Abstract

The average of a color distribution has special significance for color coding (e.g., to estimate the illuminant) but how it depends on the visual representation (e.g., perceptual versus cone-opponent) or nonlinearities (e.g., categorical coding) is unknown. We measured the perceived average of two colors shown alternated in spatial arrays. Observers adjusted the components until the average equaled a specified reference hue. Matches for red, blue–red, or yellow–green were consistent with the arithmetic mean chromaticity, while blue–green settings deviated toward blue. The settings show little evidence for categorical coding, and cannot be predicted from the scaled appearances of the individual components.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Whitney, J. Haberman, and T. Sweeny, “From textures to crowds: multiple levels of summary statistical perception.,” in The New Visual Neurosciences., J. S. Werner and L. M. Chalupa, eds. (MIT, 2014), pp. 685–709.
  2. S. N. Watamaniuk, R. Sekuler, and D. W. Williams, “Direction perception in complex dynamic displays: the integration of direction information,” Vis. Res. 29, 47–59 (1989).
    [CrossRef]
  3. D. W. Williams and R. Sekuler, “Coherent global motion percepts from stochastic local motions,” Vis. Res. 24, 55–62 (1984).
    [CrossRef]
  4. S. C. Dakin, P. J. Bex, J. R. Cass, and R. J. Watt, “Dissociable effects of attention and crowding on orientation averaging,” J. Vis. 9(11):28 (2009).
    [CrossRef]
  5. N. Robitaille and I. M. Harris, “When more is less: extraction of summary statistics benefits from larger sets,” J. Vis. 11(12):18, 18 (2011).
    [CrossRef]
  6. D. Ariely, “Seeing sets: representation by statistical properties,” Psychol. Sci. 12, 157–162 (2001).
  7. G. A. Alvarez and A. Oliva, “The representation of simple ensemble visual features outside the focus of attention,” Psychol. Sci. 19, 392–398 (2008).
  8. L. Parkes, J. Lund, A. Angelucci, J. A. Solomon, and M. Morgan, “Compulsory averaging of crowded orientation signals in human vision,” Nat. Neurosci. 4, 739–744 (2001).
    [CrossRef]
  9. J. Haberman and D. Whitney, “Efficient summary statistical representation when change localization fails,” Psychon. Bull. Rev. 18, 855–859 (2011).
  10. J. Haberman, T. Harp, and D. Whitney, “Averaging facial expression over time,” J. Vis. 9(11):1 (2009).
    [CrossRef]
  11. J. Haberman and D. Whitney, “Rapid extraction of mean emotion and gender from sets of faces,” Curr. Biol. 17, R751–R753 (2007).
    [CrossRef]
  12. J. Haberman and D. Whitney, “Seeing the mean: ensemble coding for sets of faces,” J. Exp. Psychol. Hum. Percep. Perform. 35, 718–734 (2009).
  13. D. Whitney, S. Haroz, and D. Whitney, “Perceiving group behavior: sensitive ensemble coding mechanisms for biological motion of human crowds,” J. Exp. Psychol. Hum. Percep. Perform. 39, 329–337 (2013).
  14. J. H. McDermott, M. Schemitsch, and E. P. Simoncelli, “Summary statistics in auditory perception,” Nat. Neurosci. 16, 493–498 (2013).
    [CrossRef]
  15. E. A. Piazza, T. D. Sweeny, D. Wessel, M. A. Silver, and D. Whitney, “Humans use summary statistics to perceive auditory sequences,” Psychol. Sci. 24, 1389–1397 (2013).
  16. D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
    [CrossRef]
  17. D. H. Brainard and B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
    [CrossRef]
  18. M. D’Zmura and P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986).
    [CrossRef]
  19. D. H. Foster and S. M. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257, 115–121 (1994).
  20. B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
    [CrossRef]
  21. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  22. J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
    [CrossRef]
  23. P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
  24. K. C. McDermott, G. Malkoc, J. B. Mulligan, and M. A. Webster, “Adaptation and visual salience,” J. Vis. 10(13):17 (2010).
    [CrossRef]
  25. I. Juricevic, L. Land, A. Wilkins, and M. A. Webster, “Visual discomfort and natural image statistics,” Perception 39, 884–899 (2010).
  26. E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. G. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vis. 10(5):25 (2010).
    [CrossRef]
  27. M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
    [CrossRef]
  28. S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
    [CrossRef]
  29. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
    [CrossRef]
  30. R. L. De Valois, K. K. De Valois, E. Switkes, and L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vis. Res. 37, 885–897 (1997).
    [CrossRef]
  31. D. L. Ruderman, T. W. Cronin, and C. C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998).
    [CrossRef]
  32. G. D. Horwitz and C. A. Hass, “Nonlinear analysis of macaque V1 color tuning reveals cardinal directions for cortical color processing,” Nat. Neurosci. 15, 913–919 (2012).
    [CrossRef]
  33. M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
    [CrossRef]
  34. A. L. Gilbert, T. Regier, P. Kay, and R. B. Ivry, “Whorf hypothesis is supported in the right visual field but not the left,” Proc. Natl. Acad. Sci. USA 103, 489–494 (2006).
  35. D. Roberson, H. Pak, and J. R. Hanley, “Categorical perception of colour in the left and right visual field is verbally mediated: evidence from Korean,” Cognition 107, 752–762 (2008).
    [CrossRef]
  36. A. Franklin, G. V. Drivonikou, L. Bevis, I. R. Davies, P. Kay, and T. Regier, “Categorical perception of color is lateralized to the right hemisphere in infants, but to the left hemisphere in adults,” Proc. Nat.l Acad. Sci. USA 105, 3221–3225 (2008).
  37. J. Winawer, N. Witthoft, M. C. Frank, L. Wu, A. R. Wade, and L. Boroditsky, “Russian blues reveal effects of language on color discrimination,” Proc. Natl. Acad. Sci. USA 104, 7780–7785 (2007).
  38. A. M. Brown, D. T. Lindsey, and K. M. Guckes, “Color names, color categories, and color-cued visual search: sometimes, color perception is not categorical,” J. Vis. 11(12):2 (2011).
    [CrossRef]
  39. M. A. Webster and P. Kay, “Color categories and color appearance,” Cognition 122, 375–392 (2012).
    [CrossRef]
  40. C. Witzel and K. R. Gegenfurtner, “Is there a lateralized category effect for color?” J. Vis. 11(12):16 (2011).
    [CrossRef]
  41. D. I. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef]
  42. R. G. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
    [CrossRef]
  43. A. B. Poirson and B. A. Wandell, “Appearance of colored patterns: pattern-color separability,” J. Opt. Soc. Am. A 10, 2458–2470 (1993).
    [CrossRef]
  44. B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision Deficiencies XII, C. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.
  45. P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiolog. Opt. 4, 223–226 (1984).
  46. M. A. Webster and J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995).
    [CrossRef]
  47. Q. Zaidi, “Identification of illuminant and object colors: heuristic-based algorithms,” J. Opt. Soc. Am. A 15, 1767–1776 (1998).
    [CrossRef]
  48. E. Switkes, “Contrast salience across three-dimensional chromoluminance space,” Vis. Res. 48, 1812–1819 (2008).
    [CrossRef]
  49. G. Malkoc, P. Kay, and M. A. Webster, “Variations in normal color vision. IV. Binary hues and hue scaling,” J. Opt. Soc. Am. A 22, 2154–2168 (2005).
    [CrossRef]
  50. J. Krauskopf, Q. Zaidi, and M. B. Mandler, “Mechanisms of simultaneous color induction,” J. Opt. Soc. Am. A 3, 1752–1757 (1986).
    [CrossRef]
  51. T. Fuchida, W. B. Cowan, and G. Wyszecki, “Matching large color differences with achromatic and chromatic surrounds,” Color Res. Appl. 10, 92–97 (1985).
    [CrossRef]
  52. R. L. De Valois and K. K. De Valois, Spatial Vision (Oxford University, 1988).
  53. D. Roberson and J. Davidoff, “The categorical perception of colors and facial expressions: the effect of verbal interference,” Mem. Cogn. 28, 977–986 (2000).
  54. R. Bachy, J. Dias, D. Alleysson, and V. Bonnardel, “Hue discrimination, unique hues and naming,” J. Opt. Soc. Am. A 29, A60–A68 (2012).
    [CrossRef]
  55. N. Klemfuss, W. Prinzmetal, and R. B. Ivry, “How does language change perception: a cautionary note,” Front. Psychol. 3, 78 (2012).
  56. M. Pilling, A. Wiggett, E. Ozgen, and I. R. Davies, “Is color “categorical perception” really perceptual?” Mem. Cogn. 31, 538–551 (2003).
    [CrossRef]
  57. D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

2013 (3)

D. Whitney, S. Haroz, and D. Whitney, “Perceiving group behavior: sensitive ensemble coding mechanisms for biological motion of human crowds,” J. Exp. Psychol. Hum. Percep. Perform. 39, 329–337 (2013).

J. H. McDermott, M. Schemitsch, and E. P. Simoncelli, “Summary statistics in auditory perception,” Nat. Neurosci. 16, 493–498 (2013).
[CrossRef]

E. A. Piazza, T. D. Sweeny, D. Wessel, M. A. Silver, and D. Whitney, “Humans use summary statistics to perceive auditory sequences,” Psychol. Sci. 24, 1389–1397 (2013).

2012 (4)

G. D. Horwitz and C. A. Hass, “Nonlinear analysis of macaque V1 color tuning reveals cardinal directions for cortical color processing,” Nat. Neurosci. 15, 913–919 (2012).
[CrossRef]

M. A. Webster and P. Kay, “Color categories and color appearance,” Cognition 122, 375–392 (2012).
[CrossRef]

R. Bachy, J. Dias, D. Alleysson, and V. Bonnardel, “Hue discrimination, unique hues and naming,” J. Opt. Soc. Am. A 29, A60–A68 (2012).
[CrossRef]

N. Klemfuss, W. Prinzmetal, and R. B. Ivry, “How does language change perception: a cautionary note,” Front. Psychol. 3, 78 (2012).

2011 (5)

A. M. Brown, D. T. Lindsey, and K. M. Guckes, “Color names, color categories, and color-cued visual search: sometimes, color perception is not categorical,” J. Vis. 11(12):2 (2011).
[CrossRef]

C. Witzel and K. R. Gegenfurtner, “Is there a lateralized category effect for color?” J. Vis. 11(12):16 (2011).
[CrossRef]

D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

N. Robitaille and I. M. Harris, “When more is less: extraction of summary statistics benefits from larger sets,” J. Vis. 11(12):18, 18 (2011).
[CrossRef]

J. Haberman and D. Whitney, “Efficient summary statistical representation when change localization fails,” Psychon. Bull. Rev. 18, 855–859 (2011).

2010 (5)

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

K. C. McDermott, G. Malkoc, J. B. Mulligan, and M. A. Webster, “Adaptation and visual salience,” J. Vis. 10(13):17 (2010).
[CrossRef]

I. Juricevic, L. Land, A. Wilkins, and M. A. Webster, “Visual discomfort and natural image statistics,” Perception 39, 884–899 (2010).

E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. G. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vis. 10(5):25 (2010).
[CrossRef]

D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

2009 (3)

S. C. Dakin, P. J. Bex, J. R. Cass, and R. J. Watt, “Dissociable effects of attention and crowding on orientation averaging,” J. Vis. 9(11):28 (2009).
[CrossRef]

J. Haberman and D. Whitney, “Seeing the mean: ensemble coding for sets of faces,” J. Exp. Psychol. Hum. Percep. Perform. 35, 718–734 (2009).

J. Haberman, T. Harp, and D. Whitney, “Averaging facial expression over time,” J. Vis. 9(11):1 (2009).
[CrossRef]

2008 (4)

G. A. Alvarez and A. Oliva, “The representation of simple ensemble visual features outside the focus of attention,” Psychol. Sci. 19, 392–398 (2008).

D. Roberson, H. Pak, and J. R. Hanley, “Categorical perception of colour in the left and right visual field is verbally mediated: evidence from Korean,” Cognition 107, 752–762 (2008).
[CrossRef]

A. Franklin, G. V. Drivonikou, L. Bevis, I. R. Davies, P. Kay, and T. Regier, “Categorical perception of color is lateralized to the right hemisphere in infants, but to the left hemisphere in adults,” Proc. Nat.l Acad. Sci. USA 105, 3221–3225 (2008).

E. Switkes, “Contrast salience across three-dimensional chromoluminance space,” Vis. Res. 48, 1812–1819 (2008).
[CrossRef]

2007 (2)

J. Winawer, N. Witthoft, M. C. Frank, L. Wu, A. R. Wade, and L. Boroditsky, “Russian blues reveal effects of language on color discrimination,” Proc. Natl. Acad. Sci. USA 104, 7780–7785 (2007).

J. Haberman and D. Whitney, “Rapid extraction of mean emotion and gender from sets of faces,” Curr. Biol. 17, R751–R753 (2007).
[CrossRef]

2006 (1)

A. L. Gilbert, T. Regier, P. Kay, and R. B. Ivry, “Whorf hypothesis is supported in the right visual field but not the left,” Proc. Natl. Acad. Sci. USA 103, 489–494 (2006).

2005 (2)

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

G. Malkoc, P. Kay, and M. A. Webster, “Variations in normal color vision. IV. Binary hues and hue scaling,” J. Opt. Soc. Am. A 22, 2154–2168 (2005).
[CrossRef]

2004 (1)

R. G. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
[CrossRef]

2003 (1)

M. Pilling, A. Wiggett, E. Ozgen, and I. R. Davies, “Is color “categorical perception” really perceptual?” Mem. Cogn. 31, 538–551 (2003).
[CrossRef]

2001 (2)

L. Parkes, J. Lund, A. Angelucci, J. A. Solomon, and M. Morgan, “Compulsory averaging of crowded orientation signals in human vision,” Nat. Neurosci. 4, 739–744 (2001).
[CrossRef]

D. Ariely, “Seeing sets: representation by statistical properties,” Psychol. Sci. 12, 157–162 (2001).

2000 (3)

M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
[CrossRef]

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

D. Roberson and J. Davidoff, “The categorical perception of colors and facial expressions: the effect of verbal interference,” Mem. Cogn. 28, 977–986 (2000).

1998 (2)

1997 (1)

R. L. De Valois, K. K. De Valois, E. Switkes, and L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vis. Res. 37, 885–897 (1997).
[CrossRef]

1995 (1)

M. A. Webster and J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995).
[CrossRef]

1994 (1)

D. H. Foster and S. M. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257, 115–121 (1994).

1993 (1)

1992 (1)

1990 (1)

P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).

1989 (1)

S. N. Watamaniuk, R. Sekuler, and D. W. Williams, “Direction perception in complex dynamic displays: the integration of direction information,” Vis. Res. 29, 47–59 (1989).
[CrossRef]

1986 (3)

1985 (1)

T. Fuchida, W. B. Cowan, and G. Wyszecki, “Matching large color differences with achromatic and chromatic surrounds,” Color Res. Appl. 10, 92–97 (1985).
[CrossRef]

1984 (3)

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiolog. Opt. 4, 223–226 (1984).

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

D. W. Williams and R. Sekuler, “Coherent global motion percepts from stochastic local motions,” Vis. Res. 24, 55–62 (1984).
[CrossRef]

1982 (1)

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

1979 (1)

Alleysson, D.

Alvarez, G. A.

G. A. Alvarez and A. Oliva, “The representation of simple ensemble visual features outside the focus of attention,” Psychol. Sci. 19, 392–398 (2008).

Angelucci, A.

L. Parkes, J. Lund, A. Angelucci, J. A. Solomon, and M. Morgan, “Compulsory averaging of crowded orientation signals in human vision,” Nat. Neurosci. 4, 739–744 (2001).
[CrossRef]

Ariely, D.

D. Ariely, “Seeing sets: representation by statistical properties,” Psychol. Sci. 12, 157–162 (2001).

Atkinson, P.

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

Bachy, R.

Bevis, L.

A. Franklin, G. V. Drivonikou, L. Bevis, I. R. Davies, P. Kay, and T. Regier, “Categorical perception of color is lateralized to the right hemisphere in infants, but to the left hemisphere in adults,” Proc. Nat.l Acad. Sci. USA 105, 3221–3225 (2008).

Bex, P. J.

S. C. Dakin, P. J. Bex, J. R. Cass, and R. J. Watt, “Dissociable effects of attention and crowding on orientation averaging,” J. Vis. 9(11):28 (2009).
[CrossRef]

Bonnardel, V.

Boroditsky, L.

J. Winawer, N. Witthoft, M. C. Frank, L. Wu, A. R. Wade, and L. Boroditsky, “Russian blues reveal effects of language on color discrimination,” Proc. Natl. Acad. Sci. USA 104, 7780–7785 (2007).

Boynton, R. M.

Brainard, D. H.

Brown, A. M.

A. M. Brown, D. T. Lindsey, and K. M. Guckes, “Color names, color categories, and color-cued visual search: sometimes, color perception is not categorical,” J. Vis. 11(12):2 (2011).
[CrossRef]

D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

Cass, J. R.

S. C. Dakin, P. J. Bex, J. R. Cass, and R. J. Watt, “Dissociable effects of attention and crowding on orientation averaging,” J. Vis. 9(11):28 (2009).
[CrossRef]

Chatterjee, S.

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

Chiao, C. C.

Clifford, C. W. G.

E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. G. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vis. 10(5):25 (2010).
[CrossRef]

Conway, B. R.

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

Cowan, W. B.

T. Fuchida, W. B. Cowan, and G. Wyszecki, “Matching large color differences with achromatic and chromatic surrounds,” Color Res. Appl. 10, 92–97 (1985).
[CrossRef]

Cronin, T. W.

Cropper, S.

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

D’Zmura, M.

Dakin, S. C.

S. C. Dakin, P. J. Bex, J. R. Cass, and R. J. Watt, “Dissociable effects of attention and crowding on orientation averaging,” J. Vis. 9(11):28 (2009).
[CrossRef]

Davidoff, J.

D. Roberson and J. Davidoff, “The categorical perception of colors and facial expressions: the effect of verbal interference,” Mem. Cogn. 28, 977–986 (2000).

Davies, I. R.

A. Franklin, G. V. Drivonikou, L. Bevis, I. R. Davies, P. Kay, and T. Regier, “Categorical perception of color is lateralized to the right hemisphere in infants, but to the left hemisphere in adults,” Proc. Nat.l Acad. Sci. USA 105, 3221–3225 (2008).

M. Pilling, A. Wiggett, E. Ozgen, and I. R. Davies, “Is color “categorical perception” really perceptual?” Mem. Cogn. 31, 538–551 (2003).
[CrossRef]

De Valois, K. K.

R. L. De Valois, K. K. De Valois, E. Switkes, and L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vis. Res. 37, 885–897 (1997).
[CrossRef]

R. L. De Valois and K. K. De Valois, Spatial Vision (Oxford University, 1988).

De Valois, R. L.

R. L. De Valois, K. K. De Valois, E. Switkes, and L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vis. Res. 37, 885–897 (1997).
[CrossRef]

R. L. De Valois and K. K. De Valois, Spatial Vision (Oxford University, 1988).

Derrington, A. M.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Dias, J.

Drivonikou, G. V.

A. Franklin, G. V. Drivonikou, L. Bevis, I. R. Davies, P. Kay, and T. Regier, “Categorical perception of color is lateralized to the right hemisphere in infants, but to the left hemisphere in adults,” Proc. Nat.l Acad. Sci. USA 105, 3221–3225 (2008).

Field, G. D.

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

Foster, D. H.

D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

D. H. Foster and S. M. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257, 115–121 (1994).

Frank, M. C.

J. Winawer, N. Witthoft, M. C. Frank, L. Wu, A. R. Wade, and L. Boroditsky, “Russian blues reveal effects of language on color discrimination,” Proc. Natl. Acad. Sci. USA 104, 7780–7785 (2007).

Franklin, A.

A. Franklin, G. V. Drivonikou, L. Bevis, I. R. Davies, P. Kay, and T. Regier, “Categorical perception of color is lateralized to the right hemisphere in infants, but to the left hemisphere in adults,” Proc. Nat.l Acad. Sci. USA 105, 3221–3225 (2008).

Fuchida, T.

T. Fuchida, W. B. Cowan, and G. Wyszecki, “Matching large color differences with achromatic and chromatic surrounds,” Color Res. Appl. 10, 92–97 (1985).
[CrossRef]

Gegenfurtner, K. R.

C. Witzel and K. R. Gegenfurtner, “Is there a lateralized category effect for color?” J. Vis. 11(12):16 (2011).
[CrossRef]

Gilbert, A. L.

A. L. Gilbert, T. Regier, P. Kay, and R. B. Ivry, “Whorf hypothesis is supported in the right visual field but not the left,” Proc. Natl. Acad. Sci. USA 103, 489–494 (2006).

Goddard, E.

E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. G. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vis. 10(5):25 (2010).
[CrossRef]

Guckes, K. M.

A. M. Brown, D. T. Lindsey, and K. M. Guckes, “Color names, color categories, and color-cued visual search: sometimes, color perception is not categorical,” J. Vis. 11(12):2 (2011).
[CrossRef]

Haberman, J.

J. Haberman and D. Whitney, “Efficient summary statistical representation when change localization fails,” Psychon. Bull. Rev. 18, 855–859 (2011).

J. Haberman, T. Harp, and D. Whitney, “Averaging facial expression over time,” J. Vis. 9(11):1 (2009).
[CrossRef]

J. Haberman and D. Whitney, “Seeing the mean: ensemble coding for sets of faces,” J. Exp. Psychol. Hum. Percep. Perform. 35, 718–734 (2009).

J. Haberman and D. Whitney, “Rapid extraction of mean emotion and gender from sets of faces,” Curr. Biol. 17, R751–R753 (2007).
[CrossRef]

D. Whitney, J. Haberman, and T. Sweeny, “From textures to crowds: multiple levels of summary statistical perception.,” in The New Visual Neurosciences., J. S. Werner and L. M. Chalupa, eds. (MIT, 2014), pp. 685–709.

Hanley, J. R.

D. Roberson, H. Pak, and J. R. Hanley, “Categorical perception of colour in the left and right visual field is verbally mediated: evidence from Korean,” Cognition 107, 752–762 (2008).
[CrossRef]

Haroz, S.

D. Whitney, S. Haroz, and D. Whitney, “Perceiving group behavior: sensitive ensemble coding mechanisms for biological motion of human crowds,” J. Exp. Psychol. Hum. Percep. Perform. 39, 329–337 (2013).

Harp, T.

J. Haberman, T. Harp, and D. Whitney, “Averaging facial expression over time,” J. Vis. 9(11):1 (2009).
[CrossRef]

Harris, I. M.

N. Robitaille and I. M. Harris, “When more is less: extraction of summary statistics benefits from larger sets,” J. Vis. 11(12):18, 18 (2011).
[CrossRef]

Hass, C. A.

G. D. Horwitz and C. A. Hass, “Nonlinear analysis of macaque V1 color tuning reveals cardinal directions for cortical color processing,” Nat. Neurosci. 15, 913–919 (2012).
[CrossRef]

Heeley, D. W.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Horwitz, G. D.

G. D. Horwitz and C. A. Hass, “Nonlinear analysis of macaque V1 color tuning reveals cardinal directions for cortical color processing,” Nat. Neurosci. 15, 913–919 (2012).
[CrossRef]

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

Howarth, P. A.

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiolog. Opt. 4, 223–226 (1984).

Ivry, R. B.

N. Klemfuss, W. Prinzmetal, and R. B. Ivry, “How does language change perception: a cautionary note,” Front. Psychol. 3, 78 (2012).

A. L. Gilbert, T. Regier, P. Kay, and R. B. Ivry, “Whorf hypothesis is supported in the right visual field but not the left,” Proc. Natl. Acad. Sci. USA 103, 489–494 (2006).

Johnson, E. N.

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

Juricevic, I.

I. Juricevic, L. Land, A. Wilkins, and M. A. Webster, “Visual discomfort and natural image statistics,” Perception 39, 884–899 (2010).

Kay, P.

M. A. Webster and P. Kay, “Color categories and color appearance,” Cognition 122, 375–392 (2012).
[CrossRef]

A. Franklin, G. V. Drivonikou, L. Bevis, I. R. Davies, P. Kay, and T. Regier, “Categorical perception of color is lateralized to the right hemisphere in infants, but to the left hemisphere in adults,” Proc. Nat.l Acad. Sci. USA 105, 3221–3225 (2008).

A. L. Gilbert, T. Regier, P. Kay, and R. B. Ivry, “Whorf hypothesis is supported in the right visual field but not the left,” Proc. Natl. Acad. Sci. USA 103, 489–494 (2006).

G. Malkoc, P. Kay, and M. A. Webster, “Variations in normal color vision. IV. Binary hues and hue scaling,” J. Opt. Soc. Am. A 22, 2154–2168 (2005).
[CrossRef]

Klemfuss, N.

N. Klemfuss, W. Prinzmetal, and R. B. Ivry, “How does language change perception: a cautionary note,” Front. Psychol. 3, 78 (2012).

Koida, K.

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

Krauskopf, J.

P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

J. Krauskopf, Q. Zaidi, and M. B. Mandler, “Mechanisms of simultaneous color induction,” J. Opt. Soc. Am. A 3, 1752–1757 (1986).
[CrossRef]

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Kuehni, R. G.

R. G. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
[CrossRef]

Kuzmova, Y. I.

D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

Land, L.

I. Juricevic, L. Land, A. Wilkins, and M. A. Webster, “Visual discomfort and natural image statistics,” Perception 39, 884–899 (2010).

Lennie, P.

P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).

M. D’Zmura and P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986).
[CrossRef]

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Lindsey, D. T.

A. M. Brown, D. T. Lindsey, and K. M. Guckes, “Color names, color categories, and color-cued visual search: sometimes, color perception is not categorical,” J. Vis. 11(12):2 (2011).
[CrossRef]

D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

Lund, J.

L. Parkes, J. Lund, A. Angelucci, J. A. Solomon, and M. Morgan, “Compulsory averaging of crowded orientation signals in human vision,” Nat. Neurosci. 4, 739–744 (2001).
[CrossRef]

MacLeod, D. I.

Mahon, L.

R. L. De Valois, K. K. De Valois, E. Switkes, and L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vis. Res. 37, 885–897 (1997).
[CrossRef]

Malkoc, G.

Mancuso, K.

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

Mandler, M. B.

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

J. Krauskopf, Q. Zaidi, and M. B. Mandler, “Mechanisms of simultaneous color induction,” J. Opt. Soc. Am. A 3, 1752–1757 (1986).
[CrossRef]

Mannion, D. J.

E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. G. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vis. 10(5):25 (2010).
[CrossRef]

McDermott, J. H.

J. H. McDermott, M. Schemitsch, and E. P. Simoncelli, “Summary statistics in auditory perception,” Nat. Neurosci. 16, 493–498 (2013).
[CrossRef]

McDermott, K. C.

K. C. McDermott, G. Malkoc, J. B. Mulligan, and M. A. Webster, “Adaptation and visual salience,” J. Vis. 10(13):17 (2010).
[CrossRef]

McDonald, J. S.

E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. G. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vis. 10(5):25 (2010).
[CrossRef]

Miyahara, E.

Mollon, J. D.

M. A. Webster and J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995).
[CrossRef]

B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision Deficiencies XII, C. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.

Morgan, M.

L. Parkes, J. Lund, A. Angelucci, J. A. Solomon, and M. Morgan, “Compulsory averaging of crowded orientation signals in human vision,” Nat. Neurosci. 4, 739–744 (2001).
[CrossRef]

Mulligan, J. B.

K. C. McDermott, G. Malkoc, J. B. Mulligan, and M. A. Webster, “Adaptation and visual salience,” J. Vis. 10(13):17 (2010).
[CrossRef]

Nascimento, S. M.

D. H. Foster and S. M. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257, 115–121 (1994).

Oliva, A.

G. A. Alvarez and A. Oliva, “The representation of simple ensemble visual features outside the focus of attention,” Psychol. Sci. 19, 392–398 (2008).

Ozgen, E.

M. Pilling, A. Wiggett, E. Ozgen, and I. R. Davies, “Is color “categorical perception” really perceptual?” Mem. Cogn. 31, 538–551 (2003).
[CrossRef]

Pak, H.

D. Roberson, H. Pak, and J. R. Hanley, “Categorical perception of colour in the left and right visual field is verbally mediated: evidence from Korean,” Cognition 107, 752–762 (2008).
[CrossRef]

Parkes, L.

L. Parkes, J. Lund, A. Angelucci, J. A. Solomon, and M. Morgan, “Compulsory averaging of crowded orientation signals in human vision,” Nat. Neurosci. 4, 739–744 (2001).
[CrossRef]

Piazza, E. A.

E. A. Piazza, T. D. Sweeny, D. Wessel, M. A. Silver, and D. Whitney, “Humans use summary statistics to perceive auditory sequences,” Psychol. Sci. 24, 1389–1397 (2013).

Pilling, M.

M. Pilling, A. Wiggett, E. Ozgen, and I. R. Davies, “Is color “categorical perception” really perceptual?” Mem. Cogn. 31, 538–551 (2003).
[CrossRef]

Poirson, A. B.

Prinzmetal, W.

N. Klemfuss, W. Prinzmetal, and R. B. Ivry, “How does language change perception: a cautionary note,” Front. Psychol. 3, 78 (2012).

Raker, V. E.

Regan, B. C.

B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision Deficiencies XII, C. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.

Regier, T.

A. Franklin, G. V. Drivonikou, L. Bevis, I. R. Davies, P. Kay, and T. Regier, “Categorical perception of color is lateralized to the right hemisphere in infants, but to the left hemisphere in adults,” Proc. Nat.l Acad. Sci. USA 105, 3221–3225 (2008).

A. L. Gilbert, T. Regier, P. Kay, and R. B. Ivry, “Whorf hypothesis is supported in the right visual field but not the left,” Proc. Natl. Acad. Sci. USA 103, 489–494 (2006).

Reijnen, E.

D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

Rich, A. N.

D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

Roberson, D.

D. Roberson, H. Pak, and J. R. Hanley, “Categorical perception of colour in the left and right visual field is verbally mediated: evidence from Korean,” Cognition 107, 752–762 (2008).
[CrossRef]

D. Roberson and J. Davidoff, “The categorical perception of colors and facial expressions: the effect of verbal interference,” Mem. Cogn. 28, 977–986 (2000).

Robitaille, N.

N. Robitaille and I. M. Harris, “When more is less: extraction of summary statistics benefits from larger sets,” J. Vis. 11(12):18, 18 (2011).
[CrossRef]

Ruderman, D. L.

Schemitsch, M.

J. H. McDermott, M. Schemitsch, and E. P. Simoncelli, “Summary statistics in auditory perception,” Nat. Neurosci. 16, 493–498 (2013).
[CrossRef]

Sclar, G.

P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).

Sekuler, R.

S. N. Watamaniuk, R. Sekuler, and D. W. Williams, “Direction perception in complex dynamic displays: the integration of direction information,” Vis. Res. 29, 47–59 (1989).
[CrossRef]

D. W. Williams and R. Sekuler, “Coherent global motion percepts from stochastic local motions,” Vis. Res. 24, 55–62 (1984).
[CrossRef]

Silver, M. A.

E. A. Piazza, T. D. Sweeny, D. Wessel, M. A. Silver, and D. Whitney, “Humans use summary statistics to perceive auditory sequences,” Psychol. Sci. 24, 1389–1397 (2013).

Simoncelli, E. P.

J. H. McDermott, M. Schemitsch, and E. P. Simoncelli, “Summary statistics in auditory perception,” Nat. Neurosci. 16, 493–498 (2013).
[CrossRef]

Solomon, J. A.

L. Parkes, J. Lund, A. Angelucci, J. A. Solomon, and M. Morgan, “Compulsory averaging of crowded orientation signals in human vision,” Nat. Neurosci. 4, 739–744 (2001).
[CrossRef]

Solomon, S. G.

E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. G. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vis. 10(5):25 (2010).
[CrossRef]

Sweeny, T.

D. Whitney, J. Haberman, and T. Sweeny, “From textures to crowds: multiple levels of summary statistical perception.,” in The New Visual Neurosciences., J. S. Werner and L. M. Chalupa, eds. (MIT, 2014), pp. 685–709.

Sweeny, T. D.

E. A. Piazza, T. D. Sweeny, D. Wessel, M. A. Silver, and D. Whitney, “Humans use summary statistics to perceive auditory sequences,” Psychol. Sci. 24, 1389–1397 (2013).

Switkes, E.

E. Switkes, “Contrast salience across three-dimensional chromoluminance space,” Vis. Res. 48, 1812–1819 (2008).
[CrossRef]

R. L. De Valois, K. K. De Valois, E. Switkes, and L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vis. Res. 37, 885–897 (1997).
[CrossRef]

Wade, A. R.

J. Winawer, N. Witthoft, M. C. Frank, L. Wu, A. R. Wade, and L. Boroditsky, “Russian blues reveal effects of language on color discrimination,” Proc. Natl. Acad. Sci. USA 104, 7780–7785 (2007).

Wandell, B. A.

Watamaniuk, S. N.

S. N. Watamaniuk, R. Sekuler, and D. W. Williams, “Direction perception in complex dynamic displays: the integration of direction information,” Vis. Res. 29, 47–59 (1989).
[CrossRef]

Watt, R. J.

S. C. Dakin, P. J. Bex, J. R. Cass, and R. J. Watt, “Dissociable effects of attention and crowding on orientation averaging,” J. Vis. 9(11):28 (2009).
[CrossRef]

Webster, M. A.

M. A. Webster and P. Kay, “Color categories and color appearance,” Cognition 122, 375–392 (2012).
[CrossRef]

I. Juricevic, L. Land, A. Wilkins, and M. A. Webster, “Visual discomfort and natural image statistics,” Perception 39, 884–899 (2010).

K. C. McDermott, G. Malkoc, J. B. Mulligan, and M. A. Webster, “Adaptation and visual salience,” J. Vis. 10(13):17 (2010).
[CrossRef]

G. Malkoc, P. Kay, and M. A. Webster, “Variations in normal color vision. IV. Binary hues and hue scaling,” J. Opt. Soc. Am. A 22, 2154–2168 (2005).
[CrossRef]

M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
[CrossRef]

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

M. A. Webster and J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995).
[CrossRef]

Wessel, D.

E. A. Piazza, T. D. Sweeny, D. Wessel, M. A. Silver, and D. Whitney, “Humans use summary statistics to perceive auditory sequences,” Psychol. Sci. 24, 1389–1397 (2013).

Whitney, D.

D. Whitney, S. Haroz, and D. Whitney, “Perceiving group behavior: sensitive ensemble coding mechanisms for biological motion of human crowds,” J. Exp. Psychol. Hum. Percep. Perform. 39, 329–337 (2013).

E. A. Piazza, T. D. Sweeny, D. Wessel, M. A. Silver, and D. Whitney, “Humans use summary statistics to perceive auditory sequences,” Psychol. Sci. 24, 1389–1397 (2013).

D. Whitney, S. Haroz, and D. Whitney, “Perceiving group behavior: sensitive ensemble coding mechanisms for biological motion of human crowds,” J. Exp. Psychol. Hum. Percep. Perform. 39, 329–337 (2013).

J. Haberman and D. Whitney, “Efficient summary statistical representation when change localization fails,” Psychon. Bull. Rev. 18, 855–859 (2011).

J. Haberman, T. Harp, and D. Whitney, “Averaging facial expression over time,” J. Vis. 9(11):1 (2009).
[CrossRef]

J. Haberman and D. Whitney, “Seeing the mean: ensemble coding for sets of faces,” J. Exp. Psychol. Hum. Percep. Perform. 35, 718–734 (2009).

J. Haberman and D. Whitney, “Rapid extraction of mean emotion and gender from sets of faces,” Curr. Biol. 17, R751–R753 (2007).
[CrossRef]

D. Whitney, J. Haberman, and T. Sweeny, “From textures to crowds: multiple levels of summary statistical perception.,” in The New Visual Neurosciences., J. S. Werner and L. M. Chalupa, eds. (MIT, 2014), pp. 685–709.

Wiggett, A.

M. Pilling, A. Wiggett, E. Ozgen, and I. R. Davies, “Is color “categorical perception” really perceptual?” Mem. Cogn. 31, 538–551 (2003).
[CrossRef]

Wilkins, A.

I. Juricevic, L. Land, A. Wilkins, and M. A. Webster, “Visual discomfort and natural image statistics,” Perception 39, 884–899 (2010).

Williams, D. R.

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Williams, D. W.

S. N. Watamaniuk, R. Sekuler, and D. W. Williams, “Direction perception in complex dynamic displays: the integration of direction information,” Vis. Res. 29, 47–59 (1989).
[CrossRef]

D. W. Williams and R. Sekuler, “Coherent global motion percepts from stochastic local motions,” Vis. Res. 24, 55–62 (1984).
[CrossRef]

Wilson, J. A.

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

Winawer, J.

J. Winawer, N. Witthoft, M. C. Frank, L. Wu, A. R. Wade, and L. Boroditsky, “Russian blues reveal effects of language on color discrimination,” Proc. Natl. Acad. Sci. USA 104, 7780–7785 (2007).

Witthoft, N.

J. Winawer, N. Witthoft, M. C. Frank, L. Wu, A. R. Wade, and L. Boroditsky, “Russian blues reveal effects of language on color discrimination,” Proc. Natl. Acad. Sci. USA 104, 7780–7785 (2007).

Witzel, C.

C. Witzel and K. R. Gegenfurtner, “Is there a lateralized category effect for color?” J. Vis. 11(12):16 (2011).
[CrossRef]

Wolfe, J. M.

D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

Wu, L.

J. Winawer, N. Witthoft, M. C. Frank, L. Wu, A. R. Wade, and L. Boroditsky, “Russian blues reveal effects of language on color discrimination,” Proc. Natl. Acad. Sci. USA 104, 7780–7785 (2007).

Wuerger, S. M.

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

Wyszecki, G.

T. Fuchida, W. B. Cowan, and G. Wyszecki, “Matching large color differences with achromatic and chromatic surrounds,” Color Res. Appl. 10, 92–97 (1985).
[CrossRef]

Zaidi, Q.

Cognition (2)

D. Roberson, H. Pak, and J. R. Hanley, “Categorical perception of colour in the left and right visual field is verbally mediated: evidence from Korean,” Cognition 107, 752–762 (2008).
[CrossRef]

M. A. Webster and P. Kay, “Color categories and color appearance,” Cognition 122, 375–392 (2012).
[CrossRef]

Color Res. Appl. (2)

R. G. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
[CrossRef]

T. Fuchida, W. B. Cowan, and G. Wyszecki, “Matching large color differences with achromatic and chromatic surrounds,” Color Res. Appl. 10, 92–97 (1985).
[CrossRef]

Curr. Biol. (1)

J. Haberman and D. Whitney, “Rapid extraction of mean emotion and gender from sets of faces,” Curr. Biol. 17, R751–R753 (2007).
[CrossRef]

Front. Psychol. (1)

N. Klemfuss, W. Prinzmetal, and R. B. Ivry, “How does language change perception: a cautionary note,” Front. Psychol. 3, 78 (2012).

J. Exp. Psychol. Hum. Percep. Perform. (2)

J. Haberman and D. Whitney, “Seeing the mean: ensemble coding for sets of faces,” J. Exp. Psychol. Hum. Percep. Perform. 35, 718–734 (2009).

D. Whitney, S. Haroz, and D. Whitney, “Perceiving group behavior: sensitive ensemble coding mechanisms for biological motion of human crowds,” J. Exp. Psychol. Hum. Percep. Perform. 39, 329–337 (2013).

J. Neurosci. (2)

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (9)

J. Physiol. (1)

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

J. Vis. (7)

K. C. McDermott, G. Malkoc, J. B. Mulligan, and M. A. Webster, “Adaptation and visual salience,” J. Vis. 10(13):17 (2010).
[CrossRef]

E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. G. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vis. 10(5):25 (2010).
[CrossRef]

C. Witzel and K. R. Gegenfurtner, “Is there a lateralized category effect for color?” J. Vis. 11(12):16 (2011).
[CrossRef]

J. Haberman, T. Harp, and D. Whitney, “Averaging facial expression over time,” J. Vis. 9(11):1 (2009).
[CrossRef]

S. C. Dakin, P. J. Bex, J. R. Cass, and R. J. Watt, “Dissociable effects of attention and crowding on orientation averaging,” J. Vis. 9(11):28 (2009).
[CrossRef]

N. Robitaille and I. M. Harris, “When more is less: extraction of summary statistics benefits from larger sets,” J. Vis. 11(12):18, 18 (2011).
[CrossRef]

A. M. Brown, D. T. Lindsey, and K. M. Guckes, “Color names, color categories, and color-cued visual search: sometimes, color perception is not categorical,” J. Vis. 11(12):2 (2011).
[CrossRef]

Mem. Cogn. (2)

D. Roberson and J. Davidoff, “The categorical perception of colors and facial expressions: the effect of verbal interference,” Mem. Cogn. 28, 977–986 (2000).

M. Pilling, A. Wiggett, E. Ozgen, and I. R. Davies, “Is color “categorical perception” really perceptual?” Mem. Cogn. 31, 538–551 (2003).
[CrossRef]

Nat. Neurosci. (3)

L. Parkes, J. Lund, A. Angelucci, J. A. Solomon, and M. Morgan, “Compulsory averaging of crowded orientation signals in human vision,” Nat. Neurosci. 4, 739–744 (2001).
[CrossRef]

J. H. McDermott, M. Schemitsch, and E. P. Simoncelli, “Summary statistics in auditory perception,” Nat. Neurosci. 16, 493–498 (2013).
[CrossRef]

G. D. Horwitz and C. A. Hass, “Nonlinear analysis of macaque V1 color tuning reveals cardinal directions for cortical color processing,” Nat. Neurosci. 15, 913–919 (2012).
[CrossRef]

Nature (1)

M. A. Webster and J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995).
[CrossRef]

Ophthalmic Physiolog. Opt. (1)

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiolog. Opt. 4, 223–226 (1984).

Perception (1)

I. Juricevic, L. Land, A. Wilkins, and M. A. Webster, “Visual discomfort and natural image statistics,” Perception 39, 884–899 (2010).

Proc. Biol. Sci. (1)

D. H. Foster and S. M. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257, 115–121 (1994).

Proc. Nat.l Acad. Sci. USA (1)

A. Franklin, G. V. Drivonikou, L. Bevis, I. R. Davies, P. Kay, and T. Regier, “Categorical perception of color is lateralized to the right hemisphere in infants, but to the left hemisphere in adults,” Proc. Nat.l Acad. Sci. USA 105, 3221–3225 (2008).

Proc. Natl. Acad. Sci. USA (2)

J. Winawer, N. Witthoft, M. C. Frank, L. Wu, A. R. Wade, and L. Boroditsky, “Russian blues reveal effects of language on color discrimination,” Proc. Natl. Acad. Sci. USA 104, 7780–7785 (2007).

A. L. Gilbert, T. Regier, P. Kay, and R. B. Ivry, “Whorf hypothesis is supported in the right visual field but not the left,” Proc. Natl. Acad. Sci. USA 103, 489–494 (2006).

Psychol. Sci. (4)

E. A. Piazza, T. D. Sweeny, D. Wessel, M. A. Silver, and D. Whitney, “Humans use summary statistics to perceive auditory sequences,” Psychol. Sci. 24, 1389–1397 (2013).

D. Ariely, “Seeing sets: representation by statistical properties,” Psychol. Sci. 12, 157–162 (2001).

G. A. Alvarez and A. Oliva, “The representation of simple ensemble visual features outside the focus of attention,” Psychol. Sci. 19, 392–398 (2008).

D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

Psychon. Bull. Rev. (1)

J. Haberman and D. Whitney, “Efficient summary statistical representation when change localization fails,” Psychon. Bull. Rev. 18, 855–859 (2011).

Vis. Res. (9)

S. N. Watamaniuk, R. Sekuler, and D. W. Williams, “Direction perception in complex dynamic displays: the integration of direction information,” Vis. Res. 29, 47–59 (1989).
[CrossRef]

D. W. Williams and R. Sekuler, “Coherent global motion percepts from stochastic local motions,” Vis. Res. 24, 55–62 (1984).
[CrossRef]

D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

R. L. De Valois, K. K. De Valois, E. Switkes, and L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vis. Res. 37, 885–897 (1997).
[CrossRef]

E. Switkes, “Contrast salience across three-dimensional chromoluminance space,” Vis. Res. 48, 1812–1819 (2008).
[CrossRef]

Other (3)

B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision Deficiencies XII, C. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.

R. L. De Valois and K. K. De Valois, Spatial Vision (Oxford University, 1988).

D. Whitney, J. Haberman, and T. Sweeny, “From textures to crowds: multiple levels of summary statistical perception.,” in The New Visual Neurosciences., J. S. Werner and L. M. Chalupa, eds. (MIT, 2014), pp. 685–709.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Stimulus array (color online). An example of the stimulus array with the elements alternating between the two colors. In one task (yoked hue pairs) the hue angle between the two components remained constant and the pair was varied together to make the setting. In the second task (fixed single component), the color corresponding to the corner elements remained fixed while observers varied the hue of the second component.

Fig. 2.
Fig. 2.

Results for yoked hue pairs. Examples of the individual settings made by two observers for each of the 4 reference hues (BG, blue–green; RB, blue–red; R, red; YG, yellow–green). The filled symbols plot the settings when both components had the same hue (i.e., a hue-angle difference of 0) and were presented at four levels of contrast (20, 40, 60, or 80, corresponding to the increasing concentric circles). The unfilled symbols plot the settings when the pair had a constant fixed contrast of 80 and, thus, lay along the outermost circle, but differed in hue angle by 10, 20, 40, or 80 deg, with the average for larger differences plotted closer to the origin consistent with the actual chromaticity of the mixture (as indicated for the four blue–green hue pairs in the top panel).

Fig. 3.
Fig. 3.

Yoked hue pairs. (a) The mean blue–green settings for 13 observers as a function of the contrast of a uniform-hue array (leftmost points) or the hue-angle difference of pairs with a fixed contrast of 80 (rightmost points); error bars=±1 SEM. (b) The average standard deviation of the individuals’ settings for the same stimuli, based on 4 repeated settings per condition. Error bars=±1 SEM. The dashed lines show the predicted difference in the standard deviation of the settings for the uniform versus 2-component arrays if the errors in judging the two components are independent and additive.

Fig. 4.
Fig. 4.

Yoked hue pairs. The average settings for the R, RB, BG, or YG hues, based on 4 or more observers tested for each hue. As in Fig. 2, filled circles plot the settings for uniform arrays presented at four levels of contrast. The unfilled circles plot the settings for 2-component arrays where the contrast was fixed at a value of 80 while hue angle differences between the two components were 10, 20, 40, or 80 deg. The gray squares show the settings predicted if observers are basing their responses: (a) on the mean of the log cone-opponent responses or; (b) on the average of the perceived red–green and blue–yellow proportions in each component based on hue scaling. The italic characters in the bottom figure show the loci of the unique and binary hues given by the hue-scaling function.

Fig. 5.
Fig. 5.

Fixed single component. The blue–green settings for 4 individual observers when one of the two color components remained fixed. The filled symbols plot the original measured settings. The unfilled symbols plot the mirror settings by exchanging the abscissa and ordinate. The gray lines plot the settings predicted by averaging the linear or log cone-opponent responses.

Fig. 6.
Fig. 6.

Fixed single component. The predicted settings for different levels of categorical bias, assuming the unbiased settings are based on the arithmetic mean of the hue angles (analog response), and the bias is to instead simply select the matching color at the categorical boundary (categorical response). The settings range from a slope of -1 for no categorical bias to constant settings at the blue–green boundary for a complete bias.

Fig. 7.
Fig. 7.

Fixed single component. The comparisons between the actual settings of the variable hue angle chosen when one component was fixed (fixed hue angle), and the predicted settings when these match angles were instead taken as the fixed angles and the corresponding matching hue was selected from the reflected function (reflected hue angle). The positive diagonal corresponds to equal symmetric matches in the two cases. Symbols plot the settings for individual observers. Each panel shows the settings for the labeled average hue.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

LvsMcontrast=(rmb0.6568)*2754,
SvsLMcontrast=(bmb0.01825)*4099.
(1α)ΘF+αΘF=(1α)ΘV+αΘCB,

Metrics