Abstract

If unique hues have special status in phenomenological experience as perceptually pure, it seems reasonable to assume that they are represented more precisely by the visual system than are other colors. Following the method of Malkoc et al. (J. Opt. Soc. Am. A 22, 2154 [2005]), we gathered unique and binary hue selections from 50 subjects. For these subjects we repeated the measurements in two separate sessions, allowing us to measure test–retest reliabilities (0.52ρ0.78; p0.01). We quantified the within-individual variability for selections of each hue. Adjusting for the differences in variability intrinsic to different regions of chromaticity space, we compared the within-individual variability for unique hues to that for binary hues. Surprisingly, we found that selections of unique hues did not show consistently lower variability than selections of binary hues. We repeated hue measurements in a single session for an independent sample of 58 subjects, using a different relative scaling of the cardinal axes of MacLeod–Boynton chromaticity space. Again, we found no consistent difference in adjusted within-individual variability for selections of unique and binary hues. Our finding does not depend on the particular scaling chosen for the Y axis of MacLeod–Boynton chromaticity space.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hering, Zur Lehre Vom Lichtsinne (Carl Gerold’s Sohn, 1878).
  2. I. Abramov and J. Gordon, “Color appearance: on seeing red-or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994).
    [CrossRef]
  3. R. G. Kuehni, R. Shamey, M. Mathews, and B. Keene, “Perceptual prominence of Hering’s chromatic primaries,” J. Opt. Soc. Am. A 27, 159–165 (2010).
    [CrossRef]
  4. R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vis. Res. 33, 1053–1065 (1993).
    [CrossRef]
  5. J. Mollon and C. Cavonius, “The chromatic antagonisms of opponent process theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (Junk, 1987).
  6. K. A. Jameson and R. G. D’Andrade, “It’s not really red, green, yellow, blue: an inquiry into perceptual color space,” in Color Categories in Thought and Language, C. Hardin and L. Maffi, eds. (Cambridge University, 1997), pp. 295–319.
  7. J. Mollon, “A neural basis for unique hues?” Curr. Biol. 19, R441–R442 (2009).
    [CrossRef]
  8. C. M. Stoughton and B. R. Conway, “Neural basis for unique hues,” Curr. Biol. 18, R698–R699 (2008).
    [CrossRef]
  9. S. M. Wuerger and L. Parkes, “Unique hues: perception and brain imaging,” in New Directions in Colour Studies, C. Biggam, C. Hough, C. Kay, and D. Simmons, eds. (John Benjamin, 2011), pp. 445–455.
  10. A. Valberg, “Unique hues: an old problem for a new generation,” Vis. Res. 41, 1645–1657 (2001).
    [CrossRef]
  11. K. A. Jameson, “Where in the World Color Survey is the support for the Hering primaries as the basis for color categorization?” in Color Ontology and Color Science, J. Cohen and M. Matthen, eds. (MIT, 2010), pp. 179–202.
  12. P. Kay and T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003).
    [CrossRef]
  13. B. A. Saunders and J. van Brakel, “Are there nontrivial constraints on colour categorization?” Behav. Brain Sci. 20, 167–179 (1997).
    [CrossRef]
  14. P. Kay, “Color categories are not arbitrary,” Cross-Cult. Res. 39, 39–55 (2005).
    [CrossRef]
  15. C. L. Hardin, “Explaining basic color categories,” Cross-Cult. Res. 39, 72–87 (2005).
    [CrossRef]
  16. D. Roberson, J. Davidoff, I. R. L. Davies, and L. R. Shapiro, “Color categories: evidence for the cultural relativity hypothesis,” Cogn. Psychol. 50, 378–411 (2005).
    [CrossRef]
  17. R. Kuehni, “Focal color variability and unique hue stimulus variability,” J. Cogn. Cult. 5, 409–426 (2005).
    [CrossRef]
  18. E. Miyahara, “Focal colors and unique hues,” Percept. Mot. Skills 97, 1038–1042 (2003).
  19. G. Malkoc, P. Kay, and M. A. Webster, “Variations in normal color vision. IV. binary hues and hue scaling,” J. Opt. Soc. Am. A 22, 2154–2168 (2005).
    [CrossRef]
  20. D. I. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef]
  21. C. Witzel and K. R. Gegenfurtner, “Categorical sensitivity to color differences,” J. Vis. 13(7):1, 1–33 (2013).
    [CrossRef]
  22. B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.
  23. J. Birch, “Efficiency of the Ishihara test for identifying red–green colour deficiency,” Ophthalmic Physiol. Opt. 17, 403–408 (1997).
    [CrossRef]
  24. F. Vierling, Die Farbensinnprüfung bei der Deutschen Reichsbahn (Verlag Bernecker, 1935).
  25. D. Hinks, L. M. Cárdenas, R. G. Kuehni, and R. Shamey, “Unique-hue stimulus selection using Munsell color chips,” J. Opt. Soc. Am. A 24, 3371–3378 (2007).
    [CrossRef]
  26. K. Xiao, C. Fu, D. Mylonas, D. Karatzas, and S. Wuerger, “Unique hue data for colour appearance models. Part II: chromatic adaptation transform,” Color Res. Appl. 38, 22–29 (2013).
    [CrossRef]
  27. K. Xiao, S. Wuerger, C. Fu, and D. Karatzas, “Unique hue data for colour appearance models. Part I: loci of unique hues and hue uniformity,” Color Res. Appl. 36, 316–323 (2011).
    [CrossRef]
  28. S. Burns, A. Elsner, J. Pokorny, and V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
    [CrossRef]
  29. G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995).
    [CrossRef]
  30. R. G. Kuehni, “Determination of unique hues using Munsell color chips,” Color Res. Appl. 26, 61–66 (2001).
    [CrossRef]
  31. B. E. Schefrin and J. S. Werner, “Loci of spectral unique hues throughout the life span,” J. Opt. Soc. Am. A 7, 305–311 (1990).
    [CrossRef]
  32. V. J. Volbrecht, J. L. Nerger, and C. E. Harlow, “The bimodality of unique green revisited,” Vis. Res. 37, 407–416 (1997).
    [CrossRef]
  33. M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. II. unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
    [CrossRef]
  34. S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
    [CrossRef]
  35. R. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
    [CrossRef]
  36. M. A. Webster, S. M. Webster, S. Bharadwaj, R. Verma, J. Jaikumar, G. Madan, and E. Vaithilingham, “Variations in normal color vision. III. unique hues in Indian and United States observers,” J. Opt. Soc. Am. A 19, 1951–1962 (2002).
    [CrossRef]
  37. P. Walraven, “On the Bezold–Brucke phenomenon,” J. Opt. Soc. Am. 51, 1113–1116 (1961).
    [CrossRef]
  38. D. L. Bimler and G. V. Paramei, “Bezold–Brücke effect in normal trichromats and protanopes,” J. Opt. Soc. Am. A 22, 2120–2136 (2005).
    [CrossRef]
  39. R. W. Pridmore, “Bezold–Brucke hue-shift as functions of luminance level, luminance ratio, interstimulus interval and adapting white for aperture and object colors,” Vis. Res. 39, 3873–3891 (1999).
    [CrossRef]
  40. G. Jacobs and T. Wascher, “Bezold–Brücke hue shift: further measurements,” J. Opt. Soc. Am. 57, 1155–1156 (1967).
    [CrossRef]
  41. D. Purdy, “The Bezold–Brücke phenomenon and contours for constant hue,” Am. J. Psychol. 49, 313–315 (1937).
    [CrossRef]
  42. M. Ayama, T. Nakatsue, and P. K. Kaiser, “Constant hue loci of unique and binary balanced hues at 10, 100, and 1000  Td,” J. Opt. Soc. Am. A 4, 1136–1144 (1987).
    [CrossRef]
  43. R. Boynton and J. Gordon, “Bezold–Brücke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78–85 (1965).
    [CrossRef]
  44. R. W. Pridmore, “Unique and binary hues as functions of luminance and illuminant color temperature, and relations with invariant hues,” Vis. Res. 39, 3892–3908 (1999).
    [CrossRef]

2013 (2)

C. Witzel and K. R. Gegenfurtner, “Categorical sensitivity to color differences,” J. Vis. 13(7):1, 1–33 (2013).
[CrossRef]

K. Xiao, C. Fu, D. Mylonas, D. Karatzas, and S. Wuerger, “Unique hue data for colour appearance models. Part II: chromatic adaptation transform,” Color Res. Appl. 38, 22–29 (2013).
[CrossRef]

2011 (1)

K. Xiao, S. Wuerger, C. Fu, and D. Karatzas, “Unique hue data for colour appearance models. Part I: loci of unique hues and hue uniformity,” Color Res. Appl. 36, 316–323 (2011).
[CrossRef]

2010 (1)

2009 (1)

J. Mollon, “A neural basis for unique hues?” Curr. Biol. 19, R441–R442 (2009).
[CrossRef]

2008 (1)

C. M. Stoughton and B. R. Conway, “Neural basis for unique hues,” Curr. Biol. 18, R698–R699 (2008).
[CrossRef]

2007 (1)

2005 (7)

G. Malkoc, P. Kay, and M. A. Webster, “Variations in normal color vision. IV. binary hues and hue scaling,” J. Opt. Soc. Am. A 22, 2154–2168 (2005).
[CrossRef]

P. Kay, “Color categories are not arbitrary,” Cross-Cult. Res. 39, 39–55 (2005).
[CrossRef]

C. L. Hardin, “Explaining basic color categories,” Cross-Cult. Res. 39, 72–87 (2005).
[CrossRef]

D. Roberson, J. Davidoff, I. R. L. Davies, and L. R. Shapiro, “Color categories: evidence for the cultural relativity hypothesis,” Cogn. Psychol. 50, 378–411 (2005).
[CrossRef]

R. Kuehni, “Focal color variability and unique hue stimulus variability,” J. Cogn. Cult. 5, 409–426 (2005).
[CrossRef]

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

D. L. Bimler and G. V. Paramei, “Bezold–Brücke effect in normal trichromats and protanopes,” J. Opt. Soc. Am. A 22, 2120–2136 (2005).
[CrossRef]

2004 (1)

R. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
[CrossRef]

2003 (2)

E. Miyahara, “Focal colors and unique hues,” Percept. Mot. Skills 97, 1038–1042 (2003).

P. Kay and T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003).
[CrossRef]

2002 (1)

2001 (2)

R. G. Kuehni, “Determination of unique hues using Munsell color chips,” Color Res. Appl. 26, 61–66 (2001).
[CrossRef]

A. Valberg, “Unique hues: an old problem for a new generation,” Vis. Res. 41, 1645–1657 (2001).
[CrossRef]

2000 (1)

1999 (2)

R. W. Pridmore, “Unique and binary hues as functions of luminance and illuminant color temperature, and relations with invariant hues,” Vis. Res. 39, 3892–3908 (1999).
[CrossRef]

R. W. Pridmore, “Bezold–Brucke hue-shift as functions of luminance level, luminance ratio, interstimulus interval and adapting white for aperture and object colors,” Vis. Res. 39, 3873–3891 (1999).
[CrossRef]

1997 (3)

V. J. Volbrecht, J. L. Nerger, and C. E. Harlow, “The bimodality of unique green revisited,” Vis. Res. 37, 407–416 (1997).
[CrossRef]

B. A. Saunders and J. van Brakel, “Are there nontrivial constraints on colour categorization?” Behav. Brain Sci. 20, 167–179 (1997).
[CrossRef]

J. Birch, “Efficiency of the Ishihara test for identifying red–green colour deficiency,” Ophthalmic Physiol. Opt. 17, 403–408 (1997).
[CrossRef]

1995 (1)

G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995).
[CrossRef]

1994 (1)

I. Abramov and J. Gordon, “Color appearance: on seeing red-or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994).
[CrossRef]

1993 (1)

R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vis. Res. 33, 1053–1065 (1993).
[CrossRef]

1990 (1)

1987 (1)

1984 (1)

S. Burns, A. Elsner, J. Pokorny, and V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

1979 (1)

1967 (1)

1965 (1)

1961 (1)

1937 (1)

D. Purdy, “The Bezold–Brücke phenomenon and contours for constant hue,” Am. J. Psychol. 49, 313–315 (1937).
[CrossRef]

Abramov, I.

I. Abramov and J. Gordon, “Color appearance: on seeing red-or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994).
[CrossRef]

Atkinson, P.

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

Ayama, M.

Bharadwaj, S.

Bimler, D. L.

Birch, J.

J. Birch, “Efficiency of the Ishihara test for identifying red–green colour deficiency,” Ophthalmic Physiol. Opt. 17, 403–408 (1997).
[CrossRef]

Boynton, R.

Boynton, R. M.

Burns, S.

S. Burns, A. Elsner, J. Pokorny, and V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

Cárdenas, L. M.

Cavonius, C.

J. Mollon and C. Cavonius, “The chromatic antagonisms of opponent process theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (Junk, 1987).

Conway, B. R.

C. M. Stoughton and B. R. Conway, “Neural basis for unique hues,” Curr. Biol. 18, R698–R699 (2008).
[CrossRef]

Cropper, S.

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

D’Andrade, R. G.

K. A. Jameson and R. G. D’Andrade, “It’s not really red, green, yellow, blue: an inquiry into perceptual color space,” in Color Categories in Thought and Language, C. Hardin and L. Maffi, eds. (Cambridge University, 1997), pp. 295–319.

Davidoff, J.

D. Roberson, J. Davidoff, I. R. L. Davies, and L. R. Shapiro, “Color categories: evidence for the cultural relativity hypothesis,” Cogn. Psychol. 50, 378–411 (2005).
[CrossRef]

Davies, I. R. L.

D. Roberson, J. Davidoff, I. R. L. Davies, and L. R. Shapiro, “Color categories: evidence for the cultural relativity hypothesis,” Cogn. Psychol. 50, 378–411 (2005).
[CrossRef]

De Valois, K. K.

R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vis. Res. 33, 1053–1065 (1993).
[CrossRef]

De Valois, R. L.

R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vis. Res. 33, 1053–1065 (1993).
[CrossRef]

Elsner, A.

S. Burns, A. Elsner, J. Pokorny, and V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

Fu, C.

K. Xiao, C. Fu, D. Mylonas, D. Karatzas, and S. Wuerger, “Unique hue data for colour appearance models. Part II: chromatic adaptation transform,” Color Res. Appl. 38, 22–29 (2013).
[CrossRef]

K. Xiao, S. Wuerger, C. Fu, and D. Karatzas, “Unique hue data for colour appearance models. Part I: loci of unique hues and hue uniformity,” Color Res. Appl. 36, 316–323 (2011).
[CrossRef]

Gegenfurtner, K. R.

C. Witzel and K. R. Gegenfurtner, “Categorical sensitivity to color differences,” J. Vis. 13(7):1, 1–33 (2013).
[CrossRef]

Gordon, J.

I. Abramov and J. Gordon, “Color appearance: on seeing red-or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994).
[CrossRef]

R. Boynton and J. Gordon, “Bezold–Brücke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78–85 (1965).
[CrossRef]

Hardin, C. L.

C. L. Hardin, “Explaining basic color categories,” Cross-Cult. Res. 39, 72–87 (2005).
[CrossRef]

Harlow, C. E.

V. J. Volbrecht, J. L. Nerger, and C. E. Harlow, “The bimodality of unique green revisited,” Vis. Res. 37, 407–416 (1997).
[CrossRef]

Hering, E.

E. Hering, Zur Lehre Vom Lichtsinne (Carl Gerold’s Sohn, 1878).

Hinks, D.

Jacobs, G.

Jaikumar, J.

Jameson, K. A.

K. A. Jameson and R. G. D’Andrade, “It’s not really red, green, yellow, blue: an inquiry into perceptual color space,” in Color Categories in Thought and Language, C. Hardin and L. Maffi, eds. (Cambridge University, 1997), pp. 295–319.

K. A. Jameson, “Where in the World Color Survey is the support for the Hering primaries as the basis for color categorization?” in Color Ontology and Color Science, J. Cohen and M. Matthen, eds. (MIT, 2010), pp. 179–202.

Jordan, G.

G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995).
[CrossRef]

Kaiser, P. K.

Karatzas, D.

K. Xiao, C. Fu, D. Mylonas, D. Karatzas, and S. Wuerger, “Unique hue data for colour appearance models. Part II: chromatic adaptation transform,” Color Res. Appl. 38, 22–29 (2013).
[CrossRef]

K. Xiao, S. Wuerger, C. Fu, and D. Karatzas, “Unique hue data for colour appearance models. Part I: loci of unique hues and hue uniformity,” Color Res. Appl. 36, 316–323 (2011).
[CrossRef]

Kay, P.

P. Kay, “Color categories are not arbitrary,” Cross-Cult. Res. 39, 39–55 (2005).
[CrossRef]

G. Malkoc, P. Kay, and M. A. Webster, “Variations in normal color vision. IV. binary hues and hue scaling,” J. Opt. Soc. Am. A 22, 2154–2168 (2005).
[CrossRef]

P. Kay and T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003).
[CrossRef]

Keene, B.

Kuehni, R.

R. Kuehni, “Focal color variability and unique hue stimulus variability,” J. Cogn. Cult. 5, 409–426 (2005).
[CrossRef]

R. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
[CrossRef]

Kuehni, R. G.

MacLeod, D. I.

Madan, G.

Malkoc, G.

Mathews, M.

Miyahara, E.

Mollon, J.

J. Mollon, “A neural basis for unique hues?” Curr. Biol. 19, R441–R442 (2009).
[CrossRef]

J. Mollon and C. Cavonius, “The chromatic antagonisms of opponent process theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (Junk, 1987).

Mollon, J. D.

G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995).
[CrossRef]

B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.

Mylonas, D.

K. Xiao, C. Fu, D. Mylonas, D. Karatzas, and S. Wuerger, “Unique hue data for colour appearance models. Part II: chromatic adaptation transform,” Color Res. Appl. 38, 22–29 (2013).
[CrossRef]

Nakatsue, T.

Nerger, J. L.

V. J. Volbrecht, J. L. Nerger, and C. E. Harlow, “The bimodality of unique green revisited,” Vis. Res. 37, 407–416 (1997).
[CrossRef]

Paramei, G. V.

Parkes, L.

S. M. Wuerger and L. Parkes, “Unique hues: perception and brain imaging,” in New Directions in Colour Studies, C. Biggam, C. Hough, C. Kay, and D. Simmons, eds. (John Benjamin, 2011), pp. 445–455.

Pokorny, J.

S. Burns, A. Elsner, J. Pokorny, and V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

Pridmore, R. W.

R. W. Pridmore, “Bezold–Brucke hue-shift as functions of luminance level, luminance ratio, interstimulus interval and adapting white for aperture and object colors,” Vis. Res. 39, 3873–3891 (1999).
[CrossRef]

R. W. Pridmore, “Unique and binary hues as functions of luminance and illuminant color temperature, and relations with invariant hues,” Vis. Res. 39, 3892–3908 (1999).
[CrossRef]

Purdy, D.

D. Purdy, “The Bezold–Brücke phenomenon and contours for constant hue,” Am. J. Psychol. 49, 313–315 (1937).
[CrossRef]

Raker, V. E.

Regan, B. C.

B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.

Regier, T.

P. Kay and T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003).
[CrossRef]

Roberson, D.

D. Roberson, J. Davidoff, I. R. L. Davies, and L. R. Shapiro, “Color categories: evidence for the cultural relativity hypothesis,” Cogn. Psychol. 50, 378–411 (2005).
[CrossRef]

Saunders, B. A.

B. A. Saunders and J. van Brakel, “Are there nontrivial constraints on colour categorization?” Behav. Brain Sci. 20, 167–179 (1997).
[CrossRef]

Schefrin, B. E.

Shamey, R.

Shapiro, L. R.

D. Roberson, J. Davidoff, I. R. L. Davies, and L. R. Shapiro, “Color categories: evidence for the cultural relativity hypothesis,” Cogn. Psychol. 50, 378–411 (2005).
[CrossRef]

Smith, V.

S. Burns, A. Elsner, J. Pokorny, and V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

Stoughton, C. M.

C. M. Stoughton and B. R. Conway, “Neural basis for unique hues,” Curr. Biol. 18, R698–R699 (2008).
[CrossRef]

Vaithilingham, E.

Valberg, A.

A. Valberg, “Unique hues: an old problem for a new generation,” Vis. Res. 41, 1645–1657 (2001).
[CrossRef]

van Brakel, J.

B. A. Saunders and J. van Brakel, “Are there nontrivial constraints on colour categorization?” Behav. Brain Sci. 20, 167–179 (1997).
[CrossRef]

Verma, R.

Vierling, F.

F. Vierling, Die Farbensinnprüfung bei der Deutschen Reichsbahn (Verlag Bernecker, 1935).

Volbrecht, V. J.

V. J. Volbrecht, J. L. Nerger, and C. E. Harlow, “The bimodality of unique green revisited,” Vis. Res. 37, 407–416 (1997).
[CrossRef]

Walraven, P.

Wascher, T.

Webster, M. A.

Webster, S. M.

Werner, J. S.

Witzel, C.

C. Witzel and K. R. Gegenfurtner, “Categorical sensitivity to color differences,” J. Vis. 13(7):1, 1–33 (2013).
[CrossRef]

Wuerger, S.

K. Xiao, C. Fu, D. Mylonas, D. Karatzas, and S. Wuerger, “Unique hue data for colour appearance models. Part II: chromatic adaptation transform,” Color Res. Appl. 38, 22–29 (2013).
[CrossRef]

K. Xiao, S. Wuerger, C. Fu, and D. Karatzas, “Unique hue data for colour appearance models. Part I: loci of unique hues and hue uniformity,” Color Res. Appl. 36, 316–323 (2011).
[CrossRef]

Wuerger, S. M.

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

S. M. Wuerger and L. Parkes, “Unique hues: perception and brain imaging,” in New Directions in Colour Studies, C. Biggam, C. Hough, C. Kay, and D. Simmons, eds. (John Benjamin, 2011), pp. 445–455.

Xiao, K.

K. Xiao, C. Fu, D. Mylonas, D. Karatzas, and S. Wuerger, “Unique hue data for colour appearance models. Part II: chromatic adaptation transform,” Color Res. Appl. 38, 22–29 (2013).
[CrossRef]

K. Xiao, S. Wuerger, C. Fu, and D. Karatzas, “Unique hue data for colour appearance models. Part I: loci of unique hues and hue uniformity,” Color Res. Appl. 36, 316–323 (2011).
[CrossRef]

Am. J. Psychol. (1)

D. Purdy, “The Bezold–Brücke phenomenon and contours for constant hue,” Am. J. Psychol. 49, 313–315 (1937).
[CrossRef]

Annu. Rev. Psychol. (1)

I. Abramov and J. Gordon, “Color appearance: on seeing red-or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994).
[CrossRef]

Behav. Brain Sci. (1)

B. A. Saunders and J. van Brakel, “Are there nontrivial constraints on colour categorization?” Behav. Brain Sci. 20, 167–179 (1997).
[CrossRef]

Cogn. Psychol. (1)

D. Roberson, J. Davidoff, I. R. L. Davies, and L. R. Shapiro, “Color categories: evidence for the cultural relativity hypothesis,” Cogn. Psychol. 50, 378–411 (2005).
[CrossRef]

Color Res. Appl. (4)

K. Xiao, C. Fu, D. Mylonas, D. Karatzas, and S. Wuerger, “Unique hue data for colour appearance models. Part II: chromatic adaptation transform,” Color Res. Appl. 38, 22–29 (2013).
[CrossRef]

K. Xiao, S. Wuerger, C. Fu, and D. Karatzas, “Unique hue data for colour appearance models. Part I: loci of unique hues and hue uniformity,” Color Res. Appl. 36, 316–323 (2011).
[CrossRef]

R. G. Kuehni, “Determination of unique hues using Munsell color chips,” Color Res. Appl. 26, 61–66 (2001).
[CrossRef]

R. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
[CrossRef]

Cross-Cult. Res. (2)

P. Kay, “Color categories are not arbitrary,” Cross-Cult. Res. 39, 39–55 (2005).
[CrossRef]

C. L. Hardin, “Explaining basic color categories,” Cross-Cult. Res. 39, 72–87 (2005).
[CrossRef]

Curr. Biol. (2)

J. Mollon, “A neural basis for unique hues?” Curr. Biol. 19, R441–R442 (2009).
[CrossRef]

C. M. Stoughton and B. R. Conway, “Neural basis for unique hues,” Curr. Biol. 18, R698–R699 (2008).
[CrossRef]

J. Cogn. Cult. (1)

R. Kuehni, “Focal color variability and unique hue stimulus variability,” J. Cogn. Cult. 5, 409–426 (2005).
[CrossRef]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (8)

J. Vis. (1)

C. Witzel and K. R. Gegenfurtner, “Categorical sensitivity to color differences,” J. Vis. 13(7):1, 1–33 (2013).
[CrossRef]

Ophthalmic Physiol. Opt. (1)

J. Birch, “Efficiency of the Ishihara test for identifying red–green colour deficiency,” Ophthalmic Physiol. Opt. 17, 403–408 (1997).
[CrossRef]

Percept. Mot. Skills (1)

E. Miyahara, “Focal colors and unique hues,” Percept. Mot. Skills 97, 1038–1042 (2003).

Proc. Natl. Acad. Sci. USA (1)

P. Kay and T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003).
[CrossRef]

Vis. Res. (8)

R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vis. Res. 33, 1053–1065 (1993).
[CrossRef]

A. Valberg, “Unique hues: an old problem for a new generation,” Vis. Res. 41, 1645–1657 (2001).
[CrossRef]

S. Burns, A. Elsner, J. Pokorny, and V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984).
[CrossRef]

G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995).
[CrossRef]

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

V. J. Volbrecht, J. L. Nerger, and C. E. Harlow, “The bimodality of unique green revisited,” Vis. Res. 37, 407–416 (1997).
[CrossRef]

R. W. Pridmore, “Bezold–Brucke hue-shift as functions of luminance level, luminance ratio, interstimulus interval and adapting white for aperture and object colors,” Vis. Res. 39, 3873–3891 (1999).
[CrossRef]

R. W. Pridmore, “Unique and binary hues as functions of luminance and illuminant color temperature, and relations with invariant hues,” Vis. Res. 39, 3892–3908 (1999).
[CrossRef]

Other (7)

F. Vierling, Die Farbensinnprüfung bei der Deutschen Reichsbahn (Verlag Bernecker, 1935).

K. A. Jameson, “Where in the World Color Survey is the support for the Hering primaries as the basis for color categorization?” in Color Ontology and Color Science, J. Cohen and M. Matthen, eds. (MIT, 2010), pp. 179–202.

S. M. Wuerger and L. Parkes, “Unique hues: perception and brain imaging,” in New Directions in Colour Studies, C. Biggam, C. Hough, C. Kay, and D. Simmons, eds. (John Benjamin, 2011), pp. 445–455.

J. Mollon and C. Cavonius, “The chromatic antagonisms of opponent process theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (Junk, 1987).

K. A. Jameson and R. G. D’Andrade, “It’s not really red, green, yellow, blue: an inquiry into perceptual color space,” in Color Categories in Thought and Language, C. Hardin and L. Maffi, eds. (Cambridge University, 1997), pp. 295–319.

E. Hering, Zur Lehre Vom Lichtsinne (Carl Gerold’s Sohn, 1878).

B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Stimuli. Panel (a) shows the range of chromaticities, in our scaled version of MacLeod–Boynton chromaticity space, from which the stimuli were drawn. Panel (b) indicates the two frames of a trial. In frame 1, 25 colored segments were presented whose range chromaticities spanned the full hue circle shown in panel (a). In frame 2, the 25 selectable segments had chromaticities from a quarter of the full hue circle, according to the subject’s selection on frame 1. For reference, an inner annulus was presented of 25 unselectable segments with chromaticities that ranged over the full hue circle.

Fig. 2.
Fig. 2.

(a) Histograms of average hue selections. Mean selections are indicated by the dashed lines, and 95% confidence intervals by the solid arcs. Results are colored according to the hue. (b) Test–retest reliabilities. Median hue selections from session 2 are plotted against median selections from session 1. Correlation coefficients are given in Table 1. (c) Polar plot of standard deviation of hue selections (r) as a function of group mean hue selection (θ) for session 1. Group mean selections of each hue are the mean of median hue selections of 50 subjects. The standard deviation is the mean standard deviation of 50 subjects, with 10 selections for each hue. The ellipse is the best-fitting ellipse through the data. (d) Polar plot of standard deviation of hue selections (r) as a function of median hue selections (θ) for session 2. (e) Mean residuals (over 50 subjects) of the positions of each hue from the best fitting ellipse for each subject. If the residual is negative, the standard deviation of hue selections is inside the ellipse and therefore smaller than expected. If the residual is positive, the standard deviation of hue selections is outside the ellipse and therefore greater than expected. Residuals for session 1 are shown by black borders, and residuals for session 2 by gray borders. Bars representing results for the eight hues are colored accordingly. Error bars are 95% confidence intervals on the mean residuals.

Fig. 3.
Fig. 3.

Chromaticities of selectable segments in Experiment 2 compared to those of Experiment 1. The scaling factor applied to the L/(L+M) axis of MacLeod–Boynton chromaticity space was smaller in Experiment 2 (2.8) than in Experiment 1 (3.88), so the locus of chromaticities presented in Experiment 1 appears as an ellipse in this figure (dashed line). The chromaticities for each of the three saturations are shown separately, and the central black dot indicates the chromaticity of D65, which was the chromaticity of the surround.

Fig. 4.
Fig. 4.

(a) Distributions of median hue selections measured in Experiment 2 for the three different saturations. Selections for saturation 1 are plotted in the outer annulus, selections for saturation 2 in the middle annulus, and selections for saturation 3 in the inner annulus. Distributions for each hue are colored accordingly, and mean hue selections are indicated by the dashed lines. 95% confidence intervals are indicated by the solid arcs. (b) Best-fitting ellipses through a polar plot of the standard deviation of hue selections (the mean, over 58 subjects, of the standard deviation of the 10 selections for each hue) (r) against the mean hue selection (of median selections of 58 subjects) (θ). (c) Mean residuals. Residuals are the distance of each hue from the best-fitting ellipse [to standard deviation of hue selections (r) as a function of median hue selection (θ)] for each subject. Negative residuals indicate that the standard deviation of selections for that hue is inside the best-fitting ellipse, and so is lower than expected. Positive residuals indicate that the standard deviation of selections for that hue is outside the best-fitting ellipse, and so is greater than expected. Bars are colored according to the hue. For each triplet of bars, results for saturation 1 are left, results for saturation 2 are center, and results for saturation 3 are right. Error bars are 95% confidence intervals on the means.

Tables (4)

Tables Icon

Table 1. Test–Retest Reliabilities of Median Selections of Unique and Binary Hues

Tables Icon

Table 2. Within-Individual, Overall, and between-Individual Variances of Unique and Binary Hue Selections

Tables Icon

Table 3. Within-Individual Variance and Overall Variance for Selections of the Eight Huesa

Tables Icon

Table 4. Comparison between Mean Unique and Binary Hues Measured in the Present Study and Those That Have Been Previously Reported

Metrics