Abstract

Red, green, blue, yellow, and white have been distinguished from other hues as unique. We present results from two experiments that undermine existing behavioral evidence to separate the unique hues from other colors. In Experiment 1 we used hue scaling, which has often been used to support the existence of unique hues, but has never been attempted with a set of non-unique primaries. Subjects were assigned to one of two experimental conditions. In the “unique” condition, they rated the proportions of red, yellow, blue, and green that they perceived in each of a series of test stimuli. In the “intermediate” condition, they rated the proportions of teal, purple, orange, and lime. We found, surprisingly, that results from the two conditions were largely equivalent. In Experiment 2, we investigated the effect of instruction on subjects’ settings of unique hues. We found that altering the color terms given in the instructions to include intermediate hues led to significant shifts in the hue that subjects identified as unique. The results of both experiments question subjects’ abilities to identify certain hues as unique.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hering, Zur Lehre Vom Lichtsinne (Carl Gerold’s Sohn, 1878).
  2. L. M. Hurvich and D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
  3. R. De Valois, I. Abramov, and G. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
    [CrossRef]
  4. J. Mollon and C. Cavonius, “The chromatic antagonisms of Opponent Process Theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (Junk, 1987), pp. 473–483.
  5. K. A. Jameson and R. G. D’Andrade, “It’s not really red, green, yellow, blue: an inquiry into perceptual color space,” in Color Categories in Thought and Language, C. Hardin and L. Maffi, eds. (Cambridge University, 1997), pp. 295–319.
  6. I. Abramov and J. Gordon, “Color appearance: on seeing red—or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994).
    [CrossRef]
  7. J. Mollon, “A neural basis for unique hues?” Curr. Biol. 19, R441–R442 (2009).
    [CrossRef]
  8. C. M. Stoughton and B. R. Conway, “Neural basis for unique hues,” Curr. Biol. 18, R698–R689 (2008).
    [CrossRef]
  9. S. M. Wuerger and L. Parkes, “Unique hues: perception and brain imaging,” in New Directions in Colour Studies, C. Biggam, C. Hough, C. Kay, and D. Simmons, eds. (John Benjamin Publishing Company, 2011), pp. 445–455.
  10. A. Valberg, “Unique hues: an old problem for a new generation.,” Vis. Res. 41, 1645–1657 (2001).
    [CrossRef]
  11. D. R. Hilbert, “Basic tastes and unique hues,” Behav. Brain Sci. 31, 82 (2008).
    [CrossRef]
  12. M. Danilova and J. Mollon, “Foveal color perception: minimal thresholds at a boundary between perceptual categories,” Vis. Res. 62, 162–172 (2012).
    [CrossRef]
  13. D. Miller, “Over the rainbow: the classification of unique hues,” Behav. Brain Sci. 20, 204–205 (1997).
  14. D. Jameson and L. M. Hurvich, “Perceived color and its dependence on focal, surrounding, and preceding stimulus variables.,” J. Opt. Soc. Am. 49, 890–898 (1959).
    [CrossRef]
  15. C. E. Sternheim and R. M. Boynton, “Uniqueness of perceived hues investigated with a continuous judgmental technique,” J. Exp. Psychol. 72, 770–776 (1966).
    [CrossRef]
  16. R. L. De Valois, K. K. De Valois, E. Switkes, and L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vis. Res. 37, 885–897 (1997).
    [CrossRef]
  17. V. J. Volbrecht, J. L. Nerger, L. S. Baker, A. R. Trujillo, and K. Youngpeter, “Unique hue loci differ with methodology,” Ophthalmic Physiol. Opt. 30, 545–552 (2010).
    [CrossRef]
  18. I. Abramov and J. Gordon, “Seeing unique hues,” J. Opt. Soc. Am. A 22, 2143–2153 (2005).
    [CrossRef]
  19. J. Gordon, I. Abramov, and H. Chan, “Describing color appearance: hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994).
    [CrossRef]
  20. B. Wooten and D. Miller, “The psychophysics of color,” in Color Categories in Thought and Language, C. Hardin and L. Maffi, eds. (Cambridge University, 1997), pp. 59–88.
  21. M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
    [CrossRef]
  22. D. Hinks, L. M. Cárdenas, R. G. Kuehni, and R. Shamey, “Unique-hue stimulus selection using Munsell color chips,” J. Opt. Soc. Am. A 24, 3371–3378 (2007).
    [CrossRef]
  23. G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995).
    [CrossRef]
  24. F. L. Dimmick and M. R. Hubbard, “The spectral location of psychologically unique yellow, green and blue,” Am. J. Psychol. 52, 242–254 (1939).
    [CrossRef]
  25. B. E. Schefrin and J. S. Werner, “Loci of spectral unique hues throughout the life span,” J. Opt. Soc. Am. A 7, 305–311 (1990).
    [CrossRef]
  26. J. M. Eichengreen, “Unique hue loci: induced shifts with complementary surrounds,” Vis. Res. 16, 199–203 (1976).
    [CrossRef]
  27. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
    [CrossRef]
  28. D. I. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef]
  29. J. Bosten and A. J. Lawrance-Owen, “No difference in variability of unique hue selections and binary hue selections,” J. Opt. Soc. Am.31, A357–A364 (2014).
  30. G. Malkoc, P. Kay, and M. A. Webster, “Variations in normal color vision. IV. Binary hues and hue scaling,” J. Opt. Soc. Am. A 22, 2154–2168 (2005).
    [CrossRef]
  31. K. Zychaluk and D. H. Foster, “Model-free estimation of the psychometric function,” Atten. Percept. Psychophys. 71, 1414–1425 (2009).
    [CrossRef]
  32. K. A. Jameson, “Where in the World Color Survey is the support for the Hering Primaries as the basis for Color Categorization?” in Color Ontology and Color Science, J. Cohen and M. Matthen, eds. (MIT, 2010), pp. 179–202.
  33. P. Kay and T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003).
    [CrossRef]
  34. B. A. Saunders and J. van Brakel, “Are there nontrivial constraints on colour categorization?” Behav. Brain Sci. 20, 167–179 (1997).
  35. I. Abramov and J. Gordon, “Constraining color categories: the problem of the baby and the bath water,” Behav. Brain Sci. 20, 179–180 (1997).
    [CrossRef]
  36. M. Bornstein, “Selective vision,” Behav. Brain Sci. 20, 180–181 (1997).
  37. A. Byrne and D. Hilbert, “Unique hues,” Behav. Brain Sci. 20, 184–185 (1997).
  38. J. Broakes, “Could we take lime, purple, orange, and teal as unique hues?” Behav. Brain Sci. 20, 183–184 (1997).
    [CrossRef]
  39. G. Brindley, Physiology of the Retinal and Visual Pathway, 2nd ed. (Camelot Ltd., 1970).
  40. A. D. Logvinenko and L. L. Beattie, “Partial hue-matching,” J. Vis. 11(8):6 (2011).
    [CrossRef]
  41. A. D. Logvinenko, “A theory of unique hues and colour categories in the human colour vision,” Color Res. Appl. 37, 109–116 (2012).
    [CrossRef]
  42. M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
    [CrossRef]
  43. C. Witzel and K. R. Gegenfurtner, “Categorical sensitivity to color differences,” J. Vis. 13(7):1 (2013).
    [CrossRef]
  44. S. Burns, A. Elsner, J. Pokorny, and V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
    [CrossRef]
  45. G. Malkoc and F. A. A. Kingdom, “Dichoptic difference thresholds for chromatic stimuli,” Vis. Res. 62, 75–83 (2012).
    [CrossRef]
  46. M. Ayama, T. Nakatsue, and P. K. Kaiser, “Constant hue loci of unique and binary balanced hues at 10, 100, and 1000  Td,” J. Opt. Soc. Am. A 4, 1136–1144 (1987).
    [CrossRef]
  47. M. V. Danilova and J. D. Mollon, “Cardinal axes are not independent in color discrimination,” J. Opt. Soc. Am. A 29, A157–A164 (2012).
    [CrossRef]
  48. R. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
    [CrossRef]

2013 (1)

C. Witzel and K. R. Gegenfurtner, “Categorical sensitivity to color differences,” J. Vis. 13(7):1 (2013).
[CrossRef]

2012 (4)

A. D. Logvinenko, “A theory of unique hues and colour categories in the human colour vision,” Color Res. Appl. 37, 109–116 (2012).
[CrossRef]

G. Malkoc and F. A. A. Kingdom, “Dichoptic difference thresholds for chromatic stimuli,” Vis. Res. 62, 75–83 (2012).
[CrossRef]

M. V. Danilova and J. D. Mollon, “Cardinal axes are not independent in color discrimination,” J. Opt. Soc. Am. A 29, A157–A164 (2012).
[CrossRef]

M. Danilova and J. Mollon, “Foveal color perception: minimal thresholds at a boundary between perceptual categories,” Vis. Res. 62, 162–172 (2012).
[CrossRef]

2011 (1)

A. D. Logvinenko and L. L. Beattie, “Partial hue-matching,” J. Vis. 11(8):6 (2011).
[CrossRef]

2010 (1)

V. J. Volbrecht, J. L. Nerger, L. S. Baker, A. R. Trujillo, and K. Youngpeter, “Unique hue loci differ with methodology,” Ophthalmic Physiol. Opt. 30, 545–552 (2010).
[CrossRef]

2009 (2)

J. Mollon, “A neural basis for unique hues?” Curr. Biol. 19, R441–R442 (2009).
[CrossRef]

K. Zychaluk and D. H. Foster, “Model-free estimation of the psychometric function,” Atten. Percept. Psychophys. 71, 1414–1425 (2009).
[CrossRef]

2008 (2)

C. M. Stoughton and B. R. Conway, “Neural basis for unique hues,” Curr. Biol. 18, R698–R689 (2008).
[CrossRef]

D. R. Hilbert, “Basic tastes and unique hues,” Behav. Brain Sci. 31, 82 (2008).
[CrossRef]

2007 (1)

2005 (2)

2004 (1)

R. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
[CrossRef]

2003 (1)

P. Kay and T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003).
[CrossRef]

2001 (1)

A. Valberg, “Unique hues: an old problem for a new generation.,” Vis. Res. 41, 1645–1657 (2001).
[CrossRef]

2000 (2)

1997 (7)

B. A. Saunders and J. van Brakel, “Are there nontrivial constraints on colour categorization?” Behav. Brain Sci. 20, 167–179 (1997).

I. Abramov and J. Gordon, “Constraining color categories: the problem of the baby and the bath water,” Behav. Brain Sci. 20, 179–180 (1997).
[CrossRef]

M. Bornstein, “Selective vision,” Behav. Brain Sci. 20, 180–181 (1997).

A. Byrne and D. Hilbert, “Unique hues,” Behav. Brain Sci. 20, 184–185 (1997).

J. Broakes, “Could we take lime, purple, orange, and teal as unique hues?” Behav. Brain Sci. 20, 183–184 (1997).
[CrossRef]

D. Miller, “Over the rainbow: the classification of unique hues,” Behav. Brain Sci. 20, 204–205 (1997).

R. L. De Valois, K. K. De Valois, E. Switkes, and L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vis. Res. 37, 885–897 (1997).
[CrossRef]

1995 (1)

G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995).
[CrossRef]

1994 (2)

J. Gordon, I. Abramov, and H. Chan, “Describing color appearance: hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994).
[CrossRef]

I. Abramov and J. Gordon, “Color appearance: on seeing red—or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994).
[CrossRef]

1991 (1)

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

1990 (1)

1987 (1)

1984 (1)

S. Burns, A. Elsner, J. Pokorny, and V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

1979 (1)

1976 (1)

J. M. Eichengreen, “Unique hue loci: induced shifts with complementary surrounds,” Vis. Res. 16, 199–203 (1976).
[CrossRef]

1966 (2)

C. E. Sternheim and R. M. Boynton, “Uniqueness of perceived hues investigated with a continuous judgmental technique,” J. Exp. Psychol. 72, 770–776 (1966).
[CrossRef]

R. De Valois, I. Abramov, and G. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
[CrossRef]

1959 (1)

1957 (1)

L. M. Hurvich and D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).

1939 (1)

F. L. Dimmick and M. R. Hubbard, “The spectral location of psychologically unique yellow, green and blue,” Am. J. Psychol. 52, 242–254 (1939).
[CrossRef]

Abramov, I.

I. Abramov and J. Gordon, “Seeing unique hues,” J. Opt. Soc. Am. A 22, 2143–2153 (2005).
[CrossRef]

I. Abramov and J. Gordon, “Constraining color categories: the problem of the baby and the bath water,” Behav. Brain Sci. 20, 179–180 (1997).
[CrossRef]

J. Gordon, I. Abramov, and H. Chan, “Describing color appearance: hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994).
[CrossRef]

I. Abramov and J. Gordon, “Color appearance: on seeing red—or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994).
[CrossRef]

R. De Valois, I. Abramov, and G. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
[CrossRef]

Ayama, M.

Baker, L. S.

V. J. Volbrecht, J. L. Nerger, L. S. Baker, A. R. Trujillo, and K. Youngpeter, “Unique hue loci differ with methodology,” Ophthalmic Physiol. Opt. 30, 545–552 (2010).
[CrossRef]

Beattie, L. L.

A. D. Logvinenko and L. L. Beattie, “Partial hue-matching,” J. Vis. 11(8):6 (2011).
[CrossRef]

Bornstein, M.

M. Bornstein, “Selective vision,” Behav. Brain Sci. 20, 180–181 (1997).

Bosten, J.

J. Bosten and A. J. Lawrance-Owen, “No difference in variability of unique hue selections and binary hue selections,” J. Opt. Soc. Am.31, A357–A364 (2014).

Boynton, R. M.

D. I. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
[CrossRef]

C. E. Sternheim and R. M. Boynton, “Uniqueness of perceived hues investigated with a continuous judgmental technique,” J. Exp. Psychol. 72, 770–776 (1966).
[CrossRef]

Brainard, D. H.

Brindley, G.

G. Brindley, Physiology of the Retinal and Visual Pathway, 2nd ed. (Camelot Ltd., 1970).

Broakes, J.

J. Broakes, “Could we take lime, purple, orange, and teal as unique hues?” Behav. Brain Sci. 20, 183–184 (1997).
[CrossRef]

Burns, S.

S. Burns, A. Elsner, J. Pokorny, and V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

Byrne, A.

A. Byrne and D. Hilbert, “Unique hues,” Behav. Brain Sci. 20, 184–185 (1997).

Calderone, J. B.

Cárdenas, L. M.

Cavonius, C.

J. Mollon and C. Cavonius, “The chromatic antagonisms of Opponent Process Theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (Junk, 1987), pp. 473–483.

Chan, H.

J. Gordon, I. Abramov, and H. Chan, “Describing color appearance: hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994).
[CrossRef]

Conway, B. R.

C. M. Stoughton and B. R. Conway, “Neural basis for unique hues,” Curr. Biol. 18, R698–R689 (2008).
[CrossRef]

D’Andrade, R. G.

K. A. Jameson and R. G. D’Andrade, “It’s not really red, green, yellow, blue: an inquiry into perceptual color space,” in Color Categories in Thought and Language, C. Hardin and L. Maffi, eds. (Cambridge University, 1997), pp. 295–319.

Danilova, M.

M. Danilova and J. Mollon, “Foveal color perception: minimal thresholds at a boundary between perceptual categories,” Vis. Res. 62, 162–172 (2012).
[CrossRef]

Danilova, M. V.

De Valois, K. K.

R. L. De Valois, K. K. De Valois, E. Switkes, and L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vis. Res. 37, 885–897 (1997).
[CrossRef]

De Valois, R.

De Valois, R. L.

R. L. De Valois, K. K. De Valois, E. Switkes, and L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vis. Res. 37, 885–897 (1997).
[CrossRef]

Dimmick, F. L.

F. L. Dimmick and M. R. Hubbard, “The spectral location of psychologically unique yellow, green and blue,” Am. J. Psychol. 52, 242–254 (1939).
[CrossRef]

Eichengreen, J. M.

J. M. Eichengreen, “Unique hue loci: induced shifts with complementary surrounds,” Vis. Res. 16, 199–203 (1976).
[CrossRef]

Elsner, A.

S. Burns, A. Elsner, J. Pokorny, and V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

Foster, D. H.

K. Zychaluk and D. H. Foster, “Model-free estimation of the psychometric function,” Atten. Percept. Psychophys. 71, 1414–1425 (2009).
[CrossRef]

Gegenfurtner, K. R.

C. Witzel and K. R. Gegenfurtner, “Categorical sensitivity to color differences,” J. Vis. 13(7):1 (2013).
[CrossRef]

Gordon, J.

I. Abramov and J. Gordon, “Seeing unique hues,” J. Opt. Soc. Am. A 22, 2143–2153 (2005).
[CrossRef]

I. Abramov and J. Gordon, “Constraining color categories: the problem of the baby and the bath water,” Behav. Brain Sci. 20, 179–180 (1997).
[CrossRef]

J. Gordon, I. Abramov, and H. Chan, “Describing color appearance: hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994).
[CrossRef]

I. Abramov and J. Gordon, “Color appearance: on seeing red—or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994).
[CrossRef]

Hering, E.

E. Hering, Zur Lehre Vom Lichtsinne (Carl Gerold’s Sohn, 1878).

Hilbert, D.

A. Byrne and D. Hilbert, “Unique hues,” Behav. Brain Sci. 20, 184–185 (1997).

Hilbert, D. R.

D. R. Hilbert, “Basic tastes and unique hues,” Behav. Brain Sci. 31, 82 (2008).
[CrossRef]

Hinks, D.

Hubbard, M. R.

F. L. Dimmick and M. R. Hubbard, “The spectral location of psychologically unique yellow, green and blue,” Am. J. Psychol. 52, 242–254 (1939).
[CrossRef]

Hurvich, L. M.

Jacobs, G.

Jacobs, G. H.

Jameson, D.

Jameson, K. A.

K. A. Jameson and R. G. D’Andrade, “It’s not really red, green, yellow, blue: an inquiry into perceptual color space,” in Color Categories in Thought and Language, C. Hardin and L. Maffi, eds. (Cambridge University, 1997), pp. 295–319.

K. A. Jameson, “Where in the World Color Survey is the support for the Hering Primaries as the basis for Color Categorization?” in Color Ontology and Color Science, J. Cohen and M. Matthen, eds. (MIT, 2010), pp. 179–202.

Jordan, G.

G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995).
[CrossRef]

Kaiser, P. K.

Kay, P.

G. Malkoc, P. Kay, and M. A. Webster, “Variations in normal color vision. IV. Binary hues and hue scaling,” J. Opt. Soc. Am. A 22, 2154–2168 (2005).
[CrossRef]

P. Kay and T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003).
[CrossRef]

Kingdom, F. A. A.

G. Malkoc and F. A. A. Kingdom, “Dichoptic difference thresholds for chromatic stimuli,” Vis. Res. 62, 75–83 (2012).
[CrossRef]

Kuehni, R.

R. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
[CrossRef]

Kuehni, R. G.

Lawrance-Owen, A. J.

J. Bosten and A. J. Lawrance-Owen, “No difference in variability of unique hue selections and binary hue selections,” J. Opt. Soc. Am.31, A357–A364 (2014).

Logvinenko, A. D.

A. D. Logvinenko, “A theory of unique hues and colour categories in the human colour vision,” Color Res. Appl. 37, 109–116 (2012).
[CrossRef]

A. D. Logvinenko and L. L. Beattie, “Partial hue-matching,” J. Vis. 11(8):6 (2011).
[CrossRef]

MacLeod, D. I.

Mahon, L.

R. L. De Valois, K. K. De Valois, E. Switkes, and L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vis. Res. 37, 885–897 (1997).
[CrossRef]

Malkoc, G.

Metha, A.

Miller, D.

D. Miller, “Over the rainbow: the classification of unique hues,” Behav. Brain Sci. 20, 204–205 (1997).

B. Wooten and D. Miller, “The psychophysics of color,” in Color Categories in Thought and Language, C. Hardin and L. Maffi, eds. (Cambridge University, 1997), pp. 59–88.

Miyahara, E.

Mollon, J.

M. Danilova and J. Mollon, “Foveal color perception: minimal thresholds at a boundary between perceptual categories,” Vis. Res. 62, 162–172 (2012).
[CrossRef]

J. Mollon, “A neural basis for unique hues?” Curr. Biol. 19, R441–R442 (2009).
[CrossRef]

J. Mollon and C. Cavonius, “The chromatic antagonisms of Opponent Process Theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (Junk, 1987), pp. 473–483.

Mollon, J. D.

M. V. Danilova and J. D. Mollon, “Cardinal axes are not independent in color discrimination,” J. Opt. Soc. Am. A 29, A157–A164 (2012).
[CrossRef]

G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995).
[CrossRef]

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

Nakatsue, T.

Neitz, J.

Neitz, M.

Nerger, J. L.

V. J. Volbrecht, J. L. Nerger, L. S. Baker, A. R. Trujillo, and K. Youngpeter, “Unique hue loci differ with methodology,” Ophthalmic Physiol. Opt. 30, 545–552 (2010).
[CrossRef]

Parkes, L.

S. M. Wuerger and L. Parkes, “Unique hues: perception and brain imaging,” in New Directions in Colour Studies, C. Biggam, C. Hough, C. Kay, and D. Simmons, eds. (John Benjamin Publishing Company, 2011), pp. 445–455.

Pokorny, J.

S. Burns, A. Elsner, J. Pokorny, and V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

Raker, V. E.

Regier, T.

P. Kay and T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003).
[CrossRef]

Roorda, A.

Saunders, B. A.

B. A. Saunders and J. van Brakel, “Are there nontrivial constraints on colour categorization?” Behav. Brain Sci. 20, 167–179 (1997).

Schefrin, B. E.

Shamey, R.

Smith, V.

S. Burns, A. Elsner, J. Pokorny, and V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

Sternheim, C. E.

C. E. Sternheim and R. M. Boynton, “Uniqueness of perceived hues investigated with a continuous judgmental technique,” J. Exp. Psychol. 72, 770–776 (1966).
[CrossRef]

Stoughton, C. M.

C. M. Stoughton and B. R. Conway, “Neural basis for unique hues,” Curr. Biol. 18, R698–R689 (2008).
[CrossRef]

Switkes, E.

R. L. De Valois, K. K. De Valois, E. Switkes, and L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vis. Res. 37, 885–897 (1997).
[CrossRef]

Trujillo, A. R.

V. J. Volbrecht, J. L. Nerger, L. S. Baker, A. R. Trujillo, and K. Youngpeter, “Unique hue loci differ with methodology,” Ophthalmic Physiol. Opt. 30, 545–552 (2010).
[CrossRef]

Valberg, A.

A. Valberg, “Unique hues: an old problem for a new generation.,” Vis. Res. 41, 1645–1657 (2001).
[CrossRef]

van Brakel, J.

B. A. Saunders and J. van Brakel, “Are there nontrivial constraints on colour categorization?” Behav. Brain Sci. 20, 167–179 (1997).

Volbrecht, V. J.

V. J. Volbrecht, J. L. Nerger, L. S. Baker, A. R. Trujillo, and K. Youngpeter, “Unique hue loci differ with methodology,” Ophthalmic Physiol. Opt. 30, 545–552 (2010).
[CrossRef]

Webster, M. A.

Werner, J. S.

Williams, D. R.

Witzel, C.

C. Witzel and K. R. Gegenfurtner, “Categorical sensitivity to color differences,” J. Vis. 13(7):1 (2013).
[CrossRef]

Wooten, B.

B. Wooten and D. Miller, “The psychophysics of color,” in Color Categories in Thought and Language, C. Hardin and L. Maffi, eds. (Cambridge University, 1997), pp. 59–88.

Wuerger, S. M.

S. M. Wuerger and L. Parkes, “Unique hues: perception and brain imaging,” in New Directions in Colour Studies, C. Biggam, C. Hough, C. Kay, and D. Simmons, eds. (John Benjamin Publishing Company, 2011), pp. 445–455.

Yamauchi, Y.

Youngpeter, K.

V. J. Volbrecht, J. L. Nerger, L. S. Baker, A. R. Trujillo, and K. Youngpeter, “Unique hue loci differ with methodology,” Ophthalmic Physiol. Opt. 30, 545–552 (2010).
[CrossRef]

Zychaluk, K.

K. Zychaluk and D. H. Foster, “Model-free estimation of the psychometric function,” Atten. Percept. Psychophys. 71, 1414–1425 (2009).
[CrossRef]

Am. J. Psychol. (1)

F. L. Dimmick and M. R. Hubbard, “The spectral location of psychologically unique yellow, green and blue,” Am. J. Psychol. 52, 242–254 (1939).
[CrossRef]

Annu. Rev. Psychol. (1)

I. Abramov and J. Gordon, “Color appearance: on seeing red—or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994).
[CrossRef]

Atten. Percept. Psychophys. (1)

K. Zychaluk and D. H. Foster, “Model-free estimation of the psychometric function,” Atten. Percept. Psychophys. 71, 1414–1425 (2009).
[CrossRef]

Behav. Brain Sci. (7)

B. A. Saunders and J. van Brakel, “Are there nontrivial constraints on colour categorization?” Behav. Brain Sci. 20, 167–179 (1997).

I. Abramov and J. Gordon, “Constraining color categories: the problem of the baby and the bath water,” Behav. Brain Sci. 20, 179–180 (1997).
[CrossRef]

M. Bornstein, “Selective vision,” Behav. Brain Sci. 20, 180–181 (1997).

A. Byrne and D. Hilbert, “Unique hues,” Behav. Brain Sci. 20, 184–185 (1997).

J. Broakes, “Could we take lime, purple, orange, and teal as unique hues?” Behav. Brain Sci. 20, 183–184 (1997).
[CrossRef]

D. R. Hilbert, “Basic tastes and unique hues,” Behav. Brain Sci. 31, 82 (2008).
[CrossRef]

D. Miller, “Over the rainbow: the classification of unique hues,” Behav. Brain Sci. 20, 204–205 (1997).

Color Res. Appl. (2)

A. D. Logvinenko, “A theory of unique hues and colour categories in the human colour vision,” Color Res. Appl. 37, 109–116 (2012).
[CrossRef]

R. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
[CrossRef]

Curr. Biol. (2)

J. Mollon, “A neural basis for unique hues?” Curr. Biol. 19, R441–R442 (2009).
[CrossRef]

C. M. Stoughton and B. R. Conway, “Neural basis for unique hues,” Curr. Biol. 18, R698–R689 (2008).
[CrossRef]

J. Exp. Psychol. (1)

C. E. Sternheim and R. M. Boynton, “Uniqueness of perceived hues investigated with a continuous judgmental technique,” J. Exp. Psychol. 72, 770–776 (1966).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (8)

J. Vis. (2)

C. Witzel and K. R. Gegenfurtner, “Categorical sensitivity to color differences,” J. Vis. 13(7):1 (2013).
[CrossRef]

A. D. Logvinenko and L. L. Beattie, “Partial hue-matching,” J. Vis. 11(8):6 (2011).
[CrossRef]

Nature (1)

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

Ophthalmic Physiol. Opt. (1)

V. J. Volbrecht, J. L. Nerger, L. S. Baker, A. R. Trujillo, and K. Youngpeter, “Unique hue loci differ with methodology,” Ophthalmic Physiol. Opt. 30, 545–552 (2010).
[CrossRef]

Percept. Psychophys. (1)

J. Gordon, I. Abramov, and H. Chan, “Describing color appearance: hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

P. Kay and T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003).
[CrossRef]

Psychol. Rev. (1)

L. M. Hurvich and D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).

Vis. Res. (7)

A. Valberg, “Unique hues: an old problem for a new generation.,” Vis. Res. 41, 1645–1657 (2001).
[CrossRef]

R. L. De Valois, K. K. De Valois, E. Switkes, and L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vis. Res. 37, 885–897 (1997).
[CrossRef]

M. Danilova and J. Mollon, “Foveal color perception: minimal thresholds at a boundary between perceptual categories,” Vis. Res. 62, 162–172 (2012).
[CrossRef]

G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995).
[CrossRef]

J. M. Eichengreen, “Unique hue loci: induced shifts with complementary surrounds,” Vis. Res. 16, 199–203 (1976).
[CrossRef]

S. Burns, A. Elsner, J. Pokorny, and V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

G. Malkoc and F. A. A. Kingdom, “Dichoptic difference thresholds for chromatic stimuli,” Vis. Res. 62, 75–83 (2012).
[CrossRef]

Other (8)

J. Bosten and A. J. Lawrance-Owen, “No difference in variability of unique hue selections and binary hue selections,” J. Opt. Soc. Am.31, A357–A364 (2014).

B. Wooten and D. Miller, “The psychophysics of color,” in Color Categories in Thought and Language, C. Hardin and L. Maffi, eds. (Cambridge University, 1997), pp. 59–88.

K. A. Jameson, “Where in the World Color Survey is the support for the Hering Primaries as the basis for Color Categorization?” in Color Ontology and Color Science, J. Cohen and M. Matthen, eds. (MIT, 2010), pp. 179–202.

G. Brindley, Physiology of the Retinal and Visual Pathway, 2nd ed. (Camelot Ltd., 1970).

E. Hering, Zur Lehre Vom Lichtsinne (Carl Gerold’s Sohn, 1878).

J. Mollon and C. Cavonius, “The chromatic antagonisms of Opponent Process Theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (Junk, 1987), pp. 473–483.

K. A. Jameson and R. G. D’Andrade, “It’s not really red, green, yellow, blue: an inquiry into perceptual color space,” in Color Categories in Thought and Language, C. Hardin and L. Maffi, eds. (Cambridge University, 1997), pp. 295–319.

S. M. Wuerger and L. Parkes, “Unique hues: perception and brain imaging,” in New Directions in Colour Studies, C. Biggam, C. Hough, C. Kay, and D. Simmons, eds. (John Benjamin Publishing Company, 2011), pp. 445–455.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Predictions for hue scaling with unique primaries [panel (a)], and with intermediate primaries [panel (b)]. Along the x axis hue angles are plotted around the hue circle, and on the y axis the predicted numerical ratings from 0 to 9 are shown. The dashed vertical lines indicate the unique and binary hue primaries, which are labeled with uppercase letters: purple (P), red (R), orange (O), yellow (Y), lime (L), green (G), teal (T), and blue (B). Predicted functions for ratings for each primary as a function of the hue angle of the test stimulus are indicated by the solid curves, which are labeled with lowercase letters.

Fig. 2.
Fig. 2.

Stimuli used in the hue scaling experiment. Panel (a) represents the stimulus presented on one trial. The upper disk is the test stimulus, and the four lower disks are the primaries (left to right: red, yellow, green, and blue). The subject was instructed to assign a numerical rating to each primary according to how much of that primary he perceived in the test stimulus. The selected box was indicated with a white border. The stimulus represented here was for the unique condition: the stimulus for the intermediate condition was equivalent, except that the four primaries were teal, lime, orange, and purple. Panel (b) shows the chromaticities of the stimuli in MacLeod–Boynton chromaticity space. The test chromaticities are shown by the disks, and the primaries by the gray crosses, labeled. The black dot in the center of the figure indicates the chromaticity of D65. The hue angle (θ) for an example red test stimulus is indicated in the panel. Panel (c) represents the stimulus used for measuring unique and intermediate hues. Each of 90 segments contained a hue from a range linearly spaced around a circle centered at the coordinates of D65 in MacLeod–Boynton chromaticity space. Instructions were presented in the upper part of the screen—for the particular trial represented in the figure, the instructions read “pick an orange that is neither too red nor too yellow.” The subject used a stylus to select a segment, and an achromatic disk appeared beside the selected segment. The selection was confirmed by tapping the check sign. Panel (d) shows mean selections of unique and intermediate hues made by 58 subjects. Data points for each primary are labeled: purple (P), red (R), orange (O), yellow (Y), lime (L), green (G), teal (T), and blue (B). Error bars (lines inside data points) indicate 95% confidence intervals on the mean. The mean selections were used as the primaries in the hue scaling experiment.

Fig. 3.
Fig. 3.

Results of the hue scaling experiment. In each panel, the hue angles (in degrees) of the test stimuli shown in Fig. 2(b) are plotted along the x axes and ratings are plotted up the y axes. Each function shows ratings for how much of a particular primary subjects judged to be present in the test stimuli. Each panel shows four functions describing the results for the four primaries provided in that condition, colored according to the primary. Dashed vertical lines indicate the hue angles of the eight primaries used across the two conditions, also colored according to the primary. Panel (a) shows group mean results for the unique condition (n=18), and panel (b) shows group mean results from the intermediate condition (n=18). Error bars in panels (a) and (b) are 95% confidence intervals for each mean rating. Panels (c)–(h) show examples of results from individual subjects, with the n given for each case indicating the number of subjects who produced a result similar to the one shown. Panels (c)–(e) are from the unique condition, and panels (f)–(h) are from the intermediate condition.

Fig. 4.
Fig. 4.

Distributions of rating variability with mean rating. Standard deviations of ratings for the intermediate condition are shown by the gray squares and for the unique condition by the black circles. The distributions of variability in ratings largely overlap. However, low ratings show lower variability in the unique condition than in the intermediate condition.

Fig. 5.
Fig. 5.

Results of Experiment 2. (a) Examples of staircases for one subject in condition b(ii): “Neither tealish nor reddish.” (b) Cumulative Weibull psychometric function fit to the data shown in (a). The area of each data point is proportional to the number of times the particular stimulus was presented. (c) Group results. White bars indicate group means for each condition, and light gray areas indicate 95% confidence intervals. In each case, the ‘standard’ version of the question (condition i) produces intermediate results, with alterations in the color words given in the instructions predictably shifting the mean settings of unique hues (conditions ii and iii). (d) Results for unique red shown as a function of hue angle. Error bars are 95% confidence intervals. (e) Results for unique blue shown as a function of hue angle. Error bars are 95% confidence intervals.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S/(L+M)=0.0167+0.013cosθ,
L/(L+M)=0.6552+0.0364sinθ.

Metrics