Abstract

The link between chromatic constancy (compensation for hue and saturation shifts) and lightness constancy (compensation for a change in surface reflectance) was tested theoretically by computing cone contrasts and by asymmetric matching experiments. The effect of a thin achromatic line (a frame) around the test sample was tested empirically. When the samples were outlined by the frame, lightness constancy was increased and chromatic constancy reduced (p<0.001). Changes in luminance are more likely to be compensated when the luminance contrast edge around the test stimulus is disturbed as with the addition of an achromatic frame.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).
  2. F. A. Kingdom, “Lightness, brightness and transparency: a quarter century of new ideas, captivating demonstrations and unrelenting controversy,” Vis. Res. 51, 652–673 (2011).
    [CrossRef]
  3. L. Arend and A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
    [CrossRef]
  4. D. H. Brainard, W. A. Brunt, and J. M. Speigle, “Color constancy in the nearly natural image. I. Asymmetric matches,” J. Opt. Soc. Am. A 14, 2091–2110 (1997).
    [CrossRef]
  5. D. H. Foster, K. Amano, and S. M. Nascimento, “Colour constancy from temporal cues: better matches with less variability under fast illuminant changes,” Vis. Res. 41, 285–293 (2001).
    [CrossRef]
  6. D. J. McKeefry, I. J. Murray, and J. J. Kulikowski, “Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation,” Vis. Res. 41, 245–255 (2001).
    [CrossRef]
  7. R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant samples and backgrounds: a model,” Perception 34, 995–1002 (2005).
    [CrossRef]
  8. M. P. Lucassen and J. Walraven, “Separate processing of chromatic and achromatic contrast in color constancy,” Color Res. Appl. 30, 172–185 (2005).
    [CrossRef]
  9. J. J. Kulikowski, A. Daugirdiene, A. Panorgias, R. Stanikunas, H. Vaitkevicius, and I. J. Murray, “Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy,” J. Opt. Soc. Am. A 29, A275–A289 (2012).
    [CrossRef]
  10. J.-M. Geusebroek, R. van den Boomgaard, A. W. M. Smeulders, and T. Gevers, “Color constancy from physical principles,” Pattern Recogn. Lett. 24, 1653–1662 (2003).
    [CrossRef]
  11. B. Blakeslee and M. E. McCourt, “A multiscale spatial filtering account of the Wertheimer-Benary effect and the corrugated Mondrian,” Vis. Res. 41, 2487–2502 (2001).
    [CrossRef]
  12. A. Daugirdiene, I. J. Murray, H. Vaitkevicius, and J. Kulikowski, “Cone contrast computations: physical versus perceived background and colour constancy,” Spat. Vis. 19, 173–192 (2006).
    [CrossRef]
  13. I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
    [CrossRef]
  14. D. B. Judd, “Report of US secretariat committee on colorimetry and artificial daylight,” Proceedings of the Twelfth Session of the CIE, Stockholm (1951), Vol. 1, p. 11.
  15. J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
    [CrossRef]
  16. J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
    [CrossRef]
  17. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vis. Res. 15, 161–171 (1975).
    [CrossRef]
  18. K. Uchikawa, K. Fukuda, Y. Kitazawa, and D. I. MacLeod, “Estimating illuminant color based on luminance balance of surfaces,” J. Opt. Soc. Am. A 29, A133–A143 (2012).
    [CrossRef]
  19. I. J. Murray, N. R. Parry, and D. J. McKeefry, “Cone opponency in the near peripheral retina,” Vis. Neurosci. 23, 503–507 (2006).
  20. E. H. Adelson, “Lightness perception and lightness illusions,” in The New Cognitive Neurosciences, M. Gazzaniga, ed., 2nd ed. (MIT, 2000), pp. 339–351.
  21. R. F. Murray, “Human lightness perception is guided by simple assumptions about reflectance and lighting,” Proc. SPIE 8651, 865106 (2013).
    [CrossRef]
  22. G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
    [CrossRef]
  23. J. R. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
    [CrossRef]
  24. J. J. Kulikowski and H. Vaitkevicius, “Colour constancy as a function of hue,” Acta Psychol. 97, 25–35 (1997).
  25. K. Amano, D. H. Foster, and S. M. Nascimento, “Color constancy in natural scenes with and without an explicit illuminant cue,” Vis. Neurosci. 23, 351–356 (2006).
    [CrossRef]
  26. J. L. Barbur and K. Spang, “Colour constancy and conscious perception of changes of illuminant,” Neuropsychologia 46, 853–863 (2008).
    [CrossRef]
  27. D. H. Foster and S. M. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257, 115–121 (1994).
    [CrossRef]
  28. D. H. Foster, S. M. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
    [CrossRef]

2013 (1)

R. F. Murray, “Human lightness perception is guided by simple assumptions about reflectance and lighting,” Proc. SPIE 8651, 865106 (2013).
[CrossRef]

2012 (2)

2011 (1)

F. A. Kingdom, “Lightness, brightness and transparency: a quarter century of new ideas, captivating demonstrations and unrelenting controversy,” Vis. Res. 51, 652–673 (2011).
[CrossRef]

2008 (1)

J. L. Barbur and K. Spang, “Colour constancy and conscious perception of changes of illuminant,” Neuropsychologia 46, 853–863 (2008).
[CrossRef]

2006 (4)

K. Amano, D. H. Foster, and S. M. Nascimento, “Color constancy in natural scenes with and without an explicit illuminant cue,” Vis. Neurosci. 23, 351–356 (2006).
[CrossRef]

I. J. Murray, N. R. Parry, and D. J. McKeefry, “Cone opponency in the near peripheral retina,” Vis. Neurosci. 23, 503–507 (2006).

A. Daugirdiene, I. J. Murray, H. Vaitkevicius, and J. Kulikowski, “Cone contrast computations: physical versus perceived background and colour constancy,” Spat. Vis. 19, 173–192 (2006).
[CrossRef]

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[CrossRef]

2005 (2)

R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant samples and backgrounds: a model,” Perception 34, 995–1002 (2005).
[CrossRef]

M. P. Lucassen and J. Walraven, “Separate processing of chromatic and achromatic contrast in color constancy,” Color Res. Appl. 30, 172–185 (2005).
[CrossRef]

2003 (1)

J.-M. Geusebroek, R. van den Boomgaard, A. W. M. Smeulders, and T. Gevers, “Color constancy from physical principles,” Pattern Recogn. Lett. 24, 1653–1662 (2003).
[CrossRef]

2002 (1)

J. R. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[CrossRef]

2001 (4)

D. H. Foster, S. M. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

B. Blakeslee and M. E. McCourt, “A multiscale spatial filtering account of the Wertheimer-Benary effect and the corrugated Mondrian,” Vis. Res. 41, 2487–2502 (2001).
[CrossRef]

D. H. Foster, K. Amano, and S. M. Nascimento, “Colour constancy from temporal cues: better matches with less variability under fast illuminant changes,” Vis. Res. 41, 285–293 (2001).
[CrossRef]

D. J. McKeefry, I. J. Murray, and J. J. Kulikowski, “Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation,” Vis. Res. 41, 245–255 (2001).
[CrossRef]

1999 (1)

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).

1997 (2)

D. H. Brainard, W. A. Brunt, and J. M. Speigle, “Color constancy in the nearly natural image. I. Asymmetric matches,” J. Opt. Soc. Am. A 14, 2091–2110 (1997).
[CrossRef]

J. J. Kulikowski and H. Vaitkevicius, “Colour constancy as a function of hue,” Acta Psychol. 97, 25–35 (1997).

1994 (1)

D. H. Foster and S. M. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257, 115–121 (1994).
[CrossRef]

1989 (1)

1986 (1)

1980 (1)

G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
[CrossRef]

1978 (1)

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

1975 (1)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

Adelson, E. H.

E. H. Adelson, “Lightness perception and lightness illusions,” in The New Cognitive Neurosciences, M. Gazzaniga, ed., 2nd ed. (MIT, 2000), pp. 339–351.

Agostini, T.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).

Amano, K.

K. Amano, D. H. Foster, and S. M. Nascimento, “Color constancy in natural scenes with and without an explicit illuminant cue,” Vis. Neurosci. 23, 351–356 (2006).
[CrossRef]

D. H. Foster, S. M. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

D. H. Foster, K. Amano, and S. M. Nascimento, “Colour constancy from temporal cues: better matches with less variability under fast illuminant changes,” Vis. Res. 41, 285–293 (2001).
[CrossRef]

Annan, V.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).

Arend, L.

D. H. Foster, S. M. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

L. Arend and A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
[CrossRef]

Barbur, J. L.

J. L. Barbur and K. Spang, “Colour constancy and conscious perception of changes of illuminant,” Neuropsychologia 46, 853–863 (2008).
[CrossRef]

Blakeslee, B.

B. Blakeslee and M. E. McCourt, “A multiscale spatial filtering account of the Wertheimer-Benary effect and the corrugated Mondrian,” Vis. Res. 41, 2487–2502 (2001).
[CrossRef]

Bonato, F.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).

Brainard, D. H.

Brunt, W. A.

Buchsbaum, G.

G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
[CrossRef]

Cataliotti, J.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).

Daugirdiene, A.

J. J. Kulikowski, A. Daugirdiene, A. Panorgias, R. Stanikunas, H. Vaitkevicius, and I. J. Murray, “Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy,” J. Opt. Soc. Am. A 29, A275–A289 (2012).
[CrossRef]

A. Daugirdiene, I. J. Murray, H. Vaitkevicius, and J. Kulikowski, “Cone contrast computations: physical versus perceived background and colour constancy,” Spat. Vis. 19, 173–192 (2006).
[CrossRef]

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[CrossRef]

R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant samples and backgrounds: a model,” Perception 34, 995–1002 (2005).
[CrossRef]

Economou, E.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).

Foster, D. H.

K. Amano, D. H. Foster, and S. M. Nascimento, “Color constancy in natural scenes with and without an explicit illuminant cue,” Vis. Neurosci. 23, 351–356 (2006).
[CrossRef]

D. H. Foster, S. M. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

D. H. Foster, K. Amano, and S. M. Nascimento, “Colour constancy from temporal cues: better matches with less variability under fast illuminant changes,” Vis. Res. 41, 285–293 (2001).
[CrossRef]

D. H. Foster and S. M. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257, 115–121 (1994).
[CrossRef]

Foster, J. S.

D. H. Foster, S. M. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

Fukuda, K.

Geusebroek, J.-M.

J.-M. Geusebroek, R. van den Boomgaard, A. W. M. Smeulders, and T. Gevers, “Color constancy from physical principles,” Pattern Recogn. Lett. 24, 1653–1662 (2003).
[CrossRef]

Gevers, T.

J.-M. Geusebroek, R. van den Boomgaard, A. W. M. Smeulders, and T. Gevers, “Color constancy from physical principles,” Pattern Recogn. Lett. 24, 1653–1662 (2003).
[CrossRef]

Gilchrist, A.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).

Golz, J. R.

J. R. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[CrossRef]

Hallikainen, J.

Jaaskelainen, T.

Judd, D. B.

D. B. Judd, “Report of US secretariat committee on colorimetry and artificial daylight,” Proceedings of the Twelfth Session of the CIE, Stockholm (1951), Vol. 1, p. 11.

Kingdom, F. A.

F. A. Kingdom, “Lightness, brightness and transparency: a quarter century of new ideas, captivating demonstrations and unrelenting controversy,” Vis. Res. 51, 652–673 (2011).
[CrossRef]

Kitazawa, Y.

Kossyfidis, C.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).

Kulikowski, J.

A. Daugirdiene, I. J. Murray, H. Vaitkevicius, and J. Kulikowski, “Cone contrast computations: physical versus perceived background and colour constancy,” Spat. Vis. 19, 173–192 (2006).
[CrossRef]

Kulikowski, J. J.

J. J. Kulikowski, A. Daugirdiene, A. Panorgias, R. Stanikunas, H. Vaitkevicius, and I. J. Murray, “Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy,” J. Opt. Soc. Am. A 29, A275–A289 (2012).
[CrossRef]

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[CrossRef]

R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant samples and backgrounds: a model,” Perception 34, 995–1002 (2005).
[CrossRef]

D. J. McKeefry, I. J. Murray, and J. J. Kulikowski, “Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation,” Vis. Res. 41, 245–255 (2001).
[CrossRef]

J. J. Kulikowski and H. Vaitkevicius, “Colour constancy as a function of hue,” Acta Psychol. 97, 25–35 (1997).

Li, X.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).

Linnell, K. J.

D. H. Foster, S. M. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

Lucassen, M. P.

M. P. Lucassen and J. Walraven, “Separate processing of chromatic and achromatic contrast in color constancy,” Color Res. Appl. 30, 172–185 (2005).
[CrossRef]

MacLeod, D. I.

MacLeod, D. I. A.

J. R. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[CrossRef]

McCourt, M. E.

B. Blakeslee and M. E. McCourt, “A multiscale spatial filtering account of the Wertheimer-Benary effect and the corrugated Mondrian,” Vis. Res. 41, 2487–2502 (2001).
[CrossRef]

McKeefry, D. J.

I. J. Murray, N. R. Parry, and D. J. McKeefry, “Cone opponency in the near peripheral retina,” Vis. Neurosci. 23, 503–507 (2006).

D. J. McKeefry, I. J. Murray, and J. J. Kulikowski, “Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation,” Vis. Res. 41, 245–255 (2001).
[CrossRef]

Murray, I. J.

J. J. Kulikowski, A. Daugirdiene, A. Panorgias, R. Stanikunas, H. Vaitkevicius, and I. J. Murray, “Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy,” J. Opt. Soc. Am. A 29, A275–A289 (2012).
[CrossRef]

I. J. Murray, N. R. Parry, and D. J. McKeefry, “Cone opponency in the near peripheral retina,” Vis. Neurosci. 23, 503–507 (2006).

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[CrossRef]

A. Daugirdiene, I. J. Murray, H. Vaitkevicius, and J. Kulikowski, “Cone contrast computations: physical versus perceived background and colour constancy,” Spat. Vis. 19, 173–192 (2006).
[CrossRef]

R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant samples and backgrounds: a model,” Perception 34, 995–1002 (2005).
[CrossRef]

D. J. McKeefry, I. J. Murray, and J. J. Kulikowski, “Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation,” Vis. Res. 41, 245–255 (2001).
[CrossRef]

Murray, R. F.

R. F. Murray, “Human lightness perception is guided by simple assumptions about reflectance and lighting,” Proc. SPIE 8651, 865106 (2013).
[CrossRef]

Nascimento, S. M.

K. Amano, D. H. Foster, and S. M. Nascimento, “Color constancy in natural scenes with and without an explicit illuminant cue,” Vis. Neurosci. 23, 351–356 (2006).
[CrossRef]

D. H. Foster, S. M. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

D. H. Foster, K. Amano, and S. M. Nascimento, “Colour constancy from temporal cues: better matches with less variability under fast illuminant changes,” Vis. Res. 41, 285–293 (2001).
[CrossRef]

D. H. Foster and S. M. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257, 115–121 (1994).
[CrossRef]

Nieves, J. L.

D. H. Foster, S. M. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

Panorgias, A.

Parkkinen, J. P. S.

Parry, N. R.

I. J. Murray, N. R. Parry, and D. J. McKeefry, “Cone opponency in the near peripheral retina,” Vis. Neurosci. 23, 503–507 (2006).

Plet, S.

D. H. Foster, S. M. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

Pokorny, J.

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

Reeves, A.

Smeulders, A. W. M.

J.-M. Geusebroek, R. van den Boomgaard, A. W. M. Smeulders, and T. Gevers, “Color constancy from physical principles,” Pattern Recogn. Lett. 24, 1653–1662 (2003).
[CrossRef]

Smith, V. C.

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

Spang, K.

J. L. Barbur and K. Spang, “Colour constancy and conscious perception of changes of illuminant,” Neuropsychologia 46, 853–863 (2008).
[CrossRef]

Spehar, B.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).

Speigle, J. M.

Stanikunas, R.

J. J. Kulikowski, A. Daugirdiene, A. Panorgias, R. Stanikunas, H. Vaitkevicius, and I. J. Murray, “Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy,” J. Opt. Soc. Am. A 29, A275–A289 (2012).
[CrossRef]

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[CrossRef]

R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant samples and backgrounds: a model,” Perception 34, 995–1002 (2005).
[CrossRef]

Uchikawa, K.

Vaitkevicius, H.

J. J. Kulikowski, A. Daugirdiene, A. Panorgias, R. Stanikunas, H. Vaitkevicius, and I. J. Murray, “Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy,” J. Opt. Soc. Am. A 29, A275–A289 (2012).
[CrossRef]

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[CrossRef]

A. Daugirdiene, I. J. Murray, H. Vaitkevicius, and J. Kulikowski, “Cone contrast computations: physical versus perceived background and colour constancy,” Spat. Vis. 19, 173–192 (2006).
[CrossRef]

R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant samples and backgrounds: a model,” Perception 34, 995–1002 (2005).
[CrossRef]

J. J. Kulikowski and H. Vaitkevicius, “Colour constancy as a function of hue,” Acta Psychol. 97, 25–35 (1997).

van den Boomgaard, R.

J.-M. Geusebroek, R. van den Boomgaard, A. W. M. Smeulders, and T. Gevers, “Color constancy from physical principles,” Pattern Recogn. Lett. 24, 1653–1662 (2003).
[CrossRef]

Vos, J. J.

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

Walraven, J.

M. P. Lucassen and J. Walraven, “Separate processing of chromatic and achromatic contrast in color constancy,” Color Res. Appl. 30, 172–185 (2005).
[CrossRef]

Acta Psychol. (1)

J. J. Kulikowski and H. Vaitkevicius, “Colour constancy as a function of hue,” Acta Psychol. 97, 25–35 (1997).

Color Res. Appl. (2)

M. P. Lucassen and J. Walraven, “Separate processing of chromatic and achromatic contrast in color constancy,” Color Res. Appl. 30, 172–185 (2005).
[CrossRef]

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

J. Franklin Inst. (1)

G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
[CrossRef]

J. Opt. Soc. Am. A (5)

Nature (1)

J. R. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[CrossRef]

Neuropsychologia (1)

J. L. Barbur and K. Spang, “Colour constancy and conscious perception of changes of illuminant,” Neuropsychologia 46, 853–863 (2008).
[CrossRef]

Pattern Recogn. Lett. (1)

J.-M. Geusebroek, R. van den Boomgaard, A. W. M. Smeulders, and T. Gevers, “Color constancy from physical principles,” Pattern Recogn. Lett. 24, 1653–1662 (2003).
[CrossRef]

Perception (1)

R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant samples and backgrounds: a model,” Perception 34, 995–1002 (2005).
[CrossRef]

Proc. Biol. Sci. (1)

D. H. Foster and S. M. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257, 115–121 (1994).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

D. H. Foster, S. M. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

Proc. SPIE (1)

R. F. Murray, “Human lightness perception is guided by simple assumptions about reflectance and lighting,” Proc. SPIE 8651, 865106 (2013).
[CrossRef]

Psychol. Rev. (1)

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795–834 (1999).

Spat. Vis. (1)

A. Daugirdiene, I. J. Murray, H. Vaitkevicius, and J. Kulikowski, “Cone contrast computations: physical versus perceived background and colour constancy,” Spat. Vis. 19, 173–192 (2006).
[CrossRef]

Vis. Neurosci. (2)

I. J. Murray, N. R. Parry, and D. J. McKeefry, “Cone opponency in the near peripheral retina,” Vis. Neurosci. 23, 503–507 (2006).

K. Amano, D. H. Foster, and S. M. Nascimento, “Color constancy in natural scenes with and without an explicit illuminant cue,” Vis. Neurosci. 23, 351–356 (2006).
[CrossRef]

Vis. Res. (6)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[CrossRef]

F. A. Kingdom, “Lightness, brightness and transparency: a quarter century of new ideas, captivating demonstrations and unrelenting controversy,” Vis. Res. 51, 652–673 (2011).
[CrossRef]

B. Blakeslee and M. E. McCourt, “A multiscale spatial filtering account of the Wertheimer-Benary effect and the corrugated Mondrian,” Vis. Res. 41, 2487–2502 (2001).
[CrossRef]

D. H. Foster, K. Amano, and S. M. Nascimento, “Colour constancy from temporal cues: better matches with less variability under fast illuminant changes,” Vis. Res. 41, 285–293 (2001).
[CrossRef]

D. J. McKeefry, I. J. Murray, and J. J. Kulikowski, “Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation,” Vis. Res. 41, 245–255 (2001).
[CrossRef]

Other (2)

D. B. Judd, “Report of US secretariat committee on colorimetry and artificial daylight,” Proceedings of the Twelfth Session of the CIE, Stockholm (1951), Vol. 1, p. 11.

E. H. Adelson, “Lightness perception and lightness illusions,” in The New Cognitive Neurosciences, M. Gazzaniga, ed., 2nd ed. (MIT, 2000), pp. 339–351.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Sequence of stimulus presentation in the experiments for the 1 s duration adaptation period. Left-hand side indicates the “no frame” condition and right-hand side the “frame” condition.

Fig. 2.
Fig. 2.

(a) 40 Munsell samples simulated under each of the six test illuminants (open diamonds). Filled squares indicate the locus of the samples under Illuminant C. Filled circles illustrate a hypothetical shift for cCI=0.5. (b) Cone contrasts for cCI=1, LCI=0 (solid lines) and cCI=1, LCI=0.5 (filled circles). (c) Modeled luminance shifts induced by two of the test illuminants R and Y. Note that three different values for LCI are given for R and only a single LCI (zero) for Y. The luminance variations are much smaller for illuminant Y than illuminant R [18].

Fig. 3.
Fig. 3.

(a) LCI for each illuminant comparing the frame and no-frame condition. (b) The cCI for all illuminants comparing the frame and no-frame conditions.

Fig. 4.
Fig. 4.

Chromatic and lightness index averaged across illuminants. The data allow the direct comparison of the effect of the frame. Possible outliers are indicated by open circles.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

XYZi=CMF*SiCMF+*XYZi=Si,
TFMi=SPref+*SPi,
XYZtest=TFMi*XYZref,
LMS=0.155140.543210.032860.155140.456840.03286000.00801XYZ.
cCIi=1CMiCTi,
LCI=1LmaxLminLphotomaxLphotomin,

Metrics