Abstract

This study investigated S-cone discrimination using a test annulus surrounded by an inner and outer adapting field with systematic manipulation of the adapting l=L/(L+M) or s=S/(L+M) chromaticities. The results showed that different adapting l chromaticities altered S-cone discrimination for a high adapting s chromaticity due to parvocellular input to the koniocellular pathway. In addition, S-cone discrimination was determined by the combined spectral signals arising from both adapting fields. The “white” adapting field or an adapting field with a different l chromaticity from the other fields was more likely to have a stronger influence on discrimination thresholds. These results indicated that the two cardinal axes are not independent in S-cone discrimination, and the two adapting fields jointly contribute to S-cone discrimination through a cortical summation mechanism.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000).
    [CrossRef]
  2. B. B. Lee, “Visual pathways and psychophysical channels in the primate,” J. Physiol. 589, 41–47 (2011).
    [CrossRef]
  3. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1185 (1979).
    [CrossRef]
  4. V. C. Smith and J. Pokorny, “The design and use of a cone chromaticity space,” Color Res. Appl. 21, 375–383 (1996).
    [CrossRef]
  5. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  6. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
    [CrossRef]
  7. H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006).
    [CrossRef]
  8. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
    [CrossRef]
  9. B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).
  10. B. R. Conway, “Color vision, cones, and color-coding in the cortex,” Neuroscientist 15, 274–290 (2009).
    [CrossRef]
  11. M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
    [CrossRef]
  12. M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
    [CrossRef]
  13. M. V. Danilova and J. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vis. 10(1):1–9 (2010).
  14. M. V. Danilova and J. D. Mollon, “Cardinal axes are not independent in color discrimination,” J. Opt. Soc. Am. A 29, A157–A164 (2012).
    [CrossRef]
  15. R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
    [CrossRef]
  16. J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
    [CrossRef]
  17. J. R. Newton and R. T. Eskew, “Chromatic detection and discrimination in the periphery: a postreceptoral loss of color sensitivity,” Vis. Neurosci. 20, 511–521 (2003).
    [CrossRef]
  18. J. S. McLellan and R. T. Eskew, “ON and OFF S-cone pathways have different long-wave cone inputs,” Vis. Res. 40, 2449–2465 (2000).
    [CrossRef]
  19. T. Hansen and K. R. Gegenfurtner, “Classification images for chromatic signal detection,” J. Opt. Soc. Am. A 22, 2081–2089 (2005).
    [CrossRef]
  20. K. T. Mullen and J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733–742 (1990).
    [CrossRef]
  21. D. C. Cao and S. K. Shevell, “Chromatic assimilation: spread light or neural mechanism?” Vis. Res. 45, 1031–1045 (2005).
    [CrossRef]
  22. X. Zhuang and D. Cao, “Contrast magnitude and polarity effects on color filling-in along cardinal color axes,” J. Vis. 13(7):19 (2013).
    [CrossRef]
  23. R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009).
    [CrossRef]
  24. K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
    [CrossRef]
  25. J. D. Mollon and P. G. Polden, “An anomaly in the response of the eye to light of short wavelengths,” Phil. Trans. R. Soc. B 278, 207–240 (1977).
    [CrossRef]
  26. M. D. Fairchild and P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vis. Res. 32, 2077–2085 (1992).
    [CrossRef]
  27. A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997).
    [CrossRef]
  28. T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vis. 8(1):2 (2008).
    [CrossRef]
  29. M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9), 11 (2009).
    [CrossRef]
  30. D. Cao and Y. Lu, “Chromatic discrimination: differential contributions from two adapting fields,” J. Opt. Soc. Am. A 29, A1–A9 (2012).
    [CrossRef]
  31. P. D. Spear, C. B. Y. Kim, A. Ahmad, and B. W. Tom, “Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey,” Vis. Neurosci. 13, 199–203 (1996).
    [CrossRef]
  32. Y. LeGrand, Light, Colour and Vision, 2nd ed. (Chapman & Hall, 1968), pp. 1–564.
  33. D. Cao, J. Pokorny, and V. C. Smith, “Matching rod percepts with cone stimuli,” Vis. Res. 45, 2119–2128 (2005).
    [CrossRef]
  34. D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008).
    [CrossRef]
  35. D. Cao, A. J. Zele, V. C. Smith, and J. Pokorny, “S-cone discrimination for stimuli with spatial and temporal chromatic contrast,” Vis. Neurosci. 25, 349–354 (2008).
  36. J. Pokorny and V. C. Smith, “Chromatic discrimination,” in The Visual Neuroscience, L. M. Chalupa and J. S. Werner, eds. (Massachusetts Institute of Technology, 2004), pp. 908–923.
  37. E. N. J. Pugh and J. D. Mollon, “A theory of the π-1 and π-3 color mechanisms of Stiles,” Vis. Res. 19, 293–312 (1979).
    [CrossRef]
  38. Q. Zaidi, A. Shapiro, and D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vis. Res. 32, 1297–1318 (1992).
    [CrossRef]
  39. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
    [CrossRef]
  40. E. Miyahara, V. C. Smith, and J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. A 10, 545–553 (1993).
    [CrossRef]
  41. B. W. Tansley and R. M. Boynton, “A line, not a space, represents visual distinctness of borders formed by different colors,” Science 191, 954–957 (1976).
    [CrossRef]
  42. B. W. Tansley and R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vis. Res. 18, 683–697 (1978).
    [CrossRef]
  43. J. Mollon, “Seeing colour,” in Colour: Art & Science (1995), pp. 127–150.
  44. G. D. Horwitz, E. Chichilnisky, and T. D. Albright, “Blue-yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1,” J. Neurophysiol. 93, 2263–2278 (2005).
    [CrossRef]
  45. G. D. Horwitz, E. Chichilnisky, and T. D. Albright, “Cone inputs to simple and complex cells in V1 of awake macaque,” J. Neurophysiol. 97, 3070–3081 (2007).
    [CrossRef]
  46. B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006).
    [CrossRef]

2013

X. Zhuang and D. Cao, “Contrast magnitude and polarity effects on color filling-in along cardinal color axes,” J. Vis. 13(7):19 (2013).
[CrossRef]

2012

2011

B. B. Lee, “Visual pathways and psychophysical channels in the primate,” J. Physiol. 589, 41–47 (2011).
[CrossRef]

2010

M. V. Danilova and J. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vis. 10(1):1–9 (2010).

2009

B. R. Conway, “Color vision, cones, and color-coding in the cortex,” Neuroscientist 15, 274–290 (2009).
[CrossRef]

R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009).
[CrossRef]

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9), 11 (2009).
[CrossRef]

2008

T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vis. 8(1):2 (2008).
[CrossRef]

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008).
[CrossRef]

D. Cao, A. J. Zele, V. C. Smith, and J. Pokorny, “S-cone discrimination for stimuli with spatial and temporal chromatic contrast,” Vis. Neurosci. 25, 349–354 (2008).

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

2007

G. D. Horwitz, E. Chichilnisky, and T. D. Albright, “Cone inputs to simple and complex cells in V1 of awake macaque,” J. Neurophysiol. 97, 3070–3081 (2007).
[CrossRef]

2006

B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006).
[CrossRef]

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006).
[CrossRef]

2005

D. Cao, J. Pokorny, and V. C. Smith, “Matching rod percepts with cone stimuli,” Vis. Res. 45, 2119–2128 (2005).
[CrossRef]

G. D. Horwitz, E. Chichilnisky, and T. D. Albright, “Blue-yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1,” J. Neurophysiol. 93, 2263–2278 (2005).
[CrossRef]

D. C. Cao and S. K. Shevell, “Chromatic assimilation: spread light or neural mechanism?” Vis. Res. 45, 1031–1045 (2005).
[CrossRef]

T. Hansen and K. R. Gegenfurtner, “Classification images for chromatic signal detection,” J. Opt. Soc. Am. A 22, 2081–2089 (2005).
[CrossRef]

2003

J. R. Newton and R. T. Eskew, “Chromatic detection and discrimination in the periphery: a postreceptoral loss of color sensitivity,” Vis. Neurosci. 20, 511–521 (2003).
[CrossRef]

K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
[CrossRef]

2001

R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
[CrossRef]

B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).

2000

D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000).
[CrossRef]

J. S. McLellan and R. T. Eskew, “ON and OFF S-cone pathways have different long-wave cone inputs,” Vis. Res. 40, 2449–2465 (2000).
[CrossRef]

1997

A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997).
[CrossRef]

1996

P. D. Spear, C. B. Y. Kim, A. Ahmad, and B. W. Tom, “Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey,” Vis. Neurosci. 13, 199–203 (1996).
[CrossRef]

V. C. Smith and J. Pokorny, “The design and use of a cone chromaticity space,” Color Res. Appl. 21, 375–383 (1996).
[CrossRef]

1994

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

1993

1992

M. D. Fairchild and P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vis. Res. 32, 2077–2085 (1992).
[CrossRef]

Q. Zaidi, A. Shapiro, and D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vis. Res. 32, 1297–1318 (1992).
[CrossRef]

1991

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

1990

1986

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

1984

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

1979

E. N. J. Pugh and J. D. Mollon, “A theory of the π-1 and π-3 color mechanisms of Stiles,” Vis. Res. 19, 293–312 (1979).
[CrossRef]

D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1185 (1979).
[CrossRef]

1978

B. W. Tansley and R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vis. Res. 18, 683–697 (1978).
[CrossRef]

1977

J. D. Mollon and P. G. Polden, “An anomaly in the response of the eye to light of short wavelengths,” Phil. Trans. R. Soc. B 278, 207–240 (1977).
[CrossRef]

1976

B. W. Tansley and R. M. Boynton, “A line, not a space, represents visual distinctness of borders formed by different colors,” Science 191, 954–957 (1976).
[CrossRef]

1975

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

Ahmad, A.

P. D. Spear, C. B. Y. Kim, A. Ahmad, and B. W. Tom, “Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey,” Vis. Neurosci. 13, 199–203 (1996).
[CrossRef]

Albright, T. D.

G. D. Horwitz, E. Chichilnisky, and T. D. Albright, “Cone inputs to simple and complex cells in V1 of awake macaque,” J. Neurophysiol. 97, 3070–3081 (2007).
[CrossRef]

G. D. Horwitz, E. Chichilnisky, and T. D. Albright, “Blue-yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1,” J. Neurophysiol. 93, 2263–2278 (2005).
[CrossRef]

Boynton, R. M.

D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1185 (1979).
[CrossRef]

B. W. Tansley and R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vis. Res. 18, 683–697 (1978).
[CrossRef]

B. W. Tansley and R. M. Boynton, “A line, not a space, represents visual distinctness of borders formed by different colors,” Science 191, 954–957 (1976).
[CrossRef]

Brown, A. M.

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

Cao, D.

X. Zhuang and D. Cao, “Contrast magnitude and polarity effects on color filling-in along cardinal color axes,” J. Vis. 13(7):19 (2013).
[CrossRef]

D. Cao and Y. Lu, “Chromatic discrimination: differential contributions from two adapting fields,” J. Opt. Soc. Am. A 29, A1–A9 (2012).
[CrossRef]

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008).
[CrossRef]

D. Cao, A. J. Zele, V. C. Smith, and J. Pokorny, “S-cone discrimination for stimuli with spatial and temporal chromatic contrast,” Vis. Neurosci. 25, 349–354 (2008).

D. Cao, J. Pokorny, and V. C. Smith, “Matching rod percepts with cone stimuli,” Vis. Res. 45, 2119–2128 (2005).
[CrossRef]

Cao, D. C.

D. C. Cao and S. K. Shevell, “Chromatic assimilation: spread light or neural mechanism?” Vis. Res. 45, 1031–1045 (2005).
[CrossRef]

Chichilnisky, E.

G. D. Horwitz, E. Chichilnisky, and T. D. Albright, “Cone inputs to simple and complex cells in V1 of awake macaque,” J. Neurophysiol. 97, 3070–3081 (2007).
[CrossRef]

G. D. Horwitz, E. Chichilnisky, and T. D. Albright, “Blue-yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1,” J. Neurophysiol. 93, 2263–2278 (2005).
[CrossRef]

Conway, B. R.

B. R. Conway, “Color vision, cones, and color-coding in the cortex,” Neuroscientist 15, 274–290 (2009).
[CrossRef]

B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006).
[CrossRef]

B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).

Dacey, D. M.

D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000).
[CrossRef]

Danilova, M. V.

M. V. Danilova and J. D. Mollon, “Cardinal axes are not independent in color discrimination,” J. Opt. Soc. Am. A 29, A157–A164 (2012).
[CrossRef]

M. V. Danilova and J. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vis. 10(1):1–9 (2010).

Derrington, A. M.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Eskew, R. T.

R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009).
[CrossRef]

J. R. Newton and R. T. Eskew, “Chromatic detection and discrimination in the periphery: a postreceptoral loss of color sensitivity,” Vis. Neurosci. 20, 511–521 (2003).
[CrossRef]

R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
[CrossRef]

J. S. McLellan and R. T. Eskew, “ON and OFF S-cone pathways have different long-wave cone inputs,” Vis. Res. 40, 2449–2465 (2000).
[CrossRef]

Fairchild, M. D.

M. D. Fairchild and P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vis. Res. 32, 2077–2085 (1992).
[CrossRef]

Gegenfurtner, K. R.

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9), 11 (2009).
[CrossRef]

T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vis. 8(1):2 (2008).
[CrossRef]

T. Hansen and K. R. Gegenfurtner, “Classification images for chromatic signal detection,” J. Opt. Soc. Am. A 22, 2081–2089 (2005).
[CrossRef]

K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
[CrossRef]

Giesel, M.

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9), 11 (2009).
[CrossRef]

T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vis. 8(1):2 (2008).
[CrossRef]

Giulianini, F.

R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
[CrossRef]

Hansen, T.

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9), 11 (2009).
[CrossRef]

T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vis. 8(1):2 (2008).
[CrossRef]

T. Hansen and K. R. Gegenfurtner, “Classification images for chromatic signal detection,” J. Opt. Soc. Am. A 22, 2081–2089 (2005).
[CrossRef]

Hood, D.

Q. Zaidi, A. Shapiro, and D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vis. Res. 32, 1297–1318 (1992).
[CrossRef]

Horwitz, G. D.

G. D. Horwitz, E. Chichilnisky, and T. D. Albright, “Cone inputs to simple and complex cells in V1 of awake macaque,” J. Neurophysiol. 97, 3070–3081 (2007).
[CrossRef]

G. D. Horwitz, E. Chichilnisky, and T. D. Albright, “Blue-yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1,” J. Neurophysiol. 93, 2263–2278 (2005).
[CrossRef]

Kim, C. B. Y.

P. D. Spear, C. B. Y. Kim, A. Ahmad, and B. W. Tom, “Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey,” Vis. Neurosci. 13, 199–203 (1996).
[CrossRef]

Krauskopf, J.

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Kulikowski, J. J.

Lee, B. B.

B. B. Lee, “Visual pathways and psychophysical channels in the primate,” J. Physiol. 589, 41–47 (2011).
[CrossRef]

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

LeGrand, Y.

Y. LeGrand, Light, Colour and Vision, 2nd ed. (Chapman & Hall, 1968), pp. 1–564.

Lennie, P.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997).
[CrossRef]

M. D. Fairchild and P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vis. Res. 32, 2077–2085 (1992).
[CrossRef]

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Li, A.

A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997).
[CrossRef]

Livingstone, M. S.

B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006).
[CrossRef]

Lu, Y.

MacLeod, D. I. A.

Mandler, M. B.

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

Martin, P. R.

McLellan, J. S.

J. S. McLellan and R. T. Eskew, “ON and OFF S-cone pathways have different long-wave cone inputs,” Vis. Res. 40, 2449–2465 (2000).
[CrossRef]

Miyahara, E.

Mollon, J.

M. V. Danilova and J. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vis. 10(1):1–9 (2010).

J. Mollon, “Seeing colour,” in Colour: Art & Science (1995), pp. 127–150.

Mollon, J. D.

M. V. Danilova and J. D. Mollon, “Cardinal axes are not independent in color discrimination,” J. Opt. Soc. Am. A 29, A157–A164 (2012).
[CrossRef]

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

E. N. J. Pugh and J. D. Mollon, “A theory of the π-1 and π-3 color mechanisms of Stiles,” Vis. Res. 19, 293–312 (1979).
[CrossRef]

J. D. Mollon and P. G. Polden, “An anomaly in the response of the eye to light of short wavelengths,” Phil. Trans. R. Soc. B 278, 207–240 (1977).
[CrossRef]

Mullen, K. T.

Newton, J. R.

J. R. Newton and R. T. Eskew, “Chromatic detection and discrimination in the periphery: a postreceptoral loss of color sensitivity,” Vis. Neurosci. 20, 511–521 (2003).
[CrossRef]

R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
[CrossRef]

Pokorny, J.

D. Cao, A. J. Zele, V. C. Smith, and J. Pokorny, “S-cone discrimination for stimuli with spatial and temporal chromatic contrast,” Vis. Neurosci. 25, 349–354 (2008).

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008).
[CrossRef]

D. Cao, J. Pokorny, and V. C. Smith, “Matching rod percepts with cone stimuli,” Vis. Res. 45, 2119–2128 (2005).
[CrossRef]

V. C. Smith and J. Pokorny, “The design and use of a cone chromaticity space,” Color Res. Appl. 21, 375–383 (1996).
[CrossRef]

E. Miyahara, V. C. Smith, and J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. A 10, 545–553 (1993).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

J. Pokorny and V. C. Smith, “Chromatic discrimination,” in The Visual Neuroscience, L. M. Chalupa and J. S. Werner, eds. (Massachusetts Institute of Technology, 2004), pp. 908–923.

Polden, P. G.

J. D. Mollon and P. G. Polden, “An anomaly in the response of the eye to light of short wavelengths,” Phil. Trans. R. Soc. B 278, 207–240 (1977).
[CrossRef]

Pugh, E. N. J.

E. N. J. Pugh and J. D. Mollon, “A theory of the π-1 and π-3 color mechanisms of Stiles,” Vis. Res. 19, 293–312 (1979).
[CrossRef]

Shapiro, A.

Q. Zaidi, A. Shapiro, and D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vis. Res. 32, 1297–1318 (1992).
[CrossRef]

Shevell, S. K.

D. C. Cao and S. K. Shevell, “Chromatic assimilation: spread light or neural mechanism?” Vis. Res. 45, 1031–1045 (2005).
[CrossRef]

Smith, V. C.

D. Cao, A. J. Zele, V. C. Smith, and J. Pokorny, “S-cone discrimination for stimuli with spatial and temporal chromatic contrast,” Vis. Neurosci. 25, 349–354 (2008).

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008).
[CrossRef]

D. Cao, J. Pokorny, and V. C. Smith, “Matching rod percepts with cone stimuli,” Vis. Res. 45, 2119–2128 (2005).
[CrossRef]

V. C. Smith and J. Pokorny, “The design and use of a cone chromaticity space,” Color Res. Appl. 21, 375–383 (1996).
[CrossRef]

E. Miyahara, V. C. Smith, and J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. A 10, 545–553 (1993).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

J. Pokorny and V. C. Smith, “Chromatic discrimination,” in The Visual Neuroscience, L. M. Chalupa and J. S. Werner, eds. (Massachusetts Institute of Technology, 2004), pp. 908–923.

Smithson, H. E.

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006).
[CrossRef]

Solomon, S. G.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

Spear, P. D.

P. D. Spear, C. B. Y. Kim, A. Ahmad, and B. W. Tom, “Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey,” Vis. Neurosci. 13, 199–203 (1996).
[CrossRef]

Sun, H.

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006).
[CrossRef]

Tailby, C.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

Tansley, B. W.

B. W. Tansley and R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vis. Res. 18, 683–697 (1978).
[CrossRef]

B. W. Tansley and R. M. Boynton, “A line, not a space, represents visual distinctness of borders formed by different colors,” Science 191, 954–957 (1976).
[CrossRef]

Tom, B. W.

P. D. Spear, C. B. Y. Kim, A. Ahmad, and B. W. Tom, “Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey,” Vis. Neurosci. 13, 199–203 (1996).
[CrossRef]

Valberg, A.

Webster, M. A.

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

Williams, D. R.

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

Zaidi, Q.

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006).
[CrossRef]

Q. Zaidi, A. Shapiro, and D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vis. Res. 32, 1297–1318 (1992).
[CrossRef]

Zele, A. J.

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008).
[CrossRef]

D. Cao, A. J. Zele, V. C. Smith, and J. Pokorny, “S-cone discrimination for stimuli with spatial and temporal chromatic contrast,” Vis. Neurosci. 25, 349–354 (2008).

Zhuang, X.

X. Zhuang and D. Cao, “Contrast magnitude and polarity effects on color filling-in along cardinal color axes,” J. Vis. 13(7):19 (2013).
[CrossRef]

Annu. Rev. Neurosci.

D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000).
[CrossRef]

Color Res. Appl.

V. C. Smith and J. Pokorny, “The design and use of a cone chromaticity space,” Color Res. Appl. 21, 375–383 (1996).
[CrossRef]

J. Neurophysiol.

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006).
[CrossRef]

G. D. Horwitz, E. Chichilnisky, and T. D. Albright, “Blue-yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1,” J. Neurophysiol. 93, 2263–2278 (2005).
[CrossRef]

G. D. Horwitz, E. Chichilnisky, and T. D. Albright, “Cone inputs to simple and complex cells in V1 of awake macaque,” J. Neurophysiol. 97, 3070–3081 (2007).
[CrossRef]

J. Neurosci.

B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006).
[CrossRef]

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Physiol.

B. B. Lee, “Visual pathways and psychophysical channels in the primate,” J. Physiol. 589, 41–47 (2011).
[CrossRef]

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

J. Vis.

X. Zhuang and D. Cao, “Contrast magnitude and polarity effects on color filling-in along cardinal color axes,” J. Vis. 13(7):19 (2013).
[CrossRef]

T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vis. 8(1):2 (2008).
[CrossRef]

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9), 11 (2009).
[CrossRef]

M. V. Danilova and J. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vis. 10(1):1–9 (2010).

Nat. Rev. Neurosci.

K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
[CrossRef]

Nature

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

Neuroscientist

B. R. Conway, “Color vision, cones, and color-coding in the cortex,” Neuroscientist 15, 274–290 (2009).
[CrossRef]

Phil. Trans. R. Soc. B

J. D. Mollon and P. G. Polden, “An anomaly in the response of the eye to light of short wavelengths,” Phil. Trans. R. Soc. B 278, 207–240 (1977).
[CrossRef]

Science

B. W. Tansley and R. M. Boynton, “A line, not a space, represents visual distinctness of borders formed by different colors,” Science 191, 954–957 (1976).
[CrossRef]

Vis. Neurosci.

D. Cao, A. J. Zele, V. C. Smith, and J. Pokorny, “S-cone discrimination for stimuli with spatial and temporal chromatic contrast,” Vis. Neurosci. 25, 349–354 (2008).

P. D. Spear, C. B. Y. Kim, A. Ahmad, and B. W. Tom, “Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey,” Vis. Neurosci. 13, 199–203 (1996).
[CrossRef]

J. R. Newton and R. T. Eskew, “Chromatic detection and discrimination in the periphery: a postreceptoral loss of color sensitivity,” Vis. Neurosci. 20, 511–521 (2003).
[CrossRef]

Vis. Res.

J. S. McLellan and R. T. Eskew, “ON and OFF S-cone pathways have different long-wave cone inputs,” Vis. Res. 40, 2449–2465 (2000).
[CrossRef]

D. C. Cao and S. K. Shevell, “Chromatic assimilation: spread light or neural mechanism?” Vis. Res. 45, 1031–1045 (2005).
[CrossRef]

R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009).
[CrossRef]

R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
[CrossRef]

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

M. D. Fairchild and P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vis. Res. 32, 2077–2085 (1992).
[CrossRef]

A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997).
[CrossRef]

D. Cao, J. Pokorny, and V. C. Smith, “Matching rod percepts with cone stimuli,” Vis. Res. 45, 2119–2128 (2005).
[CrossRef]

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008).
[CrossRef]

B. W. Tansley and R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vis. Res. 18, 683–697 (1978).
[CrossRef]

E. N. J. Pugh and J. D. Mollon, “A theory of the π-1 and π-3 color mechanisms of Stiles,” Vis. Res. 19, 293–312 (1979).
[CrossRef]

Q. Zaidi, A. Shapiro, and D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vis. Res. 32, 1297–1318 (1992).
[CrossRef]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

Other

J. Mollon, “Seeing colour,” in Colour: Art & Science (1995), pp. 127–150.

J. Pokorny and V. C. Smith, “Chromatic discrimination,” in The Visual Neuroscience, L. M. Chalupa and J. S. Werner, eds. (Massachusetts Institute of Technology, 2004), pp. 908–923.

Y. LeGrand, Light, Colour and Vision, 2nd ed. (Chapman & Hall, 1968), pp. 1–564.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A, stimulus spatial configuration; B, chromaticities. A, a 12 ° ( inner diameter ) 16 ° ( outer diameter ) annulus was surrounded by an inner circular field and an outer rectangular field. A “ + ” (0.14°) served as fixation, which was located in the center of the inner field. The test patch was a section of the annulus with a central angle of 20°. B, stimulus chromaticities. The test annulus had an s chromaticity of 0.6, 0.8, 1.0, 1.2, or 1.6 and l chromaticity of 0.625, 0.665, or 0.705. The chromaticities of the adapting fields were “yellow”–“green” ( l , s = 0.625 , 0.6), “green” ( l , s = 0.625 , 1.0), “blue” ( l , s = 0.625 , 1.6), “yellow” ( l , s = 0.665 , 0.6), “white” ( l , s = 0.665 , 1.0), “purple” ( l , s = 0.665 , 1.6), “orange” ( l , s = 0.705 , 0.6), “red” ( l , s = 0.705 , 1.0), and “pink” ( l , s = 0.705 , 1.6).

Fig. 2.
Fig. 2.

Schematic diagram of the KC-spectral response model with one adapting chromaticity. See text for more details.

Fig. 3.
Fig. 3.

S-cone discrimination thresholds from Experiment 1, expressed as log ΔS trolands, as a function of annulus log S trolands, for observers DC and JG. Top row, adapting s = 0.6 ; middle row, adapting s = 1.0 ; bottom row, adapting s = 1.6 . Each panel shows the thresholds at three different adapting l chromaticities of 0.625, 0.665, and 0.705, with the adapting s chromaticity indicated by an arrow. A, model fits assuming no PC-pathway input to the KC pathway (Model 1). B, model fits assuming PC-pathway input to the KC pathway (Model 2).

Fig. 4.
Fig. 4.

Fitted input strength from PC-pathway spectral signals to the KC pathway.

Fig. 5.
Fig. 5.

S-cone discrimination thresholds from Experiment 2, with the two adapting fields having different l but the same s chromaticities. Top row, adapting s = 0.6 ; middle row, adapting s = 1.0 ; bottom row, adapting s = 1.6 . Each panel shows the data of two inner-outer pairs with chromaticities swapped between the inner and outer adapting fields. The solid lines are model fits based on integration of spectral signals from both adapting fields. A, the l chromaticities in the two adapting fields were 0.625 and 0.665. B, the l chromaticities in the two adapting fields were 0.705 and 0.665.

Fig. 6.
Fig. 6.

S-cone discrimination thresholds from Experiment 3, with two adapting fields having different s but the same l chromaticities ( l = 0.665 ). The arrows in each panel indicate the two adapting s chromaticities. The solid lines are model fits based on integration of spectral signals from both adapting fields.

Tables (2)

Tables Icon

Table 1. R 2 of the Fits from the Models without PC Input (Model 1) or with PC Input (Model 2) for Experiment 1

Tables Icon

Table 2. Fitted Parameters for the Experiments

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

R L = L / l max ,
R M = M / m max ,
R S = S / s max ,
G ( L A ) = 1 / ( 1 + k 1 L A / l max ) k 2 ,
G ( M A ) = 1 / ( 1 + k 1 M A / m max ) k 2 ,
G ( S A ) = 1 / ( 1 + k 1 S A / s max ) k 2 ,
OPP + S / ( L + M ) = S T / s max G ( S A ) k 3 [ p L T / l max G ( L A ) + ( 1 p ) M T / m max G ( M A ) ] ,
OPP C = k 5 · ( OPP T k 4 OPP A ) ,
R OPP = R max · OPP C / ( OPP C + SAT ) ,
log ( Δ S c ) = log ( S th ) log [ G ( S A ) / s max ] + log [ ( OPP C + SAT ) 2 / SAT ] ,
OPP C = k 5 · [ ( OPP T ( KC ) + α OPP C ( PC ) ) k 4 ( OPP A ( KC ) + α OPP C ( PC ) ) ] ,
OPP C ( + L / M ) = [ L T / l max G ( L A ) 0.8 M T / m max G ( M A ) ] 0.95 [ L A / l max G ( L A ) 0.8 M A / m max G ( M A ) ] .
OPP C 1 = k 5 · [ OPP T ( KC ) + α OPP C 1 ( PC ) k 4 ( OPP A 1 ( KC ) + α OPP C 1 ( PC ) ) ] ,
OPP C 2 = k 5 · [ OPP T ( KC ) + α OPP C 2 ( PC ) k 4 ( OPP A 2 ( KC ) + α OPP C 2 ( PC ) ) ] ,
OPP C 1 , 2 = ( ω 1 OPP C 1 Q + ω 2 OPP C 2 Q ) 1 / Q ,
R OPP 1 , 2 = R max · OPP C 1 , 2 / ( OPP C 1 , 2 + SAT ) .
Z = S f ( L , M ) = S 10 k ( α L + M ) / [ 4 | γ L M | + 1 ] .

Metrics