Abstract

We report the experimental combination of leakage radiation microscopy with a Young slit experiment to address the spatial coherence properties of surface waves. We applied this method to measurements of surface plasmon polaritons (SPPs). The relationship between the spatial decay and interference contrast allows us to extract the degree of coherence. In a second step, we investigate the coherence properties of the plasmon in the weak coupling regime between fluorophores and metallic surfaces. Finally, a method is proposed to extract the propagation length of SPPs in a large variety of systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. L. Novotny and B. Hecht, Principle of Nano-Optics (Cambridge University, 2006).
  4. F. A. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
    [CrossRef]
  5. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active antennas,” Science 332, 702–704 (2011).
    [CrossRef]
  6. J. R. Lakowicz, “Radiative decay engineering and biomedical applications,” Anal. Biochem. 298, 1–24 (2001).
    [CrossRef]
  7. M. P. Busson, B. Rolly, B. Stout, N. Bonod, and S. Bidault, “Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA,” Nat. Commun. 3, 962 (2012).
    [CrossRef]
  8. S. Husaini, H. Teng, and V. M. Menon, “Enhanced nonlinear optical response of metal nanocomposite based photonic crystals,” Appl. Phys. Lett. 101, 111103 (2012).
    [CrossRef]
  9. B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615–617 (1988).
    [CrossRef]
  10. E. Werts, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
    [CrossRef]
  11. F. Dubin, R. Melet, T. Barisien, R. Grousson, L. Legrand, M. Schott, and V. Voliotis, “Macroscopic coherence of a single exciton state in an organic quantum wire,” Nat. Phys. 2, 32–35 (2005).
    [CrossRef]
  12. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [CrossRef]
  13. G. Grymberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics (Cambridge University, 2010).
  14. S. Ravets, J. C. Rodier, B. Ea. Kim, J. P. Hugonin, L. Jacubowiez, and P. Lalanne, “Surface plasmons in the Young slit doublet experiment,” J. Opt. Soc. Am. B 26, B28–B33 (2009).
    [CrossRef]
  15. L. G. de Peralta, “Study of interference between surface plasmon polaritons by leakage radiation microscopy,” J. Opt. Soc. Am. B 27, 1513–1517 (2010).
    [CrossRef]
  16. C. H. Gan, G. Gbur, and T. D. Visser, “Surface plasmons modulate the spatial coherence of light in Young’s interference experiment,” Phys. Rev. Lett. 98, 043908 (2007).
    [CrossRef]
  17. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
    [CrossRef]
  18. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
    [CrossRef]
  19. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptative subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
    [CrossRef]
  20. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
    [CrossRef]
  21. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
    [CrossRef]
  22. A. Huck, S. Smolka, P. Lodahl, A. Sorensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
    [CrossRef]
  23. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
    [CrossRef]
  24. S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy–time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
    [CrossRef]
  25. S. Aberra Guebrou, J. Laverdant, C. Symonds, and J. Bellessa, “Spatial coherence properties of surface plasmon investigated by Young’s slit experiment,” Opt. Lett 37, 2139–2141 (2012).
    [CrossRef]
  26. S. Aberra Guebrou, J. Laverdant, C. Symonds, S. Vignoli, F. Bessueille, and J. Bellessa, “Influence of surface plasmon propagation on leakage radiation imaging,” Appl. Phys. Lett. 101, 123106 (2012).
    [CrossRef]
  27. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  28. J. Tervo, T. Setala, and A. T. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11, 1137–1143 (2003).
    [CrossRef]
  29. R. Carminati and J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999).
    [CrossRef]
  30. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mullet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
    [CrossRef]
  31. A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: plasmonic continuum spectroscopy,” Phys. Rev. B 71, 195406 (2005).
    [CrossRef]
  32. J. Laverdant, S. Buil, B. Berini, and X. Quelin, “Polarization dependent near-field speckle of random gold films,” Phys. Rev. B 77, 165406 (2008).
    [CrossRef]
  33. S. Aberra Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Garstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108, 066401 (2012).
    [CrossRef]
  34. D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Coherent superposition of exciton states in quantum dots induced by surface plasmons,” Appl. Phys. Lett. 96, 073108 (2010).
    [CrossRef]
  35. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
    [CrossRef]
  36. H. Ditlebacher, J. R. Krenn, A. Honenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light–plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
    [CrossRef]
  37. K. H. Drexhage, Progress in Optics XII, E. Wolf, ed. (North Holland, 1974).
  38. D. G. Zhang, X. C. Yuan, A. Bouhelier, P. Wang, and H. Ming, “Excitation of surface plasmon polaritons guided mode by rhodamine B molecules doped PMMA stripe,” Opt. Lett 35, 408–410 (2010).
    [CrossRef]
  39. J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B. 78, 245419 (2008).
    [CrossRef]
  40. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
    [CrossRef]
  41. A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovich, “Enhancement of spontaneous recombination rate in a qantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
    [CrossRef]
  42. J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1, 5–33 (2006).
    [CrossRef]
  43. C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
    [CrossRef]
  44. C. Vion, P. Spinicelli, L. Coolen, C. Schwob, J. M. Frigerio, J.-P. Hermier, and A. Maître, “Controlled modification of single colloidal CdSe/ZnS nanocrystal fluorescence through interactions with a gold surface,” Opt. Express 18, 7440–7455 (2010).
    [CrossRef]
  45. G. Volpe, G. Volpe, and R. Quidant, “Fractal plasmonics: subdiffraction focusing and broad spectral response by a Sierpinski nanocarpet,” Opt. Express 19, 3612–3618 (2011).
    [CrossRef]
  46. S. Buil, J. Aubineau, J. Laverdant, and X. Quelin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode,” J. Appl. Phys. 100, 063530 (2006).
    [CrossRef]

2012 (5)

M. P. Busson, B. Rolly, B. Stout, N. Bonod, and S. Bidault, “Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA,” Nat. Commun. 3, 962 (2012).
[CrossRef]

S. Husaini, H. Teng, and V. M. Menon, “Enhanced nonlinear optical response of metal nanocomposite based photonic crystals,” Appl. Phys. Lett. 101, 111103 (2012).
[CrossRef]

S. Aberra Guebrou, J. Laverdant, C. Symonds, and J. Bellessa, “Spatial coherence properties of surface plasmon investigated by Young’s slit experiment,” Opt. Lett 37, 2139–2141 (2012).
[CrossRef]

S. Aberra Guebrou, J. Laverdant, C. Symonds, S. Vignoli, F. Bessueille, and J. Bellessa, “Influence of surface plasmon propagation on leakage radiation imaging,” Appl. Phys. Lett. 101, 123106 (2012).
[CrossRef]

S. Aberra Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Garstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108, 066401 (2012).
[CrossRef]

2011 (2)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active antennas,” Science 332, 702–704 (2011).
[CrossRef]

G. Volpe, G. Volpe, and R. Quidant, “Fractal plasmonics: subdiffraction focusing and broad spectral response by a Sierpinski nanocarpet,” Opt. Express 19, 3612–3618 (2011).
[CrossRef]

2010 (6)

E. Werts, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[CrossRef]

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Coherent superposition of exciton states in quantum dots induced by surface plasmons,” Appl. Phys. Lett. 96, 073108 (2010).
[CrossRef]

D. G. Zhang, X. C. Yuan, A. Bouhelier, P. Wang, and H. Ming, “Excitation of surface plasmon polaritons guided mode by rhodamine B molecules doped PMMA stripe,” Opt. Lett 35, 408–410 (2010).
[CrossRef]

C. Vion, P. Spinicelli, L. Coolen, C. Schwob, J. M. Frigerio, J.-P. Hermier, and A. Maître, “Controlled modification of single colloidal CdSe/ZnS nanocrystal fluorescence through interactions with a gold surface,” Opt. Express 18, 7440–7455 (2010).
[CrossRef]

L. G. de Peralta, “Study of interference between surface plasmon polaritons by leakage radiation microscopy,” J. Opt. Soc. Am. B 27, 1513–1517 (2010).
[CrossRef]

F. A. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
[CrossRef]

2009 (3)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

A. Huck, S. Smolka, P. Lodahl, A. Sorensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

S. Ravets, J. C. Rodier, B. Ea. Kim, J. P. Hugonin, L. Jacubowiez, and P. Lalanne, “Surface plasmons in the Young slit doublet experiment,” J. Opt. Soc. Am. B 26, B28–B33 (2009).
[CrossRef]

2008 (2)

J. Laverdant, S. Buil, B. Berini, and X. Quelin, “Polarization dependent near-field speckle of random gold films,” Phys. Rev. B 77, 165406 (2008).
[CrossRef]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B. 78, 245419 (2008).
[CrossRef]

2007 (4)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptative subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef]

C. H. Gan, G. Gbur, and T. D. Visser, “Surface plasmons modulate the spatial coherence of light in Young’s interference experiment,” Phys. Rev. Lett. 98, 043908 (2007).
[CrossRef]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef]

2006 (3)

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1, 5–33 (2006).
[CrossRef]

S. Buil, J. Aubineau, J. Laverdant, and X. Quelin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode,” J. Appl. Phys. 100, 063530 (2006).
[CrossRef]

2005 (4)

C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: plasmonic continuum spectroscopy,” Phys. Rev. B 71, 195406 (2005).
[CrossRef]

F. Dubin, R. Melet, T. Barisien, R. Grousson, L. Legrand, M. Schott, and V. Voliotis, “Macroscopic coherence of a single exciton state in an organic quantum wire,” Nat. Phys. 2, 32–35 (2005).
[CrossRef]

S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy–time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
[CrossRef]

2003 (4)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

H. Ditlebacher, J. R. Krenn, A. Honenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light–plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[CrossRef]

J. Tervo, T. Setala, and A. T. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11, 1137–1143 (2003).
[CrossRef]

2002 (2)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mullet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef]

A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovich, “Enhancement of spontaneous recombination rate in a qantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

2001 (1)

J. R. Lakowicz, “Radiative decay engineering and biomedical applications,” Anal. Biochem. 298, 1–24 (2001).
[CrossRef]

1999 (2)

R. Carminati and J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

1996 (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

1988 (1)

B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Aberra Guebrou, S.

S. Aberra Guebrou, J. Laverdant, C. Symonds, and J. Bellessa, “Spatial coherence properties of surface plasmon investigated by Young’s slit experiment,” Opt. Lett 37, 2139–2141 (2012).
[CrossRef]

S. Aberra Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Garstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108, 066401 (2012).
[CrossRef]

S. Aberra Guebrou, J. Laverdant, C. Symonds, S. Vignoli, F. Bessueille, and J. Bellessa, “Influence of surface plasmon propagation on leakage radiation imaging,” Appl. Phys. Lett. 101, 123106 (2012).
[CrossRef]

Aeschlimann, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptative subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef]

Agranovich, V. M.

S. Aberra Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Garstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108, 066401 (2012).
[CrossRef]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Alivisatos, A. P.

C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

Andersen, U. L.

A. Huck, S. Smolka, P. Lodahl, A. Sorensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

Aspect, A.

G. Grymberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics (Cambridge University, 2010).

Aubineau, J.

S. Buil, J. Aubineau, J. Laverdant, and X. Quelin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode,” J. Appl. Phys. 100, 063530 (2006).
[CrossRef]

Aussenegg, F. R.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

H. Ditlebacher, J. R. Krenn, A. Honenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light–plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Barisien, T.

F. Dubin, R. Melet, T. Barisien, R. Grousson, L. Legrand, M. Schott, and V. Voliotis, “Macroscopic coherence of a single exciton state in an organic quantum wire,” Nat. Phys. 2, 32–35 (2005).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef]

Bauer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptative subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptative subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Bellessa, J.

S. Aberra Guebrou, J. Laverdant, C. Symonds, and J. Bellessa, “Spatial coherence properties of surface plasmon investigated by Young’s slit experiment,” Opt. Lett 37, 2139–2141 (2012).
[CrossRef]

S. Aberra Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Garstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108, 066401 (2012).
[CrossRef]

S. Aberra Guebrou, J. Laverdant, C. Symonds, S. Vignoli, F. Bessueille, and J. Bellessa, “Influence of surface plasmon propagation on leakage radiation imaging,” Appl. Phys. Lett. 101, 123106 (2012).
[CrossRef]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

Berini, B.

J. Laverdant, S. Buil, B. Berini, and X. Quelin, “Polarization dependent near-field speckle of random gold films,” Phys. Rev. B 77, 165406 (2008).
[CrossRef]

Bessueille, F.

S. Aberra Guebrou, J. Laverdant, C. Symonds, S. Vignoli, F. Bessueille, and J. Bellessa, “Influence of surface plasmon propagation on leakage radiation imaging,” Appl. Phys. Lett. 101, 123106 (2012).
[CrossRef]

Bidault, S.

M. P. Busson, B. Rolly, B. Stout, N. Bonod, and S. Bidault, “Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA,” Nat. Commun. 3, 962 (2012).
[CrossRef]

Bloch, J.

E. Werts, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[CrossRef]

Boltasseva, A.

A. Huck, S. Smolka, P. Lodahl, A. Sorensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

Bonod, N.

M. P. Busson, B. Rolly, B. Stout, N. Bonod, and S. Bidault, “Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA,” Nat. Commun. 3, 962 (2012).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Bouhelier, A.

D. G. Zhang, X. C. Yuan, A. Bouhelier, P. Wang, and H. Ming, “Excitation of surface plasmon polaritons guided mode by rhodamine B molecules doped PMMA stripe,” Opt. Lett 35, 408–410 (2010).
[CrossRef]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B. 78, 245419 (2008).
[CrossRef]

A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: plasmonic continuum spectroscopy,” Phys. Rev. B 71, 195406 (2005).
[CrossRef]

Bourillot, E.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Brixner, T.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptative subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef]

Buil, S.

J. Laverdant, S. Buil, B. Berini, and X. Quelin, “Polarization dependent near-field speckle of random gold films,” Phys. Rev. B 77, 165406 (2008).
[CrossRef]

S. Buil, J. Aubineau, J. Laverdant, and X. Quelin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode,” J. Appl. Phys. 100, 063530 (2006).
[CrossRef]

Busson, M. P.

M. P. Busson, B. Rolly, B. Stout, N. Bonod, and S. Bidault, “Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA,” Nat. Commun. 3, 962 (2012).
[CrossRef]

Carminati, R.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mullet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef]

R. Carminati and J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999).
[CrossRef]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Chen, Y.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mullet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef]

Colas des Francs, G.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B. 78, 245419 (2008).
[CrossRef]

Coolen, L.

Davis, T. J.

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Coherent superposition of exciton states in quantum dots induced by surface plasmons,” Appl. Phys. Lett. 96, 073108 (2010).
[CrossRef]

de Peralta, L. G.

Dereux, A.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B. 78, 245419 (2008).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Ditlbacher, H.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Ditlebacher, H.

H. Ditlebacher, J. R. Krenn, A. Honenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light–plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[CrossRef]

Drexhage, K. H.

K. H. Drexhage, Progress in Optics XII, E. Wolf, ed. (North Holland, 1974).

Drezet, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Dubin, F.

F. Dubin, R. Melet, T. Barisien, R. Grousson, L. Legrand, M. Schott, and V. Voliotis, “Macroscopic coherence of a single exciton state in an organic quantum wire,” Nat. Phys. 2, 32–35 (2005).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

Erni, D.

S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy–time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
[CrossRef]

Everitt, H. O.

A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovich, “Enhancement of spontaneous recombination rate in a qantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Fabre, C.

G. Grymberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics (Cambridge University, 2010).

Fasel, S.

S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy–time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
[CrossRef]

Ferrier, L.

E. Werts, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[CrossRef]

Friberg, A. T.

Frigerio, J. M.

Galler, N.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Gan, C. H.

C. H. Gan, G. Gbur, and T. D. Visser, “Surface plasmons modulate the spatial coherence of light in Young’s interference experiment,” Phys. Rev. Lett. 98, 043908 (2007).
[CrossRef]

Garcia de Abajo, F. J.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptative subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef]

Garstein, Y. N.

S. Aberra Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Garstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108, 066401 (2012).
[CrossRef]

Gbur, G.

C. H. Gan, G. Gbur, and T. D. Visser, “Surface plasmons modulate the spatial coherence of light in Young’s interference experiment,” Phys. Rev. Lett. 98, 043908 (2007).
[CrossRef]

Girard, C.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Gisin, N.

S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy–time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
[CrossRef]

Gomez, D. E.

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Coherent superposition of exciton states in quantum dots induced by surface plasmons,” Appl. Phys. Lett. 96, 073108 (2010).
[CrossRef]

Gonzalez, M. U.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B. 78, 245419 (2008).
[CrossRef]

Gotschy, W.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Goudonnet, J. P.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Grandidier, J.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B. 78, 245419 (2008).
[CrossRef]

Greffet, J. J.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mullet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef]

Greffet, J.-J.

R. Carminati and J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999).
[CrossRef]

Grousson, R.

E. Werts, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[CrossRef]

F. Dubin, R. Melet, T. Barisien, R. Grousson, L. Legrand, M. Schott, and V. Voliotis, “Macroscopic coherence of a single exciton state in an organic quantum wire,” Nat. Phys. 2, 32–35 (2005).
[CrossRef]

Grymberg, G.

G. Grymberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics (Cambridge University, 2010).

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active antennas,” Science 332, 702–704 (2011).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principle of Nano-Optics (Cambridge University, 2006).

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Hermier, J.-P.

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Hohenau, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Homeyer, E.

S. Aberra Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Garstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108, 066401 (2012).
[CrossRef]

Honenau, A.

H. Ditlebacher, J. R. Krenn, A. Honenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light–plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[CrossRef]

Huck, A.

A. Huck, S. Smolka, P. Lodahl, A. Sorensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

Hugonin, J. P.

Husaini, S.

S. Husaini, H. Teng, and V. M. Menon, “Enhanced nonlinear optical response of metal nanocomposite based photonic crystals,” Appl. Phys. Lett. 101, 111103 (2012).
[CrossRef]

Jacubowiez, L.

Janousek, J.

A. Huck, S. Smolka, P. Lodahl, A. Sorensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

Johne, R.

E. Werts, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[CrossRef]

Joulain, K.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mullet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef]

Kavokin, A. V.

E. Werts, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[CrossRef]

Kim, B. Ea.

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active antennas,” Science 332, 702–704 (2011).
[CrossRef]

Knoll, W.

B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Koenderink, F. A.

Koller, D.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef]

Krenn, J. R.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

H. Ditlebacher, J. R. Krenn, A. Honenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light–plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Kuroda, T.

A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovich, “Enhancement of spontaneous recombination rate in a qantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Lacroute, Y.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1, 5–33 (2006).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering and biomedical applications,” Anal. Biochem. 298, 1–24 (2001).
[CrossRef]

Lalanne, P.

Laverdant, J.

S. Aberra Guebrou, J. Laverdant, C. Symonds, and J. Bellessa, “Spatial coherence properties of surface plasmon investigated by Young’s slit experiment,” Opt. Lett 37, 2139–2141 (2012).
[CrossRef]

S. Aberra Guebrou, J. Laverdant, C. Symonds, S. Vignoli, F. Bessueille, and J. Bellessa, “Influence of surface plasmon propagation on leakage radiation imaging,” Appl. Phys. Lett. 101, 123106 (2012).
[CrossRef]

J. Laverdant, S. Buil, B. Berini, and X. Quelin, “Polarization dependent near-field speckle of random gold films,” Phys. Rev. B 77, 165406 (2008).
[CrossRef]

S. Buil, J. Aubineau, J. Laverdant, and X. Quelin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode,” J. Appl. Phys. 100, 063530 (2006).
[CrossRef]

Lee, C. W.

A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovich, “Enhancement of spontaneous recombination rate in a qantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Legrand, L.

F. Dubin, R. Melet, T. Barisien, R. Grousson, L. Legrand, M. Schott, and V. Voliotis, “Macroscopic coherence of a single exciton state in an organic quantum wire,” Nat. Phys. 2, 32–35 (2005).
[CrossRef]

Leitner, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

H. Ditlebacher, J. R. Krenn, A. Honenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light–plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Lemaitre, A.

E. Werts, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[CrossRef]

Liphardt, J.

C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

Lodahl, P.

A. Huck, S. Smolka, P. Lodahl, A. Sorensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mullet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef]

Maître, A.

Malpuech, G.

E. Werts, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[CrossRef]

Markey, L.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B. 78, 245419 (2008).
[CrossRef]

Massenot, S.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B. 78, 245419 (2008).
[CrossRef]

Melet, R.

F. Dubin, R. Melet, T. Barisien, R. Grousson, L. Legrand, M. Schott, and V. Voliotis, “Macroscopic coherence of a single exciton state in an organic quantum wire,” Nat. Phys. 2, 32–35 (2005).
[CrossRef]

Menon, V. M.

S. Husaini, H. Teng, and V. M. Menon, “Enhanced nonlinear optical response of metal nanocomposite based photonic crystals,” Appl. Phys. Lett. 101, 111103 (2012).
[CrossRef]

Ming, H.

D. G. Zhang, X. C. Yuan, A. Bouhelier, P. Wang, and H. Ming, “Excitation of surface plasmon polaritons guided mode by rhodamine B molecules doped PMMA stripe,” Opt. Lett 35, 408–410 (2010).
[CrossRef]

Moreno, E.

S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy–time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
[CrossRef]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Mullet, J. P.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mullet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef]

Mulvaney, P.

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Coherent superposition of exciton states in quantum dots induced by surface plasmons,” Appl. Phys. Lett. 96, 073108 (2010).
[CrossRef]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Neogi, A.

A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovich, “Enhancement of spontaneous recombination rate in a qantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active antennas,” Science 332, 702–704 (2011).
[CrossRef]

Novotny, L.

L. Novotny and B. Hecht, Principle of Nano-Optics (Cambridge University, 2006).

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Pfeiffer, W.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptative subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef]

Plenet, J. C.

S. Aberra Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Garstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108, 066401 (2012).
[CrossRef]

Quelin, X.

J. Laverdant, S. Buil, B. Berini, and X. Quelin, “Polarization dependent near-field speckle of random gold films,” Phys. Rev. B 77, 165406 (2008).
[CrossRef]

S. Buil, J. Aubineau, J. Laverdant, and X. Quelin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode,” J. Appl. Phys. 100, 063530 (2006).
[CrossRef]

Quidant, R.

G. Volpe, G. Volpe, and R. Quidant, “Fractal plasmonics: subdiffraction focusing and broad spectral response by a Sierpinski nanocarpet,” Opt. Express 19, 3612–3618 (2011).
[CrossRef]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B. 78, 245419 (2008).
[CrossRef]

Ravets, S.

Reinhard, B. M.

C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

Renger, J.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B. 78, 245419 (2008).
[CrossRef]

Robin, F.

S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy–time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
[CrossRef]

Rodier, J. C.

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptative subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef]

Rolly, B.

M. P. Busson, B. Rolly, B. Stout, N. Bonod, and S. Bidault, “Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA,” Nat. Commun. 3, 962 (2012).
[CrossRef]

Rothenhausler, B.

B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Sagnes, I.

E. Werts, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[CrossRef]

Sambles, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef]

Sanvitto, D.

E. Werts, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[CrossRef]

Schider, G.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Schott, M.

F. Dubin, R. Melet, T. Barisien, R. Grousson, L. Legrand, M. Schott, and V. Voliotis, “Macroscopic coherence of a single exciton state in an organic quantum wire,” Nat. Phys. 2, 32–35 (2005).
[CrossRef]

Schwob, C.

Senellart, P.

E. Werts, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[CrossRef]

Setala, T.

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Smolka, S.

A. Huck, S. Smolka, P. Lodahl, A. Sorensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active antennas,” Science 332, 702–704 (2011).
[CrossRef]

Solnyshkov, D.

E. Werts, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[CrossRef]

Sonnichsen, C.

C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

Sorensen, A.

A. Huck, S. Smolka, P. Lodahl, A. Sorensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

Spindler, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptative subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef]

Spinicelli, P.

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptative subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef]

Steinberger, B.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Stepanov, A. L.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

Stout, B.

M. P. Busson, B. Rolly, B. Stout, N. Bonod, and S. Bidault, “Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA,” Nat. Commun. 3, 962 (2012).
[CrossRef]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Symonds, C.

S. Aberra Guebrou, J. Laverdant, C. Symonds, and J. Bellessa, “Spatial coherence properties of surface plasmon investigated by Young’s slit experiment,” Opt. Lett 37, 2139–2141 (2012).
[CrossRef]

S. Aberra Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Garstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108, 066401 (2012).
[CrossRef]

S. Aberra Guebrou, J. Laverdant, C. Symonds, S. Vignoli, F. Bessueille, and J. Bellessa, “Influence of surface plasmon propagation on leakage radiation imaging,” Appl. Phys. Lett. 101, 123106 (2012).
[CrossRef]

Tackeuchi, A.

A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovich, “Enhancement of spontaneous recombination rate in a qantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Teng, H.

S. Husaini, H. Teng, and V. M. Menon, “Enhanced nonlinear optical response of metal nanocomposite based photonic crystals,” Appl. Phys. Lett. 101, 111103 (2012).
[CrossRef]

Tervo, J.

Vernon, K. C.

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Coherent superposition of exciton states in quantum dots induced by surface plasmons,” Appl. Phys. Lett. 96, 073108 (2010).
[CrossRef]

Vignoli, S.

S. Aberra Guebrou, J. Laverdant, C. Symonds, S. Vignoli, F. Bessueille, and J. Bellessa, “Influence of surface plasmon propagation on leakage radiation imaging,” Appl. Phys. Lett. 101, 123106 (2012).
[CrossRef]

Vion, C.

Visser, T. D.

C. H. Gan, G. Gbur, and T. D. Visser, “Surface plasmons modulate the spatial coherence of light in Young’s interference experiment,” Phys. Rev. Lett. 98, 043908 (2007).
[CrossRef]

Voliotis, V.

F. Dubin, R. Melet, T. Barisien, R. Grousson, L. Legrand, M. Schott, and V. Voliotis, “Macroscopic coherence of a single exciton state in an organic quantum wire,” Nat. Phys. 2, 32–35 (2005).
[CrossRef]

Volpe, G.

Wang, P.

D. G. Zhang, X. C. Yuan, A. Bouhelier, P. Wang, and H. Ming, “Excitation of surface plasmon polaritons guided mode by rhodamine B molecules doped PMMA stripe,” Opt. Lett 35, 408–410 (2010).
[CrossRef]

Weeber, J. C.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Weeber, J.-C.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B. 78, 245419 (2008).
[CrossRef]

Werts, E.

E. Werts, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[CrossRef]

Wiederrecht, G. P.

A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: plasmonic continuum spectroscopy,” Phys. Rev. B 71, 195406 (2005).
[CrossRef]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Yablonovich, E.

A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovich, “Enhancement of spontaneous recombination rate in a qantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Yuan, X. C.

D. G. Zhang, X. C. Yuan, A. Bouhelier, P. Wang, and H. Ming, “Excitation of surface plasmon polaritons guided mode by rhodamine B molecules doped PMMA stripe,” Opt. Lett 35, 408–410 (2010).
[CrossRef]

Zbinden, H.

S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy–time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
[CrossRef]

Zhang, D. G.

D. G. Zhang, X. C. Yuan, A. Bouhelier, P. Wang, and H. Ming, “Excitation of surface plasmon polaritons guided mode by rhodamine B molecules doped PMMA stripe,” Opt. Lett 35, 408–410 (2010).
[CrossRef]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering and biomedical applications,” Anal. Biochem. 298, 1–24 (2001).
[CrossRef]

Appl. Phys. Lett. (5)

S. Husaini, H. Teng, and V. M. Menon, “Enhanced nonlinear optical response of metal nanocomposite based photonic crystals,” Appl. Phys. Lett. 101, 111103 (2012).
[CrossRef]

S. Aberra Guebrou, J. Laverdant, C. Symonds, S. Vignoli, F. Bessueille, and J. Bellessa, “Influence of surface plasmon propagation on leakage radiation imaging,” Appl. Phys. Lett. 101, 123106 (2012).
[CrossRef]

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Coherent superposition of exciton states in quantum dots induced by surface plasmons,” Appl. Phys. Lett. 96, 073108 (2010).
[CrossRef]

H. Ditlebacher, J. R. Krenn, A. Honenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light–plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

J. Appl. Phys. (1)

S. Buil, J. Aubineau, J. Laverdant, and X. Quelin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode,” J. Appl. Phys. 100, 063530 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nano Lett. (1)

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef]

Nat. Biotechnol. (1)

C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

Nat. Commun. (1)

M. P. Busson, B. Rolly, B. Stout, N. Bonod, and S. Bidault, “Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA,” Nat. Commun. 3, 962 (2012).
[CrossRef]

Nat. Phys. (2)

E. Werts, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[CrossRef]

F. Dubin, R. Melet, T. Barisien, R. Grousson, L. Legrand, M. Schott, and V. Voliotis, “Macroscopic coherence of a single exciton state in an organic quantum wire,” Nat. Phys. 2, 32–35 (2005).
[CrossRef]

Nature (6)

B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptative subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mullet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett (2)

D. G. Zhang, X. C. Yuan, A. Bouhelier, P. Wang, and H. Ming, “Excitation of surface plasmon polaritons guided mode by rhodamine B molecules doped PMMA stripe,” Opt. Lett 35, 408–410 (2010).
[CrossRef]

S. Aberra Guebrou, J. Laverdant, C. Symonds, and J. Bellessa, “Spatial coherence properties of surface plasmon investigated by Young’s slit experiment,” Opt. Lett 37, 2139–2141 (2012).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (3)

A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovich, “Enhancement of spontaneous recombination rate in a qantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: plasmonic continuum spectroscopy,” Phys. Rev. B 71, 195406 (2005).
[CrossRef]

J. Laverdant, S. Buil, B. Berini, and X. Quelin, “Polarization dependent near-field speckle of random gold films,” Phys. Rev. B 77, 165406 (2008).
[CrossRef]

Phys. Rev. B. (1)

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B. 78, 245419 (2008).
[CrossRef]

Phys. Rev. Lett. (9)

R. Carminati and J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

S. Aberra Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Garstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108, 066401 (2012).
[CrossRef]

S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy–time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005).
[CrossRef]

A. Huck, S. Smolka, P. Lodahl, A. Sorensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009).
[CrossRef]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef]

C. H. Gan, G. Gbur, and T. D. Visser, “Surface plasmons modulate the spatial coherence of light in Young’s interference experiment,” Phys. Rev. Lett. 98, 043908 (2007).
[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

Plasmonics (1)

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1, 5–33 (2006).
[CrossRef]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active antennas,” Science 332, 702–704 (2011).
[CrossRef]

Other (5)

G. Grymberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics (Cambridge University, 2010).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

K. H. Drexhage, Progress in Optics XII, E. Wolf, ed. (North Holland, 1974).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

L. Novotny and B. Hecht, Principle of Nano-Optics (Cambridge University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Scheme of a focused laser beam on a scattering point of the silver surface. The inset corresponds to a real space image of the surface plasmons generated. (b) Scheme of a fluorosphere emitting surface plasmons. The inset shows a real space image of a surface plasmon launched from a single fluorescent particle located in the center. The analyzed polarization direction is indicated in the insets.

Fig. 2.
Fig. 2.

(a) Experimental setup. (b) Fourier plane imaging and (c) wavelength and angle resolved reflectivities of a 42 nm thick silver film under white light illumination.

Fig. 3.
Fig. 3.

Experimental scheme of the spatial interference principle. FP denotes the Fourier plane.

Fig. 4.
Fig. 4.

Interferences pattern for SPP generated by a point defect for various slits distances and wavelengths. The interfringes are presented as function of 1/Δ for each wavelength and fitted by dashed lines.

Fig. 5.
Fig. 5.

Experimental summary of the results on SPP for λ=633nm. (a) Direct space image of a launched SPP, (b) intensity profile line of the SPP along the propagation with an exponential law (dashed line), (c) coherence degree and (d) contrast of the fringes as function of the slit distance Δ with a fit according to Eq. (2).

Fig. 6.
Fig. 6.

(a) LRM image of a SPP launched by the fluorescence of a single fluorosphere, where the selected polarization P is indicated by an arrow. Angular resolved spectra of the reflectivity of (b) the sample and (c) the emission.

Fig. 7.
Fig. 7.

(a) Scheme of the interference experiment performed. (b) Evolution of the fringe visibility with the slit distance. [Dots: experimental values; full line: fit to the data according to Eq. (2)].

Fig. 8.
Fig. 8.

Interference fringes obtained for (a) nanocrystals outside the slits, (b) nanocrystals in between the slits, and (c) nanocrystals on the whole surface.

Fig. 9.
Fig. 9.

Scheme of the system under consideration for the analytical and the numerical calculations.

Fig. 10.
Fig. 10.

Evolution of the visibility with the laser waist W. The distance between the slits is Δ=5.4μm. The inserts present real space fluorescent images for different W. The line is calculated by numerical simulations.

Fig. 11.
Fig. 11.

Simulation of the visibility at saturation with Δ and Lspp.

Tables (1)

Tables Icon

Table 1. Propagation Lengths of SPPs Obtained with the LRM Images and the Ones Deduced from Interference Analysis

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V(Δ)=|γ(Δ)|2I1I2I1+I2,
V(Δ)=2exp(ksppΔ)1+exp(2ksppΔ),
I(d)=I0exp(2ksppd)[1+exp(2ksppΔ)+2exp(ksppΔ)cos(ksppΔ)].
Icoh=12kspp[1+exp(2ksppΔ)+2exp(ksppΔ)cos(ksppΔ)],
Iincoh=x1x2exp(2kspp(x2x0))dx0=12kspp(1exp(2ksppΔ)).
Vsat=exp(ksppΔ).

Metrics