Abstract

A type of optical system consisting of one total internal reflection (TIR) lens and two reflectors is designed for collimating the light of an LED to a uniform pattern. Application of this kind of optical system includes underwater light communication and an underwater image system. The TIR lens collimates all the light of the LED to a nonuniform plane wavefront. The double-reflector system redistributes the plane wavefront uniformly and collimates again. Three optical systems that produce a different radius of the output light patterns are designed. The simulation result shows that the uniformity of the designed optical system is greater than 0.76, and the total output efficiency (TOE) is greater than 89%. At the same time, we conclude that the radius of the output reflector should not be smaller than that of the input reflector in order to keep high uniformity and TOE. One of the designed optical systems is fabricated by computer numeric control, and the experiment results satisfy that goal.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005).
    [CrossRef]
  2. W. A. Parkyn, “The design of illumination lenses via extrinsic differential geometry,” in SPIE Conference on Illumination and Source Engineering (SPIE, 1998), pp. 154–162.
  3. H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19, 590–595 (2002).
    [CrossRef]
  4. B. Parkyn and D. Pelka, “Free-form illumination lenses designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE 6338, 6338081 (2006).
  5. L. Wang, K. Qian, and Y. Luo, “Discontinuous free-form lens design for prescribed irradiance,” Appl. Opt. 46, 3716–3723 (2007).
    [CrossRef]
  6. Y. Ding, X. Liu, and Z. Zheng, “Freeform LED lens for uniform illumination,” Opt. Express 16, 12958–12966 (2008).
    [CrossRef]
  7. K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A 11, 105501 (2009).
  8. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18, 5295–5304 (2010).
    [CrossRef]
  9. M. A. Moiseev, L. L. Doskolovich, and N. L. Kazanskiy, “Design of high-efficient freeform LED lens for illumination of elongated rectangular regions,” Opt. Express 19, A225–A233 (2011).
    [CrossRef]
  10. R. Wu, Z. Zheng, H. Li, and X. Liu, “Constructing optic al freeform surfaces using unit tangent vectors of feature data points,” J. Opt. Soc. Am. A 28, 1880–1888 (2011).
    [CrossRef]
  11. G. Wang, L. Wang, F. Li, and D. Kong, “Design of optical element combining Fresnel lens with microlens array for uniform light-emitting diode lighting,” J. Opt. Soc. Am. A 29, 1877–1884 (2012).
    [CrossRef]
  12. M. A. Moiseev and L. L. Doskolovich, “Design of TIR optics generating the prescribed irradiance distribution in the circle region,” J. Opt. Soc. Am. A 29, 1758–1763 (2012).
    [CrossRef]
  13. J. Rubinstein and G. Wolansky, “Intensity control with a free-form lens,” J. Opt. Soc. Am. A 24, 463–469 (2007).
    [CrossRef]
  14. J. Chen and C. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” Opt. Eng. 49, 093001 (2010).
  15. S. Zhao, K. Wang, F. Chen, D. Wu, and S. Liu, “Lens design of LED searchlight of high brightness and distant spot,” J. Opt. Soc. Am. A 28, 815–820 (2011).
    [CrossRef]
  16. G. Wang, L. Wang, F. Li, and G. Zhang, “Collimating lens for light-emitting-diode light source based on non-imaging optics,” Appl. Opt. 51, 1654–1659 (2012).
    [CrossRef]
  17. J. Chen, T. Wang, K. Huang, T. Liu, M. Tsai, and C. Lin, “Freeform lens design for LED collimating illumination,” Opt. Express 20, 10984–10995 (2012).
    [CrossRef]
  18. E. Aslanov, L. L. Doskolovich, and M. M. Moiseev, “Thin LED collimator with free-form lens array for illumination applications,” Appl. Opt. 51, 7200–7205 (2012).
    [CrossRef]
  19. H. Ries and A. Rabl, “Edge-ray principle of nonimaging optics,” J. Opt. Soc. Am. A 11, 2627–2632 (1994).
    [CrossRef]
  20. C. Sun, C. Wei-Ting, M. Ivan, H. Chih-Ching, and L. Yi-Chien, “Analysis of the far-field region of LEDs,” Opt. Express 17, 13918–13927 (2009).
    [CrossRef]

2012 (5)

2011 (3)

2010 (2)

J. Chen and C. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” Opt. Eng. 49, 093001 (2010).

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18, 5295–5304 (2010).
[CrossRef]

2009 (2)

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A 11, 105501 (2009).

C. Sun, C. Wei-Ting, M. Ivan, H. Chih-Ching, and L. Yi-Chien, “Analysis of the far-field region of LEDs,” Opt. Express 17, 13918–13927 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (1)

B. Parkyn and D. Pelka, “Free-form illumination lenses designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE 6338, 6338081 (2006).

2005 (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005).
[CrossRef]

2002 (1)

1994 (1)

Aslanov, E.

Cassarly, W. J.

Chen, F.

S. Zhao, K. Wang, F. Chen, D. Wu, and S. Liu, “Lens design of LED searchlight of high brightness and distant spot,” J. Opt. Soc. Am. A 28, 815–820 (2011).
[CrossRef]

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A 11, 105501 (2009).

Chen, J.

J. Chen, T. Wang, K. Huang, T. Liu, M. Tsai, and C. Lin, “Freeform lens design for LED collimating illumination,” Opt. Express 20, 10984–10995 (2012).
[CrossRef]

J. Chen and C. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” Opt. Eng. 49, 093001 (2010).

Chih-Ching, H.

Ding, Y.

Doskolovich, L. L.

Fournier, F. R.

Huang, K.

Ivan, M.

Kazanskiy, N. L.

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005).
[CrossRef]

Kong, D.

Li, F.

Li, H.

Lin, C.

J. Chen, T. Wang, K. Huang, T. Liu, M. Tsai, and C. Lin, “Freeform lens design for LED collimating illumination,” Opt. Express 20, 10984–10995 (2012).
[CrossRef]

J. Chen and C. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” Opt. Eng. 49, 093001 (2010).

Liu, S.

S. Zhao, K. Wang, F. Chen, D. Wu, and S. Liu, “Lens design of LED searchlight of high brightness and distant spot,” J. Opt. Soc. Am. A 28, 815–820 (2011).
[CrossRef]

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A 11, 105501 (2009).

Liu, T.

Liu, X.

Liu, Z.

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A 11, 105501 (2009).

Luo, X.

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A 11, 105501 (2009).

Luo, Y.

Moiseev, M. A.

Moiseev, M. M.

Muschaweck, J.

Parkyn, B.

B. Parkyn and D. Pelka, “Free-form illumination lenses designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE 6338, 6338081 (2006).

Parkyn, W. A.

W. A. Parkyn, “The design of illumination lenses via extrinsic differential geometry,” in SPIE Conference on Illumination and Source Engineering (SPIE, 1998), pp. 154–162.

Pelka, D.

B. Parkyn and D. Pelka, “Free-form illumination lenses designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE 6338, 6338081 (2006).

Qian, K.

Qin, Z.

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A 11, 105501 (2009).

Rabl, A.

Ries, H.

Rolland, J. P.

Rubinstein, J.

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005).
[CrossRef]

Sun, C.

Tsai, M.

Wang, G.

Wang, K.

S. Zhao, K. Wang, F. Chen, D. Wu, and S. Liu, “Lens design of LED searchlight of high brightness and distant spot,” J. Opt. Soc. Am. A 28, 815–820 (2011).
[CrossRef]

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A 11, 105501 (2009).

Wang, L.

Wang, T.

Wei-Ting, C.

Wolansky, G.

Wu, D.

Wu, R.

Yi-Chien, L.

Zhang, G.

Zhao, S.

Zheng, Z.

Appl. Opt. (3)

J. Opt. A (1)

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A 11, 105501 (2009).

J. Opt. Soc. Am. A (7)

Opt. Eng. (1)

J. Chen and C. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” Opt. Eng. 49, 093001 (2010).

Opt. Express (5)

Proc. SPIE (1)

B. Parkyn and D. Pelka, “Free-form illumination lenses designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE 6338, 6338081 (2006).

Science (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005).
[CrossRef]

Other (1)

W. A. Parkyn, “The design of illumination lenses via extrinsic differential geometry,” in SPIE Conference on Illumination and Source Engineering (SPIE, 1998), pp. 154–162.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Light of LED collimated by a single optical surface.

Fig. 2.
Fig. 2.

Sketch map of the optical system.

Fig. 3.
Fig. 3.

Profile of the TIR lens.

Fig. 4.
Fig. 4.

Sketch map of the double reflector system.

Fig. 5.
Fig. 5.

Construction process of the profile of the freeform surface of the TIR lens.

Fig. 6.
Fig. 6.

Light propagates from the LED to the input wavefront.

Fig. 7.
Fig. 7.

Construct the skeleton curves of the reflectors.

Fig. 8.
Fig. 8.

Deviation between the real normal vectors and the calculated normal vectors of Reflector 1.

Fig. 9.
Fig. 9.

Perspective view of the 3D model of the optical system. (a) TIR lens. (b) One time radius reflector.

Fig. 10.
Fig. 10.

(a) Light pattern collimated by TIR lens. (b) Light pattern after reshaping by the reflector system. (c) Illuminance along the x and y axes.

Fig. 11.
Fig. 11.

Simulation result of different radius of reflector. (a) Two times radius reflector. (b) 0.5 times radius reflector.

Fig. 12.
Fig. 12.

Luminous intensity distributions of different optical systems.

Fig. 13.
Fig. 13.

Simulation result of different radius of reflector using actual LED model. (a) Two times radius reflector. (b) One time radius reflector. (c) 0.5 times radius reflector.

Fig. 14.
Fig. 14.

Simulation results of the luminous intensity distributions of different optical systems using the actual LED model.

Fig. 15.
Fig. 15.

Fabricated TIR lens and the two times radius reflectors.

Fig. 16.
Fig. 16.

Results of the fabricated optical system. (a) Experimental result. (b) Pseudo color map of the experimental result.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I(Ω)dΩ=I(T)dT.
EΩ(r,θ)rdrdθ=ET(r,θ)rdrdθ.
02π(ri1riEΩ(r,θ)rdr)dθ=02π(ri1riET(r,θ)rdr)dθ=ΦN.
ri1ri(θi1θiEΩ(r,θ)dθ)rdr=ri1ri(θi1θiET(r,θ)dθ)rdr=ΦMN.
[1+n22n(O·I)]1/2N=OnI.
{x1=y0+x0kcotθ1+ky1=x1cotθ1.
{2π0θrI(θ)sinθdθ=2π0rEΩ(r)rdrθr<θth2πθthθxI(θ)sinθdθ=2πrrthEΩ(r)rdrθx>θth.
r=Rsinθ.

Metrics