Abstract

Occupational color vision standards in transport have been implemented for 100 years. A review of these standards has taken place early this century prompted by antidiscrimination laws in the workplace and several transport accidents. The Australian and Canadian Railways have developed new lanterns to address their occupational medical requirements. The Civil Aviation Authority in the UK has adopted the Color Assessment and Diagnosis (CAD) test as the standard for assessing color vision for professional flight crews. The methodology employed using the CAD test ensures that color deficient pilot applicants able to complete the most safety-critical task with the same accuracy as normal trichromats can be accepted for pilot training. This methodology can be extended for setting new color vision standards in other work environments.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Wilson, Researches on Color Blindness: With a Supplement on Danger Attending the Present System of Railway and Marine Color Signals (Sutherland and Knox, 1855).
  2. A. J. Vingrys and B. L. Cole, “Origins of color vision standards within the transport industry,” Ophthalmic Physiolog. Opt. 6, 369–375 (1986).
    [CrossRef]
  3. A. J. Vingrys and B. L. Cole, “Are color vision standards justified in the transport industry?” Ophthalmic Physiolog. Opt. 8, 257–274 (1988).
  4. J. D. Mollon and L. R. Cavonius, “The Lagerlunda collision and the introduction of color vision testing,” Surv. Ophthalmol. 57, 178–194 (2012).
    [CrossRef]
  5. E. Murray, “The evolution of color vision tests,” J. Opt. Soc. Am. 33, 316–334 (1943).
    [CrossRef]
  6. H. Topley, “Sight testing for the Merchant Navy,” Br. J. Physiol. Opt. 16, 36–46 (1959).
  7. B. L. Cole and A. L. Vingrys, “A survey and evaluation of lantern tests of color vision,” Am. J. Optom. Physiol. Opt. 59, 346–374 (1982).
  8. L. C. Martin, “A standardized Lantern for testing color vision,” Br. J. Ophthalmol. 23, 1–20 (1939).
  9. J. G. Holmes and W. D. Wright, “A new color-perception lantern,” Color Res. Appl. 7, 82–88 (1982).
    [CrossRef]
  10. L. C. Martin, “A standardized color-vision testing Lantern (II) transport type,” Br. J. Ophthalmol. 27, 255–259 (1943).
  11. D. Y. Solandt and C. H. Best, “The Royal Canadian navy color vision test lantern,” Can. Med. Assoc. J. 48, 18–21 (1943).
  12. J. Birch, “Efficiency of the Ishihara plates for identifying red-green color deficiency,” Ophthalmic Physiolog. Opt. 17, 403–408 (1997).
    [CrossRef]
  13. L. Rayleigh, “Experiments on color,” Nature 25, 64–66 (1881).
    [CrossRef]
  14. S. S. Deeb, “The molecular basis of variation in human color vision,” Clin. Genet. 67, 369–377 (2005).
    [CrossRef]
  15. J. Birch, “Worldwide prevalence of red-green color deficiency,” J. Opt. Soc. Am. A 29, 313–320 (2012).
    [CrossRef]
  16. F. H. G. Pitt, “Characteristics of dichromatic vision,” (HMSO, London, 1935).
  17. W. D. Wright, Researches in Normal and Defective Color Vision (Henry Kimpton, 1946).
  18. CIE, “Colours of light signals,” Report No.  (Commission Internationale d’Eclairage, 2001).
  19. J. Birch, “Performance of red-green color deficient subjects on the Holmes-Wright lantern (type A) in photopic viewing,” Aviat. Space Environ. Med. 70, 897–901 (1999).
  20. T. J. Squire, M. L. Rodríguez-Carmona, A. D. B. Evans, and J. L. Barbur, “Color vision tests in aviation: comparison of the anomaloscope and three lantern types,” Aviat. Space Environ. Med. 76, 421–429 (2005).
  21. D. Farnsworth and P. Foreman, “Development and trial of the New London Navy Lantern as selection test for serviceable colour vision,” Report No.  (US Naval Submarine Base Medical Research Lab, New London, Connecticut, 1946).
  22. J. Birch and S. J. Dain, “Performance of red-green color deficient people on the Farnsworth Lantern (Falant),” Aviat. Space Environ. Med. 70, 62–67 (1999).
  23. J. Birch, “Pass rates for the Farnsworth D15 color vision test,” Ophthalmic Physiolog. Opt. 28, 259–264 (2008).
    [CrossRef]
  24. B. L. Cole and A. J. Vingrys, “Who fails lantern tests?” Doc. Ophthalmol. 55, 157–162 (1983).
    [CrossRef]
  25. B. L. Cole and J. D. Maddock, “Can clinical color vision tests predict the results on the Farnsworth lantern?” Vis. Res. 38, 3483–3485 (1998).
    [CrossRef]
  26. CIE, “International recommendations for color vision requirements in transport,” Report No.  (Commission Internationale d’Eclairage, 2001).
  27. A. J. Vingrys and B. L. Cole, “Validation of the Holmes–Wright Lanterns for testing color vision,” Ophthalmic Physiolog. Opt. 3, 137–152 (1983).
  28. J. Birch, “Performance of color deficient people on the Holmes–Wright lantern (type A): consistency of occupational color vision standards in aviation,” Ophthalmic Physiolog. Opt. 28, 253–258 (2008).
  29. Health, and Safety Executive, Color Vision Examination: A Guide for Occupational Health Providers, HSE Guidance Note MS7, 3rd ed. (2005).
  30. National Transport Safety Board Washington DC R-97-1 and -2 (NTSB, 1997).
  31. National Transport Safety Board Washington DC R-04-46 and -47 (NTSB, 2004).
  32. B. L. Cole and J. D. Maddock, “Color vision testing with the Farnsworth Lantern and ability to identify approach-path signal lights,” Aviat. Space Environ. Med. 79, 585–590 (2008).
  33. A. Casolin, P. L. Katalinic, G. S. Yuen, and S. J. Dain, “The RailCorp Lantern test,” Occup. Med. 61, 171–177 (2011).
    [CrossRef]
  34. J. K. Hovis and D. Oliphant, “A lantern color vision test for the rail industry,” Am. J. Ind. Med. 38, 681–696 (2000).
  35. J. K. Hovis and S. Ramaswamy, “The effect of distance on the CN lantern results,” Vis. Neurosci. 23, 675–679 (2006).
    [CrossRef]
  36. F. G. Rauscher, G. Plant, and J. L. Barbur, “Patterns of color vision loss that result from damage to pre-striate and extra-striate visual pathways,” Investig. Ophthalmol. Vis. Sci. 47, 2669 (2006).
  37. M. O’Neill-Biba, S. Sivaprasad, M. Rodríguez-Carmona, J. E. Wolf, and J. L. Barbur, “Loss of chromatic sensitivity in AMD and diabetes: a comparative study,” Ophthalmic Physiolog. Opt. 30, 705–716 (2010).
    [CrossRef]
  38. D. F. Ventura, M. Gualtieri, A. G. Oliveira, M. F. Costa, P. Quiros, F. Sadun, A. M. de Negri, S. R. Salomão, A. Berezovsky, J. Sherman, A. A. Sadun, and V. Carelli, “Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s inherited optic neuropathy,” Investig. Ophthalmol. Vis. Sci. 48, 2362–2370 (2007).
    [CrossRef]
  39. D. F. Ventura, A. L. Simoes, S. Tomaz, M. F. Costa, M. Lago, M. T. Costa, L. H. Canto-Pereira, J. M. de Souza, M. A. Faria, and L. C. Silveira, “Color vision and contrast sensitivity losses of mercury intoxicated industrial workers in Brazil,” Environ. Toxicol. Pharmacol. 19, 523–529 (2005).
    [CrossRef]
  40. CAA, “Minimum color vision requirements for professional flight crew: recommendations for new color vision standards,” CAA paper 2009/4 (2009). http://www.caa.co.uk/docs/33/200904.pdf .
  41. M. Rodríguez-Carmona, A. Harlow, G. Walker, and J. L. Barbur, “The variability of normal trichromatic vision and the establishment of the ‘normal’ range,” in Proceedings of the 10th Congress of International Color Association, Granada, Spain (AIC, 2005), pp. 979–982.
  42. M. Rodríguez-Carmona, M. O’Neill-Biba, and J. L. Barbur, “Assessing the severity of color vision loss with implications for aviation and other occupational environments,” Aviat. Space Environ. Med. 83, 19–29 (2012).
  43. J. Rabin, J. Gooch, and D. Ivan, “Rapid quantification of color vision: the cone contrast test,” Investig. Ophthalmol. Vis. Sci. 52, 816–820 (2011).
    [CrossRef]
  44. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
  45. Eligibility—NATS/A global leader in Air Traffic Control (2013), http://www.nats.co.uk/careers/atc/how-to-apply/eligibility/ .

2012 (3)

M. Rodríguez-Carmona, M. O’Neill-Biba, and J. L. Barbur, “Assessing the severity of color vision loss with implications for aviation and other occupational environments,” Aviat. Space Environ. Med. 83, 19–29 (2012).

J. D. Mollon and L. R. Cavonius, “The Lagerlunda collision and the introduction of color vision testing,” Surv. Ophthalmol. 57, 178–194 (2012).
[CrossRef]

J. Birch, “Worldwide prevalence of red-green color deficiency,” J. Opt. Soc. Am. A 29, 313–320 (2012).
[CrossRef]

2011 (2)

J. Rabin, J. Gooch, and D. Ivan, “Rapid quantification of color vision: the cone contrast test,” Investig. Ophthalmol. Vis. Sci. 52, 816–820 (2011).
[CrossRef]

A. Casolin, P. L. Katalinic, G. S. Yuen, and S. J. Dain, “The RailCorp Lantern test,” Occup. Med. 61, 171–177 (2011).
[CrossRef]

2010 (1)

M. O’Neill-Biba, S. Sivaprasad, M. Rodríguez-Carmona, J. E. Wolf, and J. L. Barbur, “Loss of chromatic sensitivity in AMD and diabetes: a comparative study,” Ophthalmic Physiolog. Opt. 30, 705–716 (2010).
[CrossRef]

2008 (3)

J. Birch, “Pass rates for the Farnsworth D15 color vision test,” Ophthalmic Physiolog. Opt. 28, 259–264 (2008).
[CrossRef]

J. Birch, “Performance of color deficient people on the Holmes–Wright lantern (type A): consistency of occupational color vision standards in aviation,” Ophthalmic Physiolog. Opt. 28, 253–258 (2008).

B. L. Cole and J. D. Maddock, “Color vision testing with the Farnsworth Lantern and ability to identify approach-path signal lights,” Aviat. Space Environ. Med. 79, 585–590 (2008).

2007 (1)

D. F. Ventura, M. Gualtieri, A. G. Oliveira, M. F. Costa, P. Quiros, F. Sadun, A. M. de Negri, S. R. Salomão, A. Berezovsky, J. Sherman, A. A. Sadun, and V. Carelli, “Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s inherited optic neuropathy,” Investig. Ophthalmol. Vis. Sci. 48, 2362–2370 (2007).
[CrossRef]

2006 (2)

J. K. Hovis and S. Ramaswamy, “The effect of distance on the CN lantern results,” Vis. Neurosci. 23, 675–679 (2006).
[CrossRef]

F. G. Rauscher, G. Plant, and J. L. Barbur, “Patterns of color vision loss that result from damage to pre-striate and extra-striate visual pathways,” Investig. Ophthalmol. Vis. Sci. 47, 2669 (2006).

2005 (3)

T. J. Squire, M. L. Rodríguez-Carmona, A. D. B. Evans, and J. L. Barbur, “Color vision tests in aviation: comparison of the anomaloscope and three lantern types,” Aviat. Space Environ. Med. 76, 421–429 (2005).

D. F. Ventura, A. L. Simoes, S. Tomaz, M. F. Costa, M. Lago, M. T. Costa, L. H. Canto-Pereira, J. M. de Souza, M. A. Faria, and L. C. Silveira, “Color vision and contrast sensitivity losses of mercury intoxicated industrial workers in Brazil,” Environ. Toxicol. Pharmacol. 19, 523–529 (2005).
[CrossRef]

S. S. Deeb, “The molecular basis of variation in human color vision,” Clin. Genet. 67, 369–377 (2005).
[CrossRef]

2000 (1)

J. K. Hovis and D. Oliphant, “A lantern color vision test for the rail industry,” Am. J. Ind. Med. 38, 681–696 (2000).

1999 (2)

J. Birch and S. J. Dain, “Performance of red-green color deficient people on the Farnsworth Lantern (Falant),” Aviat. Space Environ. Med. 70, 62–67 (1999).

J. Birch, “Performance of red-green color deficient subjects on the Holmes-Wright lantern (type A) in photopic viewing,” Aviat. Space Environ. Med. 70, 897–901 (1999).

1998 (1)

B. L. Cole and J. D. Maddock, “Can clinical color vision tests predict the results on the Farnsworth lantern?” Vis. Res. 38, 3483–3485 (1998).
[CrossRef]

1997 (1)

J. Birch, “Efficiency of the Ishihara plates for identifying red-green color deficiency,” Ophthalmic Physiolog. Opt. 17, 403–408 (1997).
[CrossRef]

1988 (1)

A. J. Vingrys and B. L. Cole, “Are color vision standards justified in the transport industry?” Ophthalmic Physiolog. Opt. 8, 257–274 (1988).

1986 (1)

A. J. Vingrys and B. L. Cole, “Origins of color vision standards within the transport industry,” Ophthalmic Physiolog. Opt. 6, 369–375 (1986).
[CrossRef]

1983 (2)

A. J. Vingrys and B. L. Cole, “Validation of the Holmes–Wright Lanterns for testing color vision,” Ophthalmic Physiolog. Opt. 3, 137–152 (1983).

B. L. Cole and A. J. Vingrys, “Who fails lantern tests?” Doc. Ophthalmol. 55, 157–162 (1983).
[CrossRef]

1982 (2)

J. G. Holmes and W. D. Wright, “A new color-perception lantern,” Color Res. Appl. 7, 82–88 (1982).
[CrossRef]

B. L. Cole and A. L. Vingrys, “A survey and evaluation of lantern tests of color vision,” Am. J. Optom. Physiol. Opt. 59, 346–374 (1982).

1975 (1)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).

1959 (1)

H. Topley, “Sight testing for the Merchant Navy,” Br. J. Physiol. Opt. 16, 36–46 (1959).

1943 (3)

L. C. Martin, “A standardized color-vision testing Lantern (II) transport type,” Br. J. Ophthalmol. 27, 255–259 (1943).

D. Y. Solandt and C. H. Best, “The Royal Canadian navy color vision test lantern,” Can. Med. Assoc. J. 48, 18–21 (1943).

E. Murray, “The evolution of color vision tests,” J. Opt. Soc. Am. 33, 316–334 (1943).
[CrossRef]

1939 (1)

L. C. Martin, “A standardized Lantern for testing color vision,” Br. J. Ophthalmol. 23, 1–20 (1939).

1881 (1)

L. Rayleigh, “Experiments on color,” Nature 25, 64–66 (1881).
[CrossRef]

Barbur, J. L.

M. Rodríguez-Carmona, M. O’Neill-Biba, and J. L. Barbur, “Assessing the severity of color vision loss with implications for aviation and other occupational environments,” Aviat. Space Environ. Med. 83, 19–29 (2012).

M. O’Neill-Biba, S. Sivaprasad, M. Rodríguez-Carmona, J. E. Wolf, and J. L. Barbur, “Loss of chromatic sensitivity in AMD and diabetes: a comparative study,” Ophthalmic Physiolog. Opt. 30, 705–716 (2010).
[CrossRef]

F. G. Rauscher, G. Plant, and J. L. Barbur, “Patterns of color vision loss that result from damage to pre-striate and extra-striate visual pathways,” Investig. Ophthalmol. Vis. Sci. 47, 2669 (2006).

T. J. Squire, M. L. Rodríguez-Carmona, A. D. B. Evans, and J. L. Barbur, “Color vision tests in aviation: comparison of the anomaloscope and three lantern types,” Aviat. Space Environ. Med. 76, 421–429 (2005).

M. Rodríguez-Carmona, A. Harlow, G. Walker, and J. L. Barbur, “The variability of normal trichromatic vision and the establishment of the ‘normal’ range,” in Proceedings of the 10th Congress of International Color Association, Granada, Spain (AIC, 2005), pp. 979–982.

Berezovsky, A.

D. F. Ventura, M. Gualtieri, A. G. Oliveira, M. F. Costa, P. Quiros, F. Sadun, A. M. de Negri, S. R. Salomão, A. Berezovsky, J. Sherman, A. A. Sadun, and V. Carelli, “Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s inherited optic neuropathy,” Investig. Ophthalmol. Vis. Sci. 48, 2362–2370 (2007).
[CrossRef]

Best, C. H.

D. Y. Solandt and C. H. Best, “The Royal Canadian navy color vision test lantern,” Can. Med. Assoc. J. 48, 18–21 (1943).

Birch, J.

J. Birch, “Worldwide prevalence of red-green color deficiency,” J. Opt. Soc. Am. A 29, 313–320 (2012).
[CrossRef]

J. Birch, “Pass rates for the Farnsworth D15 color vision test,” Ophthalmic Physiolog. Opt. 28, 259–264 (2008).
[CrossRef]

J. Birch, “Performance of color deficient people on the Holmes–Wright lantern (type A): consistency of occupational color vision standards in aviation,” Ophthalmic Physiolog. Opt. 28, 253–258 (2008).

J. Birch, “Performance of red-green color deficient subjects on the Holmes-Wright lantern (type A) in photopic viewing,” Aviat. Space Environ. Med. 70, 897–901 (1999).

J. Birch and S. J. Dain, “Performance of red-green color deficient people on the Farnsworth Lantern (Falant),” Aviat. Space Environ. Med. 70, 62–67 (1999).

J. Birch, “Efficiency of the Ishihara plates for identifying red-green color deficiency,” Ophthalmic Physiolog. Opt. 17, 403–408 (1997).
[CrossRef]

Canto-Pereira, L. H.

D. F. Ventura, A. L. Simoes, S. Tomaz, M. F. Costa, M. Lago, M. T. Costa, L. H. Canto-Pereira, J. M. de Souza, M. A. Faria, and L. C. Silveira, “Color vision and contrast sensitivity losses of mercury intoxicated industrial workers in Brazil,” Environ. Toxicol. Pharmacol. 19, 523–529 (2005).
[CrossRef]

Carelli, V.

D. F. Ventura, M. Gualtieri, A. G. Oliveira, M. F. Costa, P. Quiros, F. Sadun, A. M. de Negri, S. R. Salomão, A. Berezovsky, J. Sherman, A. A. Sadun, and V. Carelli, “Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s inherited optic neuropathy,” Investig. Ophthalmol. Vis. Sci. 48, 2362–2370 (2007).
[CrossRef]

Casolin, A.

A. Casolin, P. L. Katalinic, G. S. Yuen, and S. J. Dain, “The RailCorp Lantern test,” Occup. Med. 61, 171–177 (2011).
[CrossRef]

Cavonius, L. R.

J. D. Mollon and L. R. Cavonius, “The Lagerlunda collision and the introduction of color vision testing,” Surv. Ophthalmol. 57, 178–194 (2012).
[CrossRef]

Cole, B. L.

B. L. Cole and J. D. Maddock, “Color vision testing with the Farnsworth Lantern and ability to identify approach-path signal lights,” Aviat. Space Environ. Med. 79, 585–590 (2008).

B. L. Cole and J. D. Maddock, “Can clinical color vision tests predict the results on the Farnsworth lantern?” Vis. Res. 38, 3483–3485 (1998).
[CrossRef]

A. J. Vingrys and B. L. Cole, “Are color vision standards justified in the transport industry?” Ophthalmic Physiolog. Opt. 8, 257–274 (1988).

A. J. Vingrys and B. L. Cole, “Origins of color vision standards within the transport industry,” Ophthalmic Physiolog. Opt. 6, 369–375 (1986).
[CrossRef]

A. J. Vingrys and B. L. Cole, “Validation of the Holmes–Wright Lanterns for testing color vision,” Ophthalmic Physiolog. Opt. 3, 137–152 (1983).

B. L. Cole and A. J. Vingrys, “Who fails lantern tests?” Doc. Ophthalmol. 55, 157–162 (1983).
[CrossRef]

B. L. Cole and A. L. Vingrys, “A survey and evaluation of lantern tests of color vision,” Am. J. Optom. Physiol. Opt. 59, 346–374 (1982).

Costa, M. F.

D. F. Ventura, M. Gualtieri, A. G. Oliveira, M. F. Costa, P. Quiros, F. Sadun, A. M. de Negri, S. R. Salomão, A. Berezovsky, J. Sherman, A. A. Sadun, and V. Carelli, “Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s inherited optic neuropathy,” Investig. Ophthalmol. Vis. Sci. 48, 2362–2370 (2007).
[CrossRef]

D. F. Ventura, A. L. Simoes, S. Tomaz, M. F. Costa, M. Lago, M. T. Costa, L. H. Canto-Pereira, J. M. de Souza, M. A. Faria, and L. C. Silveira, “Color vision and contrast sensitivity losses of mercury intoxicated industrial workers in Brazil,” Environ. Toxicol. Pharmacol. 19, 523–529 (2005).
[CrossRef]

Costa, M. T.

D. F. Ventura, A. L. Simoes, S. Tomaz, M. F. Costa, M. Lago, M. T. Costa, L. H. Canto-Pereira, J. M. de Souza, M. A. Faria, and L. C. Silveira, “Color vision and contrast sensitivity losses of mercury intoxicated industrial workers in Brazil,” Environ. Toxicol. Pharmacol. 19, 523–529 (2005).
[CrossRef]

Dain, S. J.

A. Casolin, P. L. Katalinic, G. S. Yuen, and S. J. Dain, “The RailCorp Lantern test,” Occup. Med. 61, 171–177 (2011).
[CrossRef]

J. Birch and S. J. Dain, “Performance of red-green color deficient people on the Farnsworth Lantern (Falant),” Aviat. Space Environ. Med. 70, 62–67 (1999).

de Negri, A. M.

D. F. Ventura, M. Gualtieri, A. G. Oliveira, M. F. Costa, P. Quiros, F. Sadun, A. M. de Negri, S. R. Salomão, A. Berezovsky, J. Sherman, A. A. Sadun, and V. Carelli, “Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s inherited optic neuropathy,” Investig. Ophthalmol. Vis. Sci. 48, 2362–2370 (2007).
[CrossRef]

de Souza, J. M.

D. F. Ventura, A. L. Simoes, S. Tomaz, M. F. Costa, M. Lago, M. T. Costa, L. H. Canto-Pereira, J. M. de Souza, M. A. Faria, and L. C. Silveira, “Color vision and contrast sensitivity losses of mercury intoxicated industrial workers in Brazil,” Environ. Toxicol. Pharmacol. 19, 523–529 (2005).
[CrossRef]

Deeb, S. S.

S. S. Deeb, “The molecular basis of variation in human color vision,” Clin. Genet. 67, 369–377 (2005).
[CrossRef]

Evans, A. D. B.

T. J. Squire, M. L. Rodríguez-Carmona, A. D. B. Evans, and J. L. Barbur, “Color vision tests in aviation: comparison of the anomaloscope and three lantern types,” Aviat. Space Environ. Med. 76, 421–429 (2005).

Faria, M. A.

D. F. Ventura, A. L. Simoes, S. Tomaz, M. F. Costa, M. Lago, M. T. Costa, L. H. Canto-Pereira, J. M. de Souza, M. A. Faria, and L. C. Silveira, “Color vision and contrast sensitivity losses of mercury intoxicated industrial workers in Brazil,” Environ. Toxicol. Pharmacol. 19, 523–529 (2005).
[CrossRef]

Farnsworth, D.

D. Farnsworth and P. Foreman, “Development and trial of the New London Navy Lantern as selection test for serviceable colour vision,” Report No.  (US Naval Submarine Base Medical Research Lab, New London, Connecticut, 1946).

Foreman, P.

D. Farnsworth and P. Foreman, “Development and trial of the New London Navy Lantern as selection test for serviceable colour vision,” Report No.  (US Naval Submarine Base Medical Research Lab, New London, Connecticut, 1946).

Gooch, J.

J. Rabin, J. Gooch, and D. Ivan, “Rapid quantification of color vision: the cone contrast test,” Investig. Ophthalmol. Vis. Sci. 52, 816–820 (2011).
[CrossRef]

Gualtieri, M.

D. F. Ventura, M. Gualtieri, A. G. Oliveira, M. F. Costa, P. Quiros, F. Sadun, A. M. de Negri, S. R. Salomão, A. Berezovsky, J. Sherman, A. A. Sadun, and V. Carelli, “Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s inherited optic neuropathy,” Investig. Ophthalmol. Vis. Sci. 48, 2362–2370 (2007).
[CrossRef]

Harlow, A.

M. Rodríguez-Carmona, A. Harlow, G. Walker, and J. L. Barbur, “The variability of normal trichromatic vision and the establishment of the ‘normal’ range,” in Proceedings of the 10th Congress of International Color Association, Granada, Spain (AIC, 2005), pp. 979–982.

Holmes, J. G.

J. G. Holmes and W. D. Wright, “A new color-perception lantern,” Color Res. Appl. 7, 82–88 (1982).
[CrossRef]

Hovis, J. K.

J. K. Hovis and S. Ramaswamy, “The effect of distance on the CN lantern results,” Vis. Neurosci. 23, 675–679 (2006).
[CrossRef]

J. K. Hovis and D. Oliphant, “A lantern color vision test for the rail industry,” Am. J. Ind. Med. 38, 681–696 (2000).

Ivan, D.

J. Rabin, J. Gooch, and D. Ivan, “Rapid quantification of color vision: the cone contrast test,” Investig. Ophthalmol. Vis. Sci. 52, 816–820 (2011).
[CrossRef]

Katalinic, P. L.

A. Casolin, P. L. Katalinic, G. S. Yuen, and S. J. Dain, “The RailCorp Lantern test,” Occup. Med. 61, 171–177 (2011).
[CrossRef]

Lago, M.

D. F. Ventura, A. L. Simoes, S. Tomaz, M. F. Costa, M. Lago, M. T. Costa, L. H. Canto-Pereira, J. M. de Souza, M. A. Faria, and L. C. Silveira, “Color vision and contrast sensitivity losses of mercury intoxicated industrial workers in Brazil,” Environ. Toxicol. Pharmacol. 19, 523–529 (2005).
[CrossRef]

Maddock, J. D.

B. L. Cole and J. D. Maddock, “Color vision testing with the Farnsworth Lantern and ability to identify approach-path signal lights,” Aviat. Space Environ. Med. 79, 585–590 (2008).

B. L. Cole and J. D. Maddock, “Can clinical color vision tests predict the results on the Farnsworth lantern?” Vis. Res. 38, 3483–3485 (1998).
[CrossRef]

Martin, L. C.

L. C. Martin, “A standardized color-vision testing Lantern (II) transport type,” Br. J. Ophthalmol. 27, 255–259 (1943).

L. C. Martin, “A standardized Lantern for testing color vision,” Br. J. Ophthalmol. 23, 1–20 (1939).

Mollon, J. D.

J. D. Mollon and L. R. Cavonius, “The Lagerlunda collision and the introduction of color vision testing,” Surv. Ophthalmol. 57, 178–194 (2012).
[CrossRef]

Murray, E.

O’Neill-Biba, M.

M. Rodríguez-Carmona, M. O’Neill-Biba, and J. L. Barbur, “Assessing the severity of color vision loss with implications for aviation and other occupational environments,” Aviat. Space Environ. Med. 83, 19–29 (2012).

M. O’Neill-Biba, S. Sivaprasad, M. Rodríguez-Carmona, J. E. Wolf, and J. L. Barbur, “Loss of chromatic sensitivity in AMD and diabetes: a comparative study,” Ophthalmic Physiolog. Opt. 30, 705–716 (2010).
[CrossRef]

Oliphant, D.

J. K. Hovis and D. Oliphant, “A lantern color vision test for the rail industry,” Am. J. Ind. Med. 38, 681–696 (2000).

Oliveira, A. G.

D. F. Ventura, M. Gualtieri, A. G. Oliveira, M. F. Costa, P. Quiros, F. Sadun, A. M. de Negri, S. R. Salomão, A. Berezovsky, J. Sherman, A. A. Sadun, and V. Carelli, “Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s inherited optic neuropathy,” Investig. Ophthalmol. Vis. Sci. 48, 2362–2370 (2007).
[CrossRef]

Pitt, F. H. G.

F. H. G. Pitt, “Characteristics of dichromatic vision,” (HMSO, London, 1935).

Plant, G.

F. G. Rauscher, G. Plant, and J. L. Barbur, “Patterns of color vision loss that result from damage to pre-striate and extra-striate visual pathways,” Investig. Ophthalmol. Vis. Sci. 47, 2669 (2006).

Pokorny, J.

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).

Quiros, P.

D. F. Ventura, M. Gualtieri, A. G. Oliveira, M. F. Costa, P. Quiros, F. Sadun, A. M. de Negri, S. R. Salomão, A. Berezovsky, J. Sherman, A. A. Sadun, and V. Carelli, “Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s inherited optic neuropathy,” Investig. Ophthalmol. Vis. Sci. 48, 2362–2370 (2007).
[CrossRef]

Rabin, J.

J. Rabin, J. Gooch, and D. Ivan, “Rapid quantification of color vision: the cone contrast test,” Investig. Ophthalmol. Vis. Sci. 52, 816–820 (2011).
[CrossRef]

Ramaswamy, S.

J. K. Hovis and S. Ramaswamy, “The effect of distance on the CN lantern results,” Vis. Neurosci. 23, 675–679 (2006).
[CrossRef]

Rauscher, F. G.

F. G. Rauscher, G. Plant, and J. L. Barbur, “Patterns of color vision loss that result from damage to pre-striate and extra-striate visual pathways,” Investig. Ophthalmol. Vis. Sci. 47, 2669 (2006).

Rayleigh, L.

L. Rayleigh, “Experiments on color,” Nature 25, 64–66 (1881).
[CrossRef]

Rodríguez-Carmona, M.

M. Rodríguez-Carmona, M. O’Neill-Biba, and J. L. Barbur, “Assessing the severity of color vision loss with implications for aviation and other occupational environments,” Aviat. Space Environ. Med. 83, 19–29 (2012).

M. O’Neill-Biba, S. Sivaprasad, M. Rodríguez-Carmona, J. E. Wolf, and J. L. Barbur, “Loss of chromatic sensitivity in AMD and diabetes: a comparative study,” Ophthalmic Physiolog. Opt. 30, 705–716 (2010).
[CrossRef]

M. Rodríguez-Carmona, A. Harlow, G. Walker, and J. L. Barbur, “The variability of normal trichromatic vision and the establishment of the ‘normal’ range,” in Proceedings of the 10th Congress of International Color Association, Granada, Spain (AIC, 2005), pp. 979–982.

Rodríguez-Carmona, M. L.

T. J. Squire, M. L. Rodríguez-Carmona, A. D. B. Evans, and J. L. Barbur, “Color vision tests in aviation: comparison of the anomaloscope and three lantern types,” Aviat. Space Environ. Med. 76, 421–429 (2005).

Sadun, A. A.

D. F. Ventura, M. Gualtieri, A. G. Oliveira, M. F. Costa, P. Quiros, F. Sadun, A. M. de Negri, S. R. Salomão, A. Berezovsky, J. Sherman, A. A. Sadun, and V. Carelli, “Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s inherited optic neuropathy,” Investig. Ophthalmol. Vis. Sci. 48, 2362–2370 (2007).
[CrossRef]

Sadun, F.

D. F. Ventura, M. Gualtieri, A. G. Oliveira, M. F. Costa, P. Quiros, F. Sadun, A. M. de Negri, S. R. Salomão, A. Berezovsky, J. Sherman, A. A. Sadun, and V. Carelli, “Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s inherited optic neuropathy,” Investig. Ophthalmol. Vis. Sci. 48, 2362–2370 (2007).
[CrossRef]

Salomão, S. R.

D. F. Ventura, M. Gualtieri, A. G. Oliveira, M. F. Costa, P. Quiros, F. Sadun, A. M. de Negri, S. R. Salomão, A. Berezovsky, J. Sherman, A. A. Sadun, and V. Carelli, “Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s inherited optic neuropathy,” Investig. Ophthalmol. Vis. Sci. 48, 2362–2370 (2007).
[CrossRef]

Sherman, J.

D. F. Ventura, M. Gualtieri, A. G. Oliveira, M. F. Costa, P. Quiros, F. Sadun, A. M. de Negri, S. R. Salomão, A. Berezovsky, J. Sherman, A. A. Sadun, and V. Carelli, “Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s inherited optic neuropathy,” Investig. Ophthalmol. Vis. Sci. 48, 2362–2370 (2007).
[CrossRef]

Silveira, L. C.

D. F. Ventura, A. L. Simoes, S. Tomaz, M. F. Costa, M. Lago, M. T. Costa, L. H. Canto-Pereira, J. M. de Souza, M. A. Faria, and L. C. Silveira, “Color vision and contrast sensitivity losses of mercury intoxicated industrial workers in Brazil,” Environ. Toxicol. Pharmacol. 19, 523–529 (2005).
[CrossRef]

Simoes, A. L.

D. F. Ventura, A. L. Simoes, S. Tomaz, M. F. Costa, M. Lago, M. T. Costa, L. H. Canto-Pereira, J. M. de Souza, M. A. Faria, and L. C. Silveira, “Color vision and contrast sensitivity losses of mercury intoxicated industrial workers in Brazil,” Environ. Toxicol. Pharmacol. 19, 523–529 (2005).
[CrossRef]

Sivaprasad, S.

M. O’Neill-Biba, S. Sivaprasad, M. Rodríguez-Carmona, J. E. Wolf, and J. L. Barbur, “Loss of chromatic sensitivity in AMD and diabetes: a comparative study,” Ophthalmic Physiolog. Opt. 30, 705–716 (2010).
[CrossRef]

Smith, V. C.

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).

Solandt, D. Y.

D. Y. Solandt and C. H. Best, “The Royal Canadian navy color vision test lantern,” Can. Med. Assoc. J. 48, 18–21 (1943).

Squire, T. J.

T. J. Squire, M. L. Rodríguez-Carmona, A. D. B. Evans, and J. L. Barbur, “Color vision tests in aviation: comparison of the anomaloscope and three lantern types,” Aviat. Space Environ. Med. 76, 421–429 (2005).

Tomaz, S.

D. F. Ventura, A. L. Simoes, S. Tomaz, M. F. Costa, M. Lago, M. T. Costa, L. H. Canto-Pereira, J. M. de Souza, M. A. Faria, and L. C. Silveira, “Color vision and contrast sensitivity losses of mercury intoxicated industrial workers in Brazil,” Environ. Toxicol. Pharmacol. 19, 523–529 (2005).
[CrossRef]

Topley, H.

H. Topley, “Sight testing for the Merchant Navy,” Br. J. Physiol. Opt. 16, 36–46 (1959).

Ventura, D. F.

D. F. Ventura, M. Gualtieri, A. G. Oliveira, M. F. Costa, P. Quiros, F. Sadun, A. M. de Negri, S. R. Salomão, A. Berezovsky, J. Sherman, A. A. Sadun, and V. Carelli, “Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s inherited optic neuropathy,” Investig. Ophthalmol. Vis. Sci. 48, 2362–2370 (2007).
[CrossRef]

D. F. Ventura, A. L. Simoes, S. Tomaz, M. F. Costa, M. Lago, M. T. Costa, L. H. Canto-Pereira, J. M. de Souza, M. A. Faria, and L. C. Silveira, “Color vision and contrast sensitivity losses of mercury intoxicated industrial workers in Brazil,” Environ. Toxicol. Pharmacol. 19, 523–529 (2005).
[CrossRef]

Vingrys, A. J.

A. J. Vingrys and B. L. Cole, “Are color vision standards justified in the transport industry?” Ophthalmic Physiolog. Opt. 8, 257–274 (1988).

A. J. Vingrys and B. L. Cole, “Origins of color vision standards within the transport industry,” Ophthalmic Physiolog. Opt. 6, 369–375 (1986).
[CrossRef]

A. J. Vingrys and B. L. Cole, “Validation of the Holmes–Wright Lanterns for testing color vision,” Ophthalmic Physiolog. Opt. 3, 137–152 (1983).

B. L. Cole and A. J. Vingrys, “Who fails lantern tests?” Doc. Ophthalmol. 55, 157–162 (1983).
[CrossRef]

Vingrys, A. L.

B. L. Cole and A. L. Vingrys, “A survey and evaluation of lantern tests of color vision,” Am. J. Optom. Physiol. Opt. 59, 346–374 (1982).

Walker, G.

M. Rodríguez-Carmona, A. Harlow, G. Walker, and J. L. Barbur, “The variability of normal trichromatic vision and the establishment of the ‘normal’ range,” in Proceedings of the 10th Congress of International Color Association, Granada, Spain (AIC, 2005), pp. 979–982.

Wilson, G.

G. Wilson, Researches on Color Blindness: With a Supplement on Danger Attending the Present System of Railway and Marine Color Signals (Sutherland and Knox, 1855).

Wolf, J. E.

M. O’Neill-Biba, S. Sivaprasad, M. Rodríguez-Carmona, J. E. Wolf, and J. L. Barbur, “Loss of chromatic sensitivity in AMD and diabetes: a comparative study,” Ophthalmic Physiolog. Opt. 30, 705–716 (2010).
[CrossRef]

Wright, W. D.

J. G. Holmes and W. D. Wright, “A new color-perception lantern,” Color Res. Appl. 7, 82–88 (1982).
[CrossRef]

W. D. Wright, Researches in Normal and Defective Color Vision (Henry Kimpton, 1946).

Yuen, G. S.

A. Casolin, P. L. Katalinic, G. S. Yuen, and S. J. Dain, “The RailCorp Lantern test,” Occup. Med. 61, 171–177 (2011).
[CrossRef]

Am. J. Ind. Med. (1)

J. K. Hovis and D. Oliphant, “A lantern color vision test for the rail industry,” Am. J. Ind. Med. 38, 681–696 (2000).

Am. J. Optom. Physiol. Opt. (1)

B. L. Cole and A. L. Vingrys, “A survey and evaluation of lantern tests of color vision,” Am. J. Optom. Physiol. Opt. 59, 346–374 (1982).

Aviat. Space Environ. Med. (5)

M. Rodríguez-Carmona, M. O’Neill-Biba, and J. L. Barbur, “Assessing the severity of color vision loss with implications for aviation and other occupational environments,” Aviat. Space Environ. Med. 83, 19–29 (2012).

B. L. Cole and J. D. Maddock, “Color vision testing with the Farnsworth Lantern and ability to identify approach-path signal lights,” Aviat. Space Environ. Med. 79, 585–590 (2008).

J. Birch, “Performance of red-green color deficient subjects on the Holmes-Wright lantern (type A) in photopic viewing,” Aviat. Space Environ. Med. 70, 897–901 (1999).

T. J. Squire, M. L. Rodríguez-Carmona, A. D. B. Evans, and J. L. Barbur, “Color vision tests in aviation: comparison of the anomaloscope and three lantern types,” Aviat. Space Environ. Med. 76, 421–429 (2005).

J. Birch and S. J. Dain, “Performance of red-green color deficient people on the Farnsworth Lantern (Falant),” Aviat. Space Environ. Med. 70, 62–67 (1999).

Br. J. Ophthalmol. (2)

L. C. Martin, “A standardized Lantern for testing color vision,” Br. J. Ophthalmol. 23, 1–20 (1939).

L. C. Martin, “A standardized color-vision testing Lantern (II) transport type,” Br. J. Ophthalmol. 27, 255–259 (1943).

Br. J. Physiol. Opt. (1)

H. Topley, “Sight testing for the Merchant Navy,” Br. J. Physiol. Opt. 16, 36–46 (1959).

Can. Med. Assoc. J. (1)

D. Y. Solandt and C. H. Best, “The Royal Canadian navy color vision test lantern,” Can. Med. Assoc. J. 48, 18–21 (1943).

Clin. Genet. (1)

S. S. Deeb, “The molecular basis of variation in human color vision,” Clin. Genet. 67, 369–377 (2005).
[CrossRef]

Color Res. Appl. (1)

J. G. Holmes and W. D. Wright, “A new color-perception lantern,” Color Res. Appl. 7, 82–88 (1982).
[CrossRef]

Doc. Ophthalmol. (1)

B. L. Cole and A. J. Vingrys, “Who fails lantern tests?” Doc. Ophthalmol. 55, 157–162 (1983).
[CrossRef]

Environ. Toxicol. Pharmacol. (1)

D. F. Ventura, A. L. Simoes, S. Tomaz, M. F. Costa, M. Lago, M. T. Costa, L. H. Canto-Pereira, J. M. de Souza, M. A. Faria, and L. C. Silveira, “Color vision and contrast sensitivity losses of mercury intoxicated industrial workers in Brazil,” Environ. Toxicol. Pharmacol. 19, 523–529 (2005).
[CrossRef]

Investig. Ophthalmol. Vis. Sci. (3)

F. G. Rauscher, G. Plant, and J. L. Barbur, “Patterns of color vision loss that result from damage to pre-striate and extra-striate visual pathways,” Investig. Ophthalmol. Vis. Sci. 47, 2669 (2006).

J. Rabin, J. Gooch, and D. Ivan, “Rapid quantification of color vision: the cone contrast test,” Investig. Ophthalmol. Vis. Sci. 52, 816–820 (2011).
[CrossRef]

D. F. Ventura, M. Gualtieri, A. G. Oliveira, M. F. Costa, P. Quiros, F. Sadun, A. M. de Negri, S. R. Salomão, A. Berezovsky, J. Sherman, A. A. Sadun, and V. Carelli, “Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s inherited optic neuropathy,” Investig. Ophthalmol. Vis. Sci. 48, 2362–2370 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nature (1)

L. Rayleigh, “Experiments on color,” Nature 25, 64–66 (1881).
[CrossRef]

Occup. Med. (1)

A. Casolin, P. L. Katalinic, G. S. Yuen, and S. J. Dain, “The RailCorp Lantern test,” Occup. Med. 61, 171–177 (2011).
[CrossRef]

Ophthalmic Physiolog. Opt. (7)

A. J. Vingrys and B. L. Cole, “Validation of the Holmes–Wright Lanterns for testing color vision,” Ophthalmic Physiolog. Opt. 3, 137–152 (1983).

J. Birch, “Performance of color deficient people on the Holmes–Wright lantern (type A): consistency of occupational color vision standards in aviation,” Ophthalmic Physiolog. Opt. 28, 253–258 (2008).

J. Birch, “Pass rates for the Farnsworth D15 color vision test,” Ophthalmic Physiolog. Opt. 28, 259–264 (2008).
[CrossRef]

J. Birch, “Efficiency of the Ishihara plates for identifying red-green color deficiency,” Ophthalmic Physiolog. Opt. 17, 403–408 (1997).
[CrossRef]

M. O’Neill-Biba, S. Sivaprasad, M. Rodríguez-Carmona, J. E. Wolf, and J. L. Barbur, “Loss of chromatic sensitivity in AMD and diabetes: a comparative study,” Ophthalmic Physiolog. Opt. 30, 705–716 (2010).
[CrossRef]

A. J. Vingrys and B. L. Cole, “Origins of color vision standards within the transport industry,” Ophthalmic Physiolog. Opt. 6, 369–375 (1986).
[CrossRef]

A. J. Vingrys and B. L. Cole, “Are color vision standards justified in the transport industry?” Ophthalmic Physiolog. Opt. 8, 257–274 (1988).

Surv. Ophthalmol. (1)

J. D. Mollon and L. R. Cavonius, “The Lagerlunda collision and the introduction of color vision testing,” Surv. Ophthalmol. 57, 178–194 (2012).
[CrossRef]

Vis. Neurosci. (1)

J. K. Hovis and S. Ramaswamy, “The effect of distance on the CN lantern results,” Vis. Neurosci. 23, 675–679 (2006).
[CrossRef]

Vis. Res. (2)

B. L. Cole and J. D. Maddock, “Can clinical color vision tests predict the results on the Farnsworth lantern?” Vis. Res. 38, 3483–3485 (1998).
[CrossRef]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).

Other (12)

Eligibility—NATS/A global leader in Air Traffic Control (2013), http://www.nats.co.uk/careers/atc/how-to-apply/eligibility/ .

CAA, “Minimum color vision requirements for professional flight crew: recommendations for new color vision standards,” CAA paper 2009/4 (2009). http://www.caa.co.uk/docs/33/200904.pdf .

M. Rodríguez-Carmona, A. Harlow, G. Walker, and J. L. Barbur, “The variability of normal trichromatic vision and the establishment of the ‘normal’ range,” in Proceedings of the 10th Congress of International Color Association, Granada, Spain (AIC, 2005), pp. 979–982.

G. Wilson, Researches on Color Blindness: With a Supplement on Danger Attending the Present System of Railway and Marine Color Signals (Sutherland and Knox, 1855).

CIE, “International recommendations for color vision requirements in transport,” Report No.  (Commission Internationale d’Eclairage, 2001).

D. Farnsworth and P. Foreman, “Development and trial of the New London Navy Lantern as selection test for serviceable colour vision,” Report No.  (US Naval Submarine Base Medical Research Lab, New London, Connecticut, 1946).

F. H. G. Pitt, “Characteristics of dichromatic vision,” (HMSO, London, 1935).

W. D. Wright, Researches in Normal and Defective Color Vision (Henry Kimpton, 1946).

CIE, “Colours of light signals,” Report No.  (Commission Internationale d’Eclairage, 2001).

Health, and Safety Executive, Color Vision Examination: A Guide for Occupational Health Providers, HSE Guidance Note MS7, 3rd ed. (2005).

National Transport Safety Board Washington DC R-97-1 and -2 (NTSB, 1997).

National Transport Safety Board Washington DC R-04-46 and -47 (NTSB, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

Graph showing red–green (RG) and yellow–blue (YB) thresholds expressed in CAD standard normal units for 450 subjects. Reproduced from [40], Fig. 12. The spread of data along the abscissa illustrates the large variation that exists amongst subjects with deutan- and protan-like deficiencies. The results show that the RG thresholds vary almost continuously from very close to “normal” to extreme values that can be 25 times larger than the standard normal threshold. The YB thresholds, on the other hand, vary very little as expected in the absence of YB loss or acquired deficiency.

Tables (1)

Tables Icon

Table 1. Requirements for Setting New Occupational Color Vision Standards

Metrics