Abstract

Cardinal color performance (reddish, greenish, bluish, yellowish, black, and white) has been shown to decline in peripheral viewing. What about non-cardinal color performance (e.g., orange, burgundy, and sky blue)? In visual search, performance on non-cardinal colors matched that of the cardinal colors in the (LM)/(S(L+M)) (isoluminant) color plane (Experiment 1, n=10, to 30°; Experiment 2, n=3, to 50°). However, performance in the (LM)/(L+M) and (S(L+M))/(L+M) color planes was worse for non-cardinal colors, at all eccentricities, even in the fovea. The implications that these results have for the existence of non-cardinal mechanisms in each color plane are discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kolb, “Anatomical pathways for color vision in the human retina,” Vis. Neurosci. 7, 61–74 (1991).
    [CrossRef]
  2. D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000).
    [CrossRef]
  3. R. M. Shapley and M. J. Hawken, “Parallel retino-cortical channels and luminance,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge University, 1999), pp. 221–234.
  4. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
    [CrossRef]
  5. K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
    [CrossRef]
  6. M. D’Zmura, “Color in visual search,” Vis. Res. 31, 951–966 (1991).
    [CrossRef]
  7. M. D’Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vis. Res. 38, 3117–3128 (1998).
    [CrossRef]
  8. K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
    [CrossRef]
  9. M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9):11 (2009).
    [CrossRef]
  10. T. Hansen and K. R. Gegenfurtner, “Higher level chromatic mechanisms for image segmentation,” J. Vis. 6(3):5, 239–259 (2006).
    [CrossRef]
  11. J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
    [CrossRef]
  12. P. Monnier and A. L. Nagy, “Uncertainty, attentional capacity and chromatic mechanisms in visual search,” Vis. Res. 41, 313–328 (2001).
    [CrossRef]
  13. Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993).
    [CrossRef]
  14. T. Hansen and K. R. Gegenfurtner, “Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space,” J. Vis. 13(1):26, 26 (2013).
    [CrossRef]
  15. A. L. Nagy, K. E. Neriani, and T. L. Young, “Color mechanisms used in selecting stimuli for attention and making discriminations,” Vis. Neurosci. 21, 295–299 (2004).
    [CrossRef]
  16. C. M. Stoughton, R. Lafer-Sousa, G. Gagin, and B. R. Conway, “Psychophysical chromatic mechanisms in macaque monkey,” J. Neurosci. 32, 15216–15226 (2012).
    [CrossRef]
  17. F. Giulianini and R. T. Eskew, “Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms,” Vis. Res. 38, 3913–3926 (1998).
    [CrossRef]
  18. M. J. Sankeralli and K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
    [CrossRef]
  19. K. R. Dobkins, G. R. Stoner, and T. D. Albright, “Perceptual, oculomotor, and neural responses to moving color plaids,” Perception 27, 681–709 (1998).
    [CrossRef]
  20. R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
    [CrossRef]
  21. M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
    [CrossRef]
  22. K. L. Gunther and K. R. Dobkins, “Independence of mechanisms tuned along cardinal and non-cardinal axes of color space: evidence from factor analysis,” Vis. Res. 43, 683–696 (2003).
    [CrossRef]
  23. J. Krauskopf, H. J. Wu, and B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vis. Res. 36, 1235–1245 (1996).
    [CrossRef]
  24. A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997).
    [CrossRef]
  25. R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009).
    [CrossRef]
  26. T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26 (2009).
    [CrossRef]
  27. M. Scheuer, “Color vision in the periphery: sensitivity of red-green (R/G) color naming compared to the sensitivity of blue-yellow (B/Y) color naming,” unpublished Senior Capstone Project (Wabash College, 2009).
  28. R. M. Boynton, W. Schafer, and M. E. Neun, “Hue-wavelength relation measured by color-naming method for three retinal locations,” Science 146, 666–668 (1964).
    [CrossRef]
  29. R. N. Dalhaus and K. L. Gunther, “A tritan Waldo would be easier to detect in the periphery than a red/green one: evidence from visual search,” J. Opt. Soc. Am. A 29, A298–A305 (2012).
    [CrossRef]
  30. K. T. Mullen and F. A. Kingdom, “Differential distributions of red-green and blue-yellow cone opponency across the visual field,” Vis. Neurosci. 19, 109–118 (2002).
    [CrossRef]
  31. K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vis. Res. 31, 119–130 (1991).
    [CrossRef]
  32. D. J. McKeefry, I. J. Murray, and N. R. Parry, “Perceived shifts in saturation and hue of chromatic stimuli in the near peripheral retina,” J. Opt. Soc. Am. A 24, 3168–3179 (2007).
    [CrossRef]
  33. I. Abramov, J. Gordon, and H. Chan, “Color appearance in the peripheral retina: effects of stimulus size,” J. Opt. Soc. Am. A 8, 404–414 (1991).
    [CrossRef]
  34. I. J. Murray, N. R. A. Parry, and D. J. McKeefry, “Cone opponency in the near peripheral retina,” Vis. Neurosci. 23, 503–507 (2006).
  35. A. Panorgias, N. R. Parry, D. J. McKeefry, J. J. Kulikowski, and I. J. Murray, “Nasal-temporal differences in cone-opponency in the near peripheral retina,” Ophthalmic Physiolog. Opt. 29, 375–381 (2009).
    [CrossRef]
  36. K. L. Gunther, “Non-cardinal color mechanism strength differs across color planes but not across subjects,” J. Opt. Soc. Am. A 31, A293–A302 (2014).
  37. A. L. Nagy and J. A. Doyal, “Red-green color discrimination as a function of stimulus field size in peripheral vision,” J. Opt. Soc. Am. A 10, 1147–1156 (1993).
    [CrossRef]
  38. B. Stabell and U. Stabell, “Effects of rod activity on color perception with light adaptation,” J. Opt. Soc. Am. A 19, 1249–1258 (2002).
    [CrossRef]
  39. B. Stabell and U. Stabell, “Peripheral colour vision: effects of rod intrusion at different eccentricities,” Vis. Res. 36, 3407–3414 (1996).
    [CrossRef]
  40. S. L. Buck, R. F. Knight, and J. Bechtold, “Opponent-color models and the influence of rod signals on the loci of unique hues,” Vis. Res. 40, 3333–3344 (2000).
    [CrossRef]
  41. J. L. Nerger, V. J. Volbrecht, C. J. Ayde, and S. M. Imhoff, “Effect of the S-cone mosaic and rods on red/green equilibria,” J. Opt. Soc. Am. A 15, 2816–2826 (1998).
    [CrossRef]
  42. M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
    [CrossRef]
  43. J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
    [CrossRef]
  44. R. L. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vis. Res. 29, 61–78 (1989).
    [CrossRef]
  45. R. A. Bone, J. T. Landrum, and A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vis. Res. 32, 105–110 (1992).
    [CrossRef]
  46. B. R. Wooten and B. R. Hammond, “Spectral absorbance and spatial distribution of macular pigment using heterochromatic flicker photometry,” Optom. Vis. Sci. 82, 378–386 (2005).
    [CrossRef]
  47. S. A. Hagstrom, J. Neitz, and M. Neitz, “Variations in cone populations for red-green color vision examined by analysis of mRNA,” Neuroreport 9, 1963–1967 (1998).
    [CrossRef]
  48. S. F. Chen, Y. Chang, and J. C. Wu, “The spatial distribution of macular pigment in humans,” Curr. Eye Res. 23, 422–434 (2001).
  49. J. Krauskopf, “Higher order color mechanisms,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge University, 1999), pp. 304–316.
  50. J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
    [CrossRef]
  51. D. I. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef]
  52. C. Noorlander, J. J. Koenderink, R. J. den Ouden, and B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vis. Res. 23, 1–11 (1983).
    [CrossRef]
  53. M. S. Livingstone and D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
  54. B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
    [CrossRef]
  55. D. C. Kiper, S. B. Fenstemaker, and K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Vis. Neurosci. 14, 1061–1072 (1997).
    [CrossRef]

2014

2013

T. Hansen and K. R. Gegenfurtner, “Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space,” J. Vis. 13(1):26, 26 (2013).
[CrossRef]

2012

C. M. Stoughton, R. Lafer-Sousa, G. Gagin, and B. R. Conway, “Psychophysical chromatic mechanisms in macaque monkey,” J. Neurosci. 32, 15216–15226 (2012).
[CrossRef]

R. N. Dalhaus and K. L. Gunther, “A tritan Waldo would be easier to detect in the periphery than a red/green one: evidence from visual search,” J. Opt. Soc. Am. A 29, A298–A305 (2012).
[CrossRef]

2009

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9):11 (2009).
[CrossRef]

R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009).
[CrossRef]

T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26 (2009).
[CrossRef]

A. Panorgias, N. R. Parry, D. J. McKeefry, J. J. Kulikowski, and I. J. Murray, “Nasal-temporal differences in cone-opponency in the near peripheral retina,” Ophthalmic Physiolog. Opt. 29, 375–381 (2009).
[CrossRef]

2007

2006

I. J. Murray, N. R. A. Parry, and D. J. McKeefry, “Cone opponency in the near peripheral retina,” Vis. Neurosci. 23, 503–507 (2006).

T. Hansen and K. R. Gegenfurtner, “Higher level chromatic mechanisms for image segmentation,” J. Vis. 6(3):5, 239–259 (2006).
[CrossRef]

2005

B. R. Wooten and B. R. Hammond, “Spectral absorbance and spatial distribution of macular pigment using heterochromatic flicker photometry,” Optom. Vis. Sci. 82, 378–386 (2005).
[CrossRef]

2004

A. L. Nagy, K. E. Neriani, and T. L. Young, “Color mechanisms used in selecting stimuli for attention and making discriminations,” Vis. Neurosci. 21, 295–299 (2004).
[CrossRef]

2003

K. L. Gunther and K. R. Dobkins, “Independence of mechanisms tuned along cardinal and non-cardinal axes of color space: evidence from factor analysis,” Vis. Res. 43, 683–696 (2003).
[CrossRef]

K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
[CrossRef]

2002

K. T. Mullen and F. A. Kingdom, “Differential distributions of red-green and blue-yellow cone opponency across the visual field,” Vis. Neurosci. 19, 109–118 (2002).
[CrossRef]

B. Stabell and U. Stabell, “Effects of rod activity on color perception with light adaptation,” J. Opt. Soc. Am. A 19, 1249–1258 (2002).
[CrossRef]

2001

S. F. Chen, Y. Chang, and J. C. Wu, “The spatial distribution of macular pigment in humans,” Curr. Eye Res. 23, 422–434 (2001).

R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
[CrossRef]

P. Monnier and A. L. Nagy, “Uncertainty, attentional capacity and chromatic mechanisms in visual search,” Vis. Res. 41, 313–328 (2001).
[CrossRef]

2000

S. L. Buck, R. F. Knight, and J. Bechtold, “Opponent-color models and the influence of rod signals on the loci of unique hues,” Vis. Res. 40, 3333–3344 (2000).
[CrossRef]

D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000).
[CrossRef]

J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
[CrossRef]

1998

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

J. L. Nerger, V. J. Volbrecht, C. J. Ayde, and S. M. Imhoff, “Effect of the S-cone mosaic and rods on red/green equilibria,” J. Opt. Soc. Am. A 15, 2816–2826 (1998).
[CrossRef]

M. D’Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vis. Res. 38, 3117–3128 (1998).
[CrossRef]

S. A. Hagstrom, J. Neitz, and M. Neitz, “Variations in cone populations for red-green color vision examined by analysis of mRNA,” Neuroreport 9, 1963–1967 (1998).
[CrossRef]

F. Giulianini and R. T. Eskew, “Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms,” Vis. Res. 38, 3913–3926 (1998).
[CrossRef]

K. R. Dobkins, G. R. Stoner, and T. D. Albright, “Perceptual, oculomotor, and neural responses to moving color plaids,” Perception 27, 681–709 (1998).
[CrossRef]

1997

A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997).
[CrossRef]

M. J. Sankeralli and K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
[CrossRef]

D. C. Kiper, S. B. Fenstemaker, and K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Vis. Neurosci. 14, 1061–1072 (1997).
[CrossRef]

1996

J. Krauskopf, H. J. Wu, and B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vis. Res. 36, 1235–1245 (1996).
[CrossRef]

B. Stabell and U. Stabell, “Peripheral colour vision: effects of rod intrusion at different eccentricities,” Vis. Res. 36, 3407–3414 (1996).
[CrossRef]

1994

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

1993

Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993).
[CrossRef]

A. L. Nagy and J. A. Doyal, “Red-green color discrimination as a function of stimulus field size in peripheral vision,” J. Opt. Soc. Am. A 10, 1147–1156 (1993).
[CrossRef]

1992

K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
[CrossRef]

R. A. Bone, J. T. Landrum, and A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vis. Res. 32, 105–110 (1992).
[CrossRef]

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

1991

K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vis. Res. 31, 119–130 (1991).
[CrossRef]

M. D’Zmura, “Color in visual search,” Vis. Res. 31, 951–966 (1991).
[CrossRef]

H. Kolb, “Anatomical pathways for color vision in the human retina,” Vis. Neurosci. 7, 61–74 (1991).
[CrossRef]

I. Abramov, J. Gordon, and H. Chan, “Color appearance in the peripheral retina: effects of stimulus size,” J. Opt. Soc. Am. A 8, 404–414 (1991).
[CrossRef]

1989

R. L. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vis. Res. 29, 61–78 (1989).
[CrossRef]

1987

M. S. Livingstone and D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).

1986

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

1983

C. Noorlander, J. J. Koenderink, R. J. den Ouden, and B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vis. Res. 23, 1–11 (1983).
[CrossRef]

1982

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

1979

1964

R. M. Boynton, W. Schafer, and M. E. Neun, “Hue-wavelength relation measured by color-naming method for three retinal locations,” Science 146, 666–668 (1964).
[CrossRef]

Abramov, I.

Albright, T. D.

K. R. Dobkins, G. R. Stoner, and T. D. Albright, “Perceptual, oculomotor, and neural responses to moving color plaids,” Perception 27, 681–709 (1998).
[CrossRef]

Ayde, C. J.

Bechtold, J.

S. L. Buck, R. F. Knight, and J. Bechtold, “Opponent-color models and the influence of rod signals on the loci of unique hues,” Vis. Res. 40, 3333–3344 (2000).
[CrossRef]

Berendschot, T. T.

Bieber, M. L.

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

Bone, R. A.

R. A. Bone, J. T. Landrum, and A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vis. Res. 32, 105–110 (1992).
[CrossRef]

Boynton, R. M.

D. I. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
[CrossRef]

R. M. Boynton, W. Schafer, and M. E. Neun, “Hue-wavelength relation measured by color-naming method for three retinal locations,” Science 146, 666–668 (1964).
[CrossRef]

Brown, A. M.

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

Buck, S. L.

S. L. Buck, R. F. Knight, and J. Bechtold, “Opponent-color models and the influence of rod signals on the loci of unique hues,” Vis. Res. 40, 3333–3344 (2000).
[CrossRef]

Cains, A.

R. A. Bone, J. T. Landrum, and A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vis. Res. 32, 105–110 (1992).
[CrossRef]

Chan, H.

Chang, Y.

S. F. Chen, Y. Chang, and J. C. Wu, “The spatial distribution of macular pigment in humans,” Curr. Eye Res. 23, 422–434 (2001).

Chen, S. F.

S. F. Chen, Y. Chang, and J. C. Wu, “The spatial distribution of macular pigment in humans,” Curr. Eye Res. 23, 422–434 (2001).

Conway, B. R.

C. M. Stoughton, R. Lafer-Sousa, G. Gagin, and B. R. Conway, “Psychophysical chromatic mechanisms in macaque monkey,” J. Neurosci. 32, 15216–15226 (2012).
[CrossRef]

B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
[CrossRef]

D’Zmura, M.

M. D’Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vis. Res. 38, 3117–3128 (1998).
[CrossRef]

M. D’Zmura, “Color in visual search,” Vis. Res. 31, 951–966 (1991).
[CrossRef]

Dacey, D. M.

D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000).
[CrossRef]

Dalhaus, R. N.

den Ouden, R. J.

C. Noorlander, J. J. Koenderink, R. J. den Ouden, and B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vis. Res. 23, 1–11 (1983).
[CrossRef]

Dobkins, K. R.

K. L. Gunther and K. R. Dobkins, “Independence of mechanisms tuned along cardinal and non-cardinal axes of color space: evidence from factor analysis,” Vis. Res. 43, 683–696 (2003).
[CrossRef]

K. R. Dobkins, G. R. Stoner, and T. D. Albright, “Perceptual, oculomotor, and neural responses to moving color plaids,” Perception 27, 681–709 (1998).
[CrossRef]

Doyal, J. A.

Edens, B. W.

C. Noorlander, J. J. Koenderink, R. J. den Ouden, and B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vis. Res. 23, 1–11 (1983).
[CrossRef]

Eskew, R. T.

R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009).
[CrossRef]

R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
[CrossRef]

F. Giulianini and R. T. Eskew, “Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms,” Vis. Res. 38, 3913–3926 (1998).
[CrossRef]

Farell, B.

J. Krauskopf, H. J. Wu, and B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vis. Res. 36, 1235–1245 (1996).
[CrossRef]

Fenstemaker, S. B.

D. C. Kiper, S. B. Fenstemaker, and K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Vis. Neurosci. 14, 1061–1072 (1997).
[CrossRef]

Gagin, G.

C. M. Stoughton, R. Lafer-Sousa, G. Gagin, and B. R. Conway, “Psychophysical chromatic mechanisms in macaque monkey,” J. Neurosci. 32, 15216–15226 (2012).
[CrossRef]

Gegenfurtner, K.

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

Gegenfurtner, K. R.

T. Hansen and K. R. Gegenfurtner, “Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space,” J. Vis. 13(1):26, 26 (2013).
[CrossRef]

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9):11 (2009).
[CrossRef]

T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26 (2009).
[CrossRef]

T. Hansen and K. R. Gegenfurtner, “Higher level chromatic mechanisms for image segmentation,” J. Vis. 6(3):5, 239–259 (2006).
[CrossRef]

K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
[CrossRef]

D. C. Kiper, S. B. Fenstemaker, and K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Vis. Neurosci. 14, 1061–1072 (1997).
[CrossRef]

K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
[CrossRef]

Giesel, M.

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9):11 (2009).
[CrossRef]

Giulianini, F.

R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
[CrossRef]

F. Giulianini and R. T. Eskew, “Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms,” Vis. Res. 38, 3913–3926 (1998).
[CrossRef]

Gordon, J.

Gunther, K. L.

Hagstrom, S. A.

S. A. Hagstrom, J. Neitz, and M. Neitz, “Variations in cone populations for red-green color vision examined by analysis of mRNA,” Neuroreport 9, 1963–1967 (1998).
[CrossRef]

Halevy, D.

Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993).
[CrossRef]

Hammond, B. R.

B. R. Wooten and B. R. Hammond, “Spectral absorbance and spatial distribution of macular pigment using heterochromatic flicker photometry,” Optom. Vis. Sci. 82, 378–386 (2005).
[CrossRef]

Hansen, T.

T. Hansen and K. R. Gegenfurtner, “Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space,” J. Vis. 13(1):26, 26 (2013).
[CrossRef]

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9):11 (2009).
[CrossRef]

T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26 (2009).
[CrossRef]

T. Hansen and K. R. Gegenfurtner, “Higher level chromatic mechanisms for image segmentation,” J. Vis. 6(3):5, 239–259 (2006).
[CrossRef]

Hawken, M. J.

R. M. Shapley and M. J. Hawken, “Parallel retino-cortical channels and luminance,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge University, 1999), pp. 221–234.

Heeley, D. W.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Hubel, D. H.

M. S. Livingstone and D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).

Imhoff, S. M.

Kingdom, F. A.

K. T. Mullen and F. A. Kingdom, “Differential distributions of red-green and blue-yellow cone opponency across the visual field,” Vis. Neurosci. 19, 109–118 (2002).
[CrossRef]

Kiper, D. C.

D. C. Kiper, S. B. Fenstemaker, and K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Vis. Neurosci. 14, 1061–1072 (1997).
[CrossRef]

K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
[CrossRef]

Knau, H.

Knight, R. F.

S. L. Buck, R. F. Knight, and J. Bechtold, “Opponent-color models and the influence of rod signals on the loci of unique hues,” Vis. Res. 40, 3333–3344 (2000).
[CrossRef]

Knoblauch, K.

M. D’Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vis. Res. 38, 3117–3128 (1998).
[CrossRef]

Koenderink, J. J.

C. Noorlander, J. J. Koenderink, R. J. den Ouden, and B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vis. Res. 23, 1–11 (1983).
[CrossRef]

Kolb, H.

H. Kolb, “Anatomical pathways for color vision in the human retina,” Vis. Neurosci. 7, 61–74 (1991).
[CrossRef]

Kraft, J. M.

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

Krauskopf, J.

J. Krauskopf, H. J. Wu, and B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vis. Res. 36, 1235–1245 (1996).
[CrossRef]

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

J. Krauskopf, “Higher order color mechanisms,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge University, 1999), pp. 304–316.

Kremers, J.

Kulikowski, J. J.

A. Panorgias, N. R. Parry, D. J. McKeefry, J. J. Kulikowski, and I. J. Murray, “Nasal-temporal differences in cone-opponency in the near peripheral retina,” Ophthalmic Physiolog. Opt. 29, 375–381 (2009).
[CrossRef]

Lafer-Sousa, R.

C. M. Stoughton, R. Lafer-Sousa, G. Gagin, and B. R. Conway, “Psychophysical chromatic mechanisms in macaque monkey,” J. Neurosci. 32, 15216–15226 (2012).
[CrossRef]

Landrum, J. T.

R. A. Bone, J. T. Landrum, and A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vis. Res. 32, 105–110 (1992).
[CrossRef]

Lennie, P.

A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997).
[CrossRef]

Li, A.

A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997).
[CrossRef]

Livingstone, M. S.

M. S. Livingstone and D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).

MacLeod, D. I.

Mandler, M. B.

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

McKeefry, D. J.

A. Panorgias, N. R. Parry, D. J. McKeefry, J. J. Kulikowski, and I. J. Murray, “Nasal-temporal differences in cone-opponency in the near peripheral retina,” Ophthalmic Physiolog. Opt. 29, 375–381 (2009).
[CrossRef]

D. J. McKeefry, I. J. Murray, and N. R. Parry, “Perceived shifts in saturation and hue of chromatic stimuli in the near peripheral retina,” J. Opt. Soc. Am. A 24, 3168–3179 (2007).
[CrossRef]

I. J. Murray, N. R. A. Parry, and D. J. McKeefry, “Cone opponency in the near peripheral retina,” Vis. Neurosci. 23, 503–507 (2006).

Moeller, S.

B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
[CrossRef]

Mollon, J. D.

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

Monnier, P.

P. Monnier and A. L. Nagy, “Uncertainty, attentional capacity and chromatic mechanisms in visual search,” Vis. Res. 41, 313–328 (2001).
[CrossRef]

Mullen, K. T.

K. T. Mullen and F. A. Kingdom, “Differential distributions of red-green and blue-yellow cone opponency across the visual field,” Vis. Neurosci. 19, 109–118 (2002).
[CrossRef]

M. J. Sankeralli and K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
[CrossRef]

K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vis. Res. 31, 119–130 (1991).
[CrossRef]

Murray, I. J.

A. Panorgias, N. R. Parry, D. J. McKeefry, J. J. Kulikowski, and I. J. Murray, “Nasal-temporal differences in cone-opponency in the near peripheral retina,” Ophthalmic Physiolog. Opt. 29, 375–381 (2009).
[CrossRef]

D. J. McKeefry, I. J. Murray, and N. R. Parry, “Perceived shifts in saturation and hue of chromatic stimuli in the near peripheral retina,” J. Opt. Soc. Am. A 24, 3168–3179 (2007).
[CrossRef]

I. J. Murray, N. R. A. Parry, and D. J. McKeefry, “Cone opponency in the near peripheral retina,” Vis. Neurosci. 23, 503–507 (2006).

Nagy, A. L.

A. L. Nagy, K. E. Neriani, and T. L. Young, “Color mechanisms used in selecting stimuli for attention and making discriminations,” Vis. Neurosci. 21, 295–299 (2004).
[CrossRef]

P. Monnier and A. L. Nagy, “Uncertainty, attentional capacity and chromatic mechanisms in visual search,” Vis. Res. 41, 313–328 (2001).
[CrossRef]

A. L. Nagy and J. A. Doyal, “Red-green color discrimination as a function of stimulus field size in peripheral vision,” J. Opt. Soc. Am. A 10, 1147–1156 (1993).
[CrossRef]

Neitz, J.

S. A. Hagstrom, J. Neitz, and M. Neitz, “Variations in cone populations for red-green color vision examined by analysis of mRNA,” Neuroreport 9, 1963–1967 (1998).
[CrossRef]

Neitz, M.

S. A. Hagstrom, J. Neitz, and M. Neitz, “Variations in cone populations for red-green color vision examined by analysis of mRNA,” Neuroreport 9, 1963–1967 (1998).
[CrossRef]

Nerger, J. L.

Neriani, K. E.

A. L. Nagy, K. E. Neriani, and T. L. Young, “Color mechanisms used in selecting stimuli for attention and making discriminations,” Vis. Neurosci. 21, 295–299 (2004).
[CrossRef]

Neun, M. E.

R. M. Boynton, W. Schafer, and M. E. Neun, “Hue-wavelength relation measured by color-naming method for three retinal locations,” Science 146, 666–668 (1964).
[CrossRef]

Newton, J. R.

R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
[CrossRef]

Noorlander, C.

C. Noorlander, J. J. Koenderink, R. J. den Ouden, and B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vis. Res. 23, 1–11 (1983).
[CrossRef]

Panorgias, A.

A. Panorgias, N. R. Parry, D. J. McKeefry, J. J. Kulikowski, and I. J. Murray, “Nasal-temporal differences in cone-opponency in the near peripheral retina,” Ophthalmic Physiolog. Opt. 29, 375–381 (2009).
[CrossRef]

Parry, N. R.

A. Panorgias, N. R. Parry, D. J. McKeefry, J. J. Kulikowski, and I. J. Murray, “Nasal-temporal differences in cone-opponency in the near peripheral retina,” Ophthalmic Physiolog. Opt. 29, 375–381 (2009).
[CrossRef]

D. J. McKeefry, I. J. Murray, and N. R. Parry, “Perceived shifts in saturation and hue of chromatic stimuli in the near peripheral retina,” J. Opt. Soc. Am. A 24, 3168–3179 (2007).
[CrossRef]

Parry, N. R. A.

I. J. Murray, N. R. A. Parry, and D. J. McKeefry, “Cone opponency in the near peripheral retina,” Vis. Neurosci. 23, 503–507 (2006).

Pokorny, J.

R. L. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vis. Res. 29, 61–78 (1989).
[CrossRef]

Pracejus, L.

T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26 (2009).
[CrossRef]

Sankeralli, M. J.

Schafer, W.

R. M. Boynton, W. Schafer, and M. E. Neun, “Hue-wavelength relation measured by color-naming method for three retinal locations,” Science 146, 666–668 (1964).
[CrossRef]

Scheuer, M.

M. Scheuer, “Color vision in the periphery: sensitivity of red-green (R/G) color naming compared to the sensitivity of blue-yellow (B/Y) color naming,” unpublished Senior Capstone Project (Wabash College, 2009).

Scholl, H. P.

Shapley, R. M.

R. M. Shapley and M. J. Hawken, “Parallel retino-cortical channels and luminance,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge University, 1999), pp. 221–234.

Sharpe, L. T.

Shevell, S. K.

R. L. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vis. Res. 29, 61–78 (1989).
[CrossRef]

Smith, V. C.

R. L. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vis. Res. 29, 61–78 (1989).
[CrossRef]

Stabell, B.

B. Stabell and U. Stabell, “Effects of rod activity on color perception with light adaptation,” J. Opt. Soc. Am. A 19, 1249–1258 (2002).
[CrossRef]

B. Stabell and U. Stabell, “Peripheral colour vision: effects of rod intrusion at different eccentricities,” Vis. Res. 36, 3407–3414 (1996).
[CrossRef]

Stabell, U.

B. Stabell and U. Stabell, “Effects of rod activity on color perception with light adaptation,” J. Opt. Soc. Am. A 19, 1249–1258 (2002).
[CrossRef]

B. Stabell and U. Stabell, “Peripheral colour vision: effects of rod intrusion at different eccentricities,” Vis. Res. 36, 3407–3414 (1996).
[CrossRef]

Stoner, G. R.

K. R. Dobkins, G. R. Stoner, and T. D. Albright, “Perceptual, oculomotor, and neural responses to moving color plaids,” Perception 27, 681–709 (1998).
[CrossRef]

Stoughton, C. M.

C. M. Stoughton, R. Lafer-Sousa, G. Gagin, and B. R. Conway, “Psychophysical chromatic mechanisms in macaque monkey,” J. Neurosci. 32, 15216–15226 (2012).
[CrossRef]

Tsao, D. Y.

B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
[CrossRef]

Usui, T.

Vimal, R. L.

R. L. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vis. Res. 29, 61–78 (1989).
[CrossRef]

Volbrecht, V. J.

Webster, M. A.

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

Werner, J. S.

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

Williams, D. R.

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Wooten, B. R.

B. R. Wooten and B. R. Hammond, “Spectral absorbance and spatial distribution of macular pigment using heterochromatic flicker photometry,” Optom. Vis. Sci. 82, 378–386 (2005).
[CrossRef]

Wu, H. J.

J. Krauskopf, H. J. Wu, and B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vis. Res. 36, 1235–1245 (1996).
[CrossRef]

Wu, J. C.

S. F. Chen, Y. Chang, and J. C. Wu, “The spatial distribution of macular pigment in humans,” Curr. Eye Res. 23, 422–434 (2001).

Young, T. L.

A. L. Nagy, K. E. Neriani, and T. L. Young, “Color mechanisms used in selecting stimuli for attention and making discriminations,” Vis. Neurosci. 21, 295–299 (2004).
[CrossRef]

Zaidi, Q.

Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993).
[CrossRef]

Annu. Rev. Neurosci.

D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000).
[CrossRef]

Curr. Eye Res.

S. F. Chen, Y. Chang, and J. C. Wu, “The spatial distribution of macular pigment in humans,” Curr. Eye Res. 23, 422–434 (2001).

J. Neurosci.

C. M. Stoughton, R. Lafer-Sousa, G. Gagin, and B. R. Conway, “Psychophysical chromatic mechanisms in macaque monkey,” J. Neurosci. 32, 15216–15226 (2012).
[CrossRef]

M. S. Livingstone and D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

R. N. Dalhaus and K. L. Gunther, “A tritan Waldo would be easier to detect in the periphery than a red/green one: evidence from visual search,” J. Opt. Soc. Am. A 29, A298–A305 (2012).
[CrossRef]

K. L. Gunther, “Non-cardinal color mechanism strength differs across color planes but not across subjects,” J. Opt. Soc. Am. A 31, A293–A302 (2014).

J. L. Nerger, V. J. Volbrecht, C. J. Ayde, and S. M. Imhoff, “Effect of the S-cone mosaic and rods on red/green equilibria,” J. Opt. Soc. Am. A 15, 2816–2826 (1998).
[CrossRef]

M. J. Sankeralli and K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
[CrossRef]

I. Abramov, J. Gordon, and H. Chan, “Color appearance in the peripheral retina: effects of stimulus size,” J. Opt. Soc. Am. A 8, 404–414 (1991).
[CrossRef]

A. L. Nagy and J. A. Doyal, “Red-green color discrimination as a function of stimulus field size in peripheral vision,” J. Opt. Soc. Am. A 10, 1147–1156 (1993).
[CrossRef]

J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
[CrossRef]

K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
[CrossRef]

B. Stabell and U. Stabell, “Effects of rod activity on color perception with light adaptation,” J. Opt. Soc. Am. A 19, 1249–1258 (2002).
[CrossRef]

D. J. McKeefry, I. J. Murray, and N. R. Parry, “Perceived shifts in saturation and hue of chromatic stimuli in the near peripheral retina,” J. Opt. Soc. Am. A 24, 3168–3179 (2007).
[CrossRef]

J. Vis.

T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26 (2009).
[CrossRef]

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9):11 (2009).
[CrossRef]

T. Hansen and K. R. Gegenfurtner, “Higher level chromatic mechanisms for image segmentation,” J. Vis. 6(3):5, 239–259 (2006).
[CrossRef]

T. Hansen and K. R. Gegenfurtner, “Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space,” J. Vis. 13(1):26, 26 (2013).
[CrossRef]

Nat. Rev. Neurosci.

K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
[CrossRef]

Neuron

B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
[CrossRef]

Neuroreport

S. A. Hagstrom, J. Neitz, and M. Neitz, “Variations in cone populations for red-green color vision examined by analysis of mRNA,” Neuroreport 9, 1963–1967 (1998).
[CrossRef]

Ophthalmic Physiolog. Opt.

A. Panorgias, N. R. Parry, D. J. McKeefry, J. J. Kulikowski, and I. J. Murray, “Nasal-temporal differences in cone-opponency in the near peripheral retina,” Ophthalmic Physiolog. Opt. 29, 375–381 (2009).
[CrossRef]

Optom. Vis. Sci.

B. R. Wooten and B. R. Hammond, “Spectral absorbance and spatial distribution of macular pigment using heterochromatic flicker photometry,” Optom. Vis. Sci. 82, 378–386 (2005).
[CrossRef]

Perception

K. R. Dobkins, G. R. Stoner, and T. D. Albright, “Perceptual, oculomotor, and neural responses to moving color plaids,” Perception 27, 681–709 (1998).
[CrossRef]

Science

R. M. Boynton, W. Schafer, and M. E. Neun, “Hue-wavelength relation measured by color-naming method for three retinal locations,” Science 146, 666–668 (1964).
[CrossRef]

Vis. Neurosci.

K. T. Mullen and F. A. Kingdom, “Differential distributions of red-green and blue-yellow cone opponency across the visual field,” Vis. Neurosci. 19, 109–118 (2002).
[CrossRef]

I. J. Murray, N. R. A. Parry, and D. J. McKeefry, “Cone opponency in the near peripheral retina,” Vis. Neurosci. 23, 503–507 (2006).

A. L. Nagy, K. E. Neriani, and T. L. Young, “Color mechanisms used in selecting stimuli for attention and making discriminations,” Vis. Neurosci. 21, 295–299 (2004).
[CrossRef]

H. Kolb, “Anatomical pathways for color vision in the human retina,” Vis. Neurosci. 7, 61–74 (1991).
[CrossRef]

D. C. Kiper, S. B. Fenstemaker, and K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Vis. Neurosci. 14, 1061–1072 (1997).
[CrossRef]

Vis. Res.

M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986).
[CrossRef]

P. Monnier and A. L. Nagy, “Uncertainty, attentional capacity and chromatic mechanisms in visual search,” Vis. Res. 41, 313–328 (2001).
[CrossRef]

Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993).
[CrossRef]

M. D’Zmura, “Color in visual search,” Vis. Res. 31, 951–966 (1991).
[CrossRef]

M. D’Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vis. Res. 38, 3117–3128 (1998).
[CrossRef]

R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001).
[CrossRef]

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

K. L. Gunther and K. R. Dobkins, “Independence of mechanisms tuned along cardinal and non-cardinal axes of color space: evidence from factor analysis,” Vis. Res. 43, 683–696 (2003).
[CrossRef]

J. Krauskopf, H. J. Wu, and B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vis. Res. 36, 1235–1245 (1996).
[CrossRef]

A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997).
[CrossRef]

R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009).
[CrossRef]

K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vis. Res. 31, 119–130 (1991).
[CrossRef]

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

C. Noorlander, J. J. Koenderink, R. J. den Ouden, and B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vis. Res. 23, 1–11 (1983).
[CrossRef]

B. Stabell and U. Stabell, “Peripheral colour vision: effects of rod intrusion at different eccentricities,” Vis. Res. 36, 3407–3414 (1996).
[CrossRef]

S. L. Buck, R. F. Knight, and J. Bechtold, “Opponent-color models and the influence of rod signals on the loci of unique hues,” Vis. Res. 40, 3333–3344 (2000).
[CrossRef]

R. L. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vis. Res. 29, 61–78 (1989).
[CrossRef]

R. A. Bone, J. T. Landrum, and A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vis. Res. 32, 105–110 (1992).
[CrossRef]

F. Giulianini and R. T. Eskew, “Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms,” Vis. Res. 38, 3913–3926 (1998).
[CrossRef]

Other

M. Scheuer, “Color vision in the periphery: sensitivity of red-green (R/G) color naming compared to the sensitivity of blue-yellow (B/Y) color naming,” unpublished Senior Capstone Project (Wabash College, 2009).

J. Krauskopf, “Higher order color mechanisms,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge University, 1999), pp. 304–316.

R. M. Shapley and M. J. Hawken, “Parallel retino-cortical channels and luminance,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge University, 1999), pp. 221–234.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Example of visual search stimuli, LM versus S(L+M) cardinal visual search on the left; 45° versus 135° non-cardinal visual search on the right. Both examples are of target present—one dot is from the orthogonal color axis from the other five. Stimuli are not to scale—they are intended to represent the colors of the dots, but not the spatial layout precisely.

Fig. 2.
Fig. 2.

Experiment 1: Visual Search in the Near Periphery. Data for visual search in each color plane are shown, mean ± SEM across all 10 subjects (error bars are often smaller than the symbols). Data for the cardinal stimuli are shown in black diamonds, data for the non-cardinal stimuli are shown in gray squares. No plane shows evidence for greater foveal specialization of non-cardinal than cardinal mechanisms.

Fig. 3.
Fig. 3.

Experiment 2: Visual Search in the Far Periphery. Data for visual search in each color plane are shown, mean ± SEM across all three subjects (error bars are at times smaller than the symbols). Data for the cardinal stimuli are shown in black diamonds, data for the non-cardinal stimuli are shown in gray squares. The data here mirror those in Fig. 2, which only went out to 30°. Here as well, no plane shows evidence for greater foveal specialization of non-cardinal than cardinal mechanisms.

Tables (1)

Tables Icon

Table 1. MacLeod–Boynton Color Space Coordinates of Stimulus Dots

Metrics