder optical wave plates (WPs) rotated at different angles with respect to their fast polarization axes: for a certain set of angles this device behaves as a broadband polarization retarder, while for another set of angles it turns into a narrowband polarization filter. We demonstrate that the transmission profile of our filter can be centered around any desired wavelength in a certain vicinity of the design wavelength of the WPs solely by selecting appropriate rotation angles.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Grischkowsky, S. R. Keinding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [CrossRef]
  2. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006).
    [CrossRef]
  3. S. Hanany, J. Hubmayr, B. R. Johnson, T. Matsumura, P. Oxley, and M. Thibodeau, “Millimeter-wave achromatic half-wave plate,” Appl. Opt. 44, 4666–4670 (2005).
    [CrossRef]
  4. G. Pisano, G. Savini, P. A. R. Ade, V. Hanes, and W. K. Gear, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization,” Appl. Opt. 45, 6982–6989 (2006).
    [CrossRef]
  5. T. Matsumura, S. Hanany, P. A. R. Ade, B. R. Johnson, T. J. Jones, P. Jonnalagadda, and G. Savini, “Performance of three- and five-stack achromatic half-wave plates at millimeter wavelengths,” Appl. Opt. 48, 3614–3625 (2009).
    [CrossRef]
  6. C. D. West and A. S. Makas, “The spectral dispersion of birefringence, especially of birefringent plastic sheets,” J. Opt. Soc. Am. 39, 791–794 (1949).
    [CrossRef]
  7. M. G. Destriau and J. Prouteau, “Réalisation d’un quart d’onde quasi achromatique par juxtaposition de deux lames cristallines de même nature,” J. Phys. Radium 10, 53–55 (1949).
    [CrossRef]
  8. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I: an achromatic circular polarizer,” Proc. Indian Acad. Sci. 41, 130–136 (1955).
  9. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II: an achromatic quarter-WP,” Proc. Indian Acad. Sci. 41, 137–144 (1955).
  10. S. E. Harris, E. O. Ammann, and A. C. Chang, “Optical network synthesis using birefringent crystals. I. Synthesis of lossless networks of equal-length crystals,” J. Opt. Soc. Am. A 54, 1267–1279 (1964).
    [CrossRef]
  11. C. M. McIntyre and S. E. Harris, “Achromatic wave plates for the visible spectrum,” J. Opt. Soc. Am. A 58, 1575–1580 (1968).
    [CrossRef]
  12. Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76, 3995–3997 (2000).
    [CrossRef]
  13. M. D. Lavrentovich, T. A. Sergan, and J. R. Kelly, “Switchable broadband achromatic half-wave plate with nematic liquid crystals,” Opt. Lett. 29, 1411–1413 (2004).
    [CrossRef]
  14. A. M. Title and W. J. Rosenberg, “Tunable birefringent filters,” Opt. Eng. 20, 815–823 (1981).
    [CrossRef]
  15. B. Lyot, “Filter monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. 7, 31–79 (1944).
  16. J. W. Evans, “Solc birefringent filter,” J. Opt. Soc. Am. 48, 142–145 (1958).
    [CrossRef]
  17. I. Šolc, “Birefringent chain filters,” J. Opt. Soc. Am. 55, 621–625 (1965).
    [CrossRef]
  18. J. M. Beckers, L. Dickson, and R. S. Joyce, “Observing the sun with a fully tunable Lyot-Ohman filter,” Appl. Opt. 14, 2061–2066 (1975).
    [CrossRef]
  19. G. A. Kopp, M. J. Derks, D. F. Elmore, D. M. Hassler, J. C. Woods, J. L. Streete, and J. G. Blankner, “Tunable liquid-crystal filter for solar imaging at the He i 1083-nm line,” Appl. Opt. 36, 291–296 (1997).
    [CrossRef]
  20. G. Shabtay, E. Eidinger, Z. Zalevsky, D. Mendlovic, and E. Marom, “Tunable birefringent filters—optimal iterative design,” Opt. Express 10, 1534–1541 (2002).
    [CrossRef]
  21. I. Abdulhalim, “Polarized optical filtering from general linearly twisted structures,” Opt. Commun. 267, 36–39 (2006).
    [CrossRef]
  22. I. Abdulhalim, “Effect of the number of sublayers on axial optics of anisotropic helical structures,” Appl. Opt. 47, 3002–3008 (2008).
    [CrossRef]
  23. O. Aharon and I. Abdulhalim, “Tunable optical filter having a large dynamic range,” Opt. Lett. 34, 2114–2116 (2009).
    [CrossRef]
  24. O. Aharon and I. Abdulhalim, “Liquid crystal Lyot tunable filter with extended free spectral range,” Opt. Express 17, 11426–11433 (2009).
    [CrossRef]
  25. G. D. Sharp, K. M. Johnson, and D. Doroski, “Continuously tunable smectic A* liquid-crystal color filter,” Opt. Lett. 15, 523–525 (1990).
    [CrossRef]
  26. M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).
    [CrossRef]
  27. H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
    [CrossRef]
  28. N. Timoney, V. Elman, S. Glaser, C. Weiss, M. Johanning, W. Neuhauser, and C. Wunderlich, “Error-resistant single-qubit gates with trapped ions,” Phys. Rev. A 77, 052334 (2008).
    [CrossRef]
  29. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–493 (1941).
    [CrossRef]
  30. A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007).
    [CrossRef]
  31. S. Wimperis, “Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments,” J. Magn. Reson. 109, 221–231 (1994).
    [CrossRef]
  32. S. S. Ivanov, A. A. Rangelov, N. V. Vitanov, T. Peters, and T. Halfmann, “Highly efficient broadband conversion of light polarization by composite retarders,” J. Opt. Soc. Am. A 29, 265–269 (2012).
    [CrossRef]
  33. T. Peters, S. S. Ivanov, D. Englisch, A. A. Rangelov, N. V. Vitanov, and T. Halfmann, “Variable ultra-broadband and narrowband composite polarization retarders,” Appl. Opt. 51, 7466–7474 (2012).
    [CrossRef]

2012 (2)

2009 (3)

2008 (3)

I. Abdulhalim, “Effect of the number of sublayers on axial optics of anisotropic helical structures,” Appl. Opt. 47, 3002–3008 (2008).
[CrossRef]

H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
[CrossRef]

N. Timoney, V. Elman, S. Glaser, C. Weiss, M. Johanning, W. Neuhauser, and C. Wunderlich, “Error-resistant single-qubit gates with trapped ions,” Phys. Rev. A 77, 052334 (2008).
[CrossRef]

2007 (1)

A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007).
[CrossRef]

2006 (3)

2005 (1)

2004 (1)

2002 (1)

2000 (1)

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76, 3995–3997 (2000).
[CrossRef]

1997 (1)

1994 (1)

S. Wimperis, “Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments,” J. Magn. Reson. 109, 221–231 (1994).
[CrossRef]

1990 (2)

1986 (1)

M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).
[CrossRef]

1981 (1)

A. M. Title and W. J. Rosenberg, “Tunable birefringent filters,” Opt. Eng. 20, 815–823 (1981).
[CrossRef]

1975 (1)

1968 (1)

C. M. McIntyre and S. E. Harris, “Achromatic wave plates for the visible spectrum,” J. Opt. Soc. Am. A 58, 1575–1580 (1968).
[CrossRef]

1965 (1)

1964 (1)

S. E. Harris, E. O. Ammann, and A. C. Chang, “Optical network synthesis using birefringent crystals. I. Synthesis of lossless networks of equal-length crystals,” J. Opt. Soc. Am. A 54, 1267–1279 (1964).
[CrossRef]

1958 (1)

1955 (2)

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I: an achromatic circular polarizer,” Proc. Indian Acad. Sci. 41, 130–136 (1955).

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II: an achromatic quarter-WP,” Proc. Indian Acad. Sci. 41, 137–144 (1955).

1949 (2)

M. G. Destriau and J. Prouteau, “Réalisation d’un quart d’onde quasi achromatique par juxtaposition de deux lames cristallines de même nature,” J. Phys. Radium 10, 53–55 (1949).
[CrossRef]

C. D. West and A. S. Makas, “The spectral dispersion of birefringence, especially of birefringent plastic sheets,” J. Opt. Soc. Am. 39, 791–794 (1949).
[CrossRef]

1944 (1)

B. Lyot, “Filter monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. 7, 31–79 (1944).

1941 (1)

Abdulhalim, I.

Ade, P. A. R.

Aharon, O.

Ammann, E. O.

S. E. Harris, E. O. Ammann, and A. C. Chang, “Optical network synthesis using birefringent crystals. I. Synthesis of lossless networks of equal-length crystals,” J. Opt. Soc. Am. A 54, 1267–1279 (1964).
[CrossRef]

Ardavan, A.

A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007).
[CrossRef]

Beckers, J. M.

Blankner, J. G.

Blatt, R.

H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
[CrossRef]

Chang, A. C.

S. E. Harris, E. O. Ammann, and A. C. Chang, “Optical network synthesis using birefringent crystals. I. Synthesis of lossless networks of equal-length crystals,” J. Opt. Soc. Am. A 54, 1267–1279 (1964).
[CrossRef]

Derks, M. J.

Destriau, M. G.

M. G. Destriau and J. Prouteau, “Réalisation d’un quart d’onde quasi achromatique par juxtaposition de deux lames cristallines de même nature,” J. Phys. Radium 10, 53–55 (1949).
[CrossRef]

Dickson, L.

Doroski, D.

Eidinger, E.

Elman, V.

N. Timoney, V. Elman, S. Glaser, C. Weiss, M. Johanning, W. Neuhauser, and C. Wunderlich, “Error-resistant single-qubit gates with trapped ions,” Phys. Rev. A 77, 052334 (2008).
[CrossRef]

Elmore, D. F.

Englisch, D.

Evans, J. W.

Fattinger, C.

Gallot, G.

Gear, W. K.

Glaser, S.

N. Timoney, V. Elman, S. Glaser, C. Weiss, M. Johanning, W. Neuhauser, and C. Wunderlich, “Error-resistant single-qubit gates with trapped ions,” Phys. Rev. A 77, 052334 (2008).
[CrossRef]

Grischkowsky, D.

Häffner, H.

H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
[CrossRef]

Halfmann, T.

Hanany, S.

Hanes, V.

Harris, S. E.

C. M. McIntyre and S. E. Harris, “Achromatic wave plates for the visible spectrum,” J. Opt. Soc. Am. A 58, 1575–1580 (1968).
[CrossRef]

S. E. Harris, E. O. Ammann, and A. C. Chang, “Optical network synthesis using birefringent crystals. I. Synthesis of lossless networks of equal-length crystals,” J. Opt. Soc. Am. A 54, 1267–1279 (1964).
[CrossRef]

Hassler, D. M.

Hubmayr, J.

Ivanov, S. S.

Johanning, M.

N. Timoney, V. Elman, S. Glaser, C. Weiss, M. Johanning, W. Neuhauser, and C. Wunderlich, “Error-resistant single-qubit gates with trapped ions,” Phys. Rev. A 77, 052334 (2008).
[CrossRef]

Johnson, B. R.

Johnson, K. M.

Jones, R. C.

Jones, T. J.

Jonnalagadda, P.

Joyce, R. S.

Keinding, S. R.

Kelly, J. R.

Kim, Y. J.

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76, 3995–3997 (2000).
[CrossRef]

Kopp, G. A.

Lavrentovich, M. D.

Levitt, M. H.

M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).
[CrossRef]

Lyot, B.

B. Lyot, “Filter monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. 7, 31–79 (1944).

Makas, A. S.

Marom, E.

Masson, J.-B.

Matsumura, T.

McIntyre, C. M.

C. M. McIntyre and S. E. Harris, “Achromatic wave plates for the visible spectrum,” J. Opt. Soc. Am. A 58, 1575–1580 (1968).
[CrossRef]

Mendlovic, D.

Neuhauser, W.

N. Timoney, V. Elman, S. Glaser, C. Weiss, M. Johanning, W. Neuhauser, and C. Wunderlich, “Error-resistant single-qubit gates with trapped ions,” Phys. Rev. A 77, 052334 (2008).
[CrossRef]

Oxley, P.

Pancharatnam, S.

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I: an achromatic circular polarizer,” Proc. Indian Acad. Sci. 41, 130–136 (1955).

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II: an achromatic quarter-WP,” Proc. Indian Acad. Sci. 41, 137–144 (1955).

Patel, J. S.

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76, 3995–3997 (2000).
[CrossRef]

Peters, T.

Pisano, G.

Prouteau, J.

M. G. Destriau and J. Prouteau, “Réalisation d’un quart d’onde quasi achromatique par juxtaposition de deux lames cristallines de même nature,” J. Phys. Radium 10, 53–55 (1949).
[CrossRef]

Rangelov, A. A.

Roos, C. F.

H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
[CrossRef]

Rosenberg, W. J.

A. M. Title and W. J. Rosenberg, “Tunable birefringent filters,” Opt. Eng. 20, 815–823 (1981).
[CrossRef]

Savini, G.

Sergan, T. A.

Shabtay, G.

Sharp, G. D.

Šolc, I.

Streete, J. L.

Thibodeau, M.

Timoney, N.

N. Timoney, V. Elman, S. Glaser, C. Weiss, M. Johanning, W. Neuhauser, and C. Wunderlich, “Error-resistant single-qubit gates with trapped ions,” Phys. Rev. A 77, 052334 (2008).
[CrossRef]

Title, A. M.

A. M. Title and W. J. Rosenberg, “Tunable birefringent filters,” Opt. Eng. 20, 815–823 (1981).
[CrossRef]

van Exter, M.

Vitanov, N. V.

Weiss, C.

N. Timoney, V. Elman, S. Glaser, C. Weiss, M. Johanning, W. Neuhauser, and C. Wunderlich, “Error-resistant single-qubit gates with trapped ions,” Phys. Rev. A 77, 052334 (2008).
[CrossRef]

West, C. D.

Wimperis, S.

S. Wimperis, “Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments,” J. Magn. Reson. 109, 221–231 (1994).
[CrossRef]

Woods, J. C.

Wunderlich, C.

N. Timoney, V. Elman, S. Glaser, C. Weiss, M. Johanning, W. Neuhauser, and C. Wunderlich, “Error-resistant single-qubit gates with trapped ions,” Phys. Rev. A 77, 052334 (2008).
[CrossRef]

Zalevsky, Z.

Zhuang, Z.

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76, 3995–3997 (2000).
[CrossRef]

Ann. Astrophys. (1)

B. Lyot, “Filter monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. 7, 31–79 (1944).

Appl. Opt. (7)

Appl. Phys. Lett. (1)

Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76, 3995–3997 (2000).
[CrossRef]

J. Magn. Reson. (1)

S. Wimperis, “Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments,” J. Magn. Reson. 109, 221–231 (1994).
[CrossRef]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (3)

S. E. Harris, E. O. Ammann, and A. C. Chang, “Optical network synthesis using birefringent crystals. I. Synthesis of lossless networks of equal-length crystals,” J. Opt. Soc. Am. A 54, 1267–1279 (1964).
[CrossRef]

C. M. McIntyre and S. E. Harris, “Achromatic wave plates for the visible spectrum,” J. Opt. Soc. Am. A 58, 1575–1580 (1968).
[CrossRef]

S. S. Ivanov, A. A. Rangelov, N. V. Vitanov, T. Peters, and T. Halfmann, “Highly efficient broadband conversion of light polarization by composite retarders,” J. Opt. Soc. Am. A 29, 265–269 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Radium (1)

M. G. Destriau and J. Prouteau, “Réalisation d’un quart d’onde quasi achromatique par juxtaposition de deux lames cristallines de même nature,” J. Phys. Radium 10, 53–55 (1949).
[CrossRef]

New J. Phys. (1)

A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007).
[CrossRef]

Opt. Commun. (1)

I. Abdulhalim, “Polarized optical filtering from general linearly twisted structures,” Opt. Commun. 267, 36–39 (2006).
[CrossRef]

Opt. Eng. (1)

A. M. Title and W. J. Rosenberg, “Tunable birefringent filters,” Opt. Eng. 20, 815–823 (1981).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rep. (1)

H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
[CrossRef]

Phys. Rev. A (1)

N. Timoney, V. Elman, S. Glaser, C. Weiss, M. Johanning, W. Neuhauser, and C. Wunderlich, “Error-resistant single-qubit gates with trapped ions,” Phys. Rev. A 77, 052334 (2008).
[CrossRef]

Proc. Indian Acad. Sci. (2)

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I: an achromatic circular polarizer,” Proc. Indian Acad. Sci. 41, 130–136 (1955).

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II: an achromatic quarter-WP,” Proc. Indian Acad. Sci. 41, 137–144 (1955).

Prog. Nucl. Magn. Reson. Spectrosc. (1)

M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup. The source S, irises I1 and I2, lens L1, and polarizer P1 form a collimated beam of white polarized light. Polarizer P2 and lens L2 focus the beam of output light onto the entrance F of an optical fiber connected to a spectrometer. The composite retarders and filters are constructed by a stack of multiple-order QWPs (Qn).

Fig. 2.
Fig. 2.

Measured transmittance for the BB composite HWP formed of a sequence of QWPs: (a) Reference spectrum of an HWP made of two QWPs; (b) BB HWP retarder made of six QWPs with rotation angles 45.5°, 78.5°, 76.7°, 15.5°, 17.7°, and 45.4°.

Fig. 3.
Fig. 3.

Measured transmittance for the BB composite HWP assembled from a sequence of QWPs used as HWPs at 765 nm. (a) Reference spectrum of one QWP; (b) BB HWP retarder made of three QWPs with rotation angles 14.7°, 164.4°, and 14.7°; (c) BB HWP retarder made of five QWPs with rotation angles 7.5°, 172.5°, 14.2°, 172.9°, and 8.6°. The inset presents the retardance.

Fig. 4.
Fig. 4.

Measured transmittance for NB composite filters. (a) Reference spectrum of two QWPs; (b) filter of five QWPs, with rotation angles (43.7°, 176.9°, 170.1°, 119.3°, 80.2°); (c) filter of six QWPs, with rotation angles 165.3°, 167°, 19.7°, 18.6°, 166.4°, and 166.1°.

Fig. 5.
Fig. 5.

Measured transmittance for composite filters. (a) Reference spectrum of one HWPs; (b) filter of three HWPs, with rotation angles 14.7°, 45.1°, and 75.3°; (c) filter of five HWPs, with rotation angles 37.7°, 83.1°, 49.9°, 1.9°, and 38.2°.

Fig. 6.
Fig. 6.

Measured transmittance of composite filters made of the same set of six QWPs, but for different rotation angles. The central wavelength is tuned to the following: (a) 780 nm (design wavelength, no tuning, retardation φ=0.50π); (b) 772 nm (φ=0.25π); (c) 775 nm (φ=0.35π); (d) 784 nm (φ=0.65π); (e) 788 nm (φ=0.75π). The rotation angles are as follows: a, 165.3°, 167.1°, 19.7°, 18.6°, 166.4°, and 166.1°; b, 8.9°, 158.1°, 158.9°, 116.1°, 51.5°, and 34.5°; c, 26.4°, 154.7°, 178.6°, 1.3°, 20.2°, and 158.8°; d, 60.4°, 14.1°, 175.7°, 178.4°, 154.2°, and 110.6°; e, 6.2°, 25.4°, 50.2°, 56.1°, 39.0°, and 13.4°.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Jα(φ)=R(α)[eiφ/200eiφ/2]R(α),
R(α)=[cosαsinαsinαcosα].
J(N)(Φ)=JαN(φN)JαN1(φN1)Jα1(φ1),
Qα1Qα2Qαn1QαN.
max(|Φ(φ)/π1|2)ϵ,φ[φmin,πφmin].
max(|J12|2)ϵ,φ[0,φmax][πφmax,π],

Metrics