Abstract

Psychophysical experiments have been carried out in which the color appearance of high-gloss and low-gloss color printing atlases was assessed using a magnitude estimation method under three different light sources. A linearity fitting algorithm by the method of least squares was applied to evaluate the correlation between visual experiment data and predicted results through the CIECAM02 model of different glossinesses of color printing atlases. The research result has shown that there was a good correlation between mean visual results and predicted results for hue and lightness of two distinct glossinesses of the color printing atlas. The correlations of hue and lightness between visual experiment data and predicted results were the best and the second best, respectively, under the same light source. Colorfulness was the worst. Meanwhile, high-gloss and low-gloss color printing atlases have been estimated and compared in the viewing conditions of 0°/45°. The result has indicated that the hue of the color printing atlas could not be affected by gloss levels under three light sources. Colorfulness of the color printing atlas almost could not be affected by gloss levels under D65 and TL84 light sources. Lightness of the color printing atlas could be affected by gloss levels under a TL84 light source.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lourdes, G. Martin, and W. Ji, “Measuring colour appearance of red wines,” Food Quality and Preference 6, 862–871 (2007).
  2. L. Fu, H. Xu, and M. R. Luo, “Estimating color appearance of pearlescent bottles using digital camera,” Chin. Opt. Lett. 8, 744–747 (2009).
  3. J. Ma, H. Xu, and M. R. Luo, “Color appearance and visual measurements for color samples with gloss effect,” Chin. Opt. Lett. 9, 869–872 (2009).
  4. Z. Huang, H. Xu, and M. R. Luo, “Assessing total differences for effective samples having variations in color, coarseness, and glint,” Chin. Opt. Lett. 8, 717–720 (2010).
    [CrossRef]
  5. L. Jing, L. Ningfang, and S. Li, “Establishment and evaluation of color appearance datasets about low-gloss color printing atlas,” Acta Opt. Sin. 32, 0533001 (2012).
    [CrossRef]
  6. S. Liu and B. Zhou, “The research of a printed color code based on computer display,” Inst. Survey. Map. 3, 197–200 (2000).
  7. N. F. Liao, J. H. Shi, and W. M. Wu, The Conspectus of Color Information Management for Digital Images (Beijing Institute of Technology, 2009).
  8. W. Hu, S. Tang, and Z. Zhu, Modern Color Science and Application (Beijing Institute of Technology, 2007).
  9. Z. Wang and H. Xu, “Lightness threshold evaluation in visual color matching,” Acta Opt. Sin. 8, 1274–1278 (2006).
  10. P. A. Garcia, R. Huertas, and M. Melgosa, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24, 1823–1829 (2007).
    [CrossRef]
  11. M. R. Luo, A. A. Clarke, and P. A. Rhodes, “Quantifying colour appearance. part I. LUTCHI colour appearance data,” Color Res. Appl. 16, 166–180 (1991).
    [CrossRef]
  12. P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24, 1823–1829 (2007).
    [CrossRef]

2012

L. Jing, L. Ningfang, and S. Li, “Establishment and evaluation of color appearance datasets about low-gloss color printing atlas,” Acta Opt. Sin. 32, 0533001 (2012).
[CrossRef]

2010

2009

L. Fu, H. Xu, and M. R. Luo, “Estimating color appearance of pearlescent bottles using digital camera,” Chin. Opt. Lett. 8, 744–747 (2009).

J. Ma, H. Xu, and M. R. Luo, “Color appearance and visual measurements for color samples with gloss effect,” Chin. Opt. Lett. 9, 869–872 (2009).

2007

2006

Z. Wang and H. Xu, “Lightness threshold evaluation in visual color matching,” Acta Opt. Sin. 8, 1274–1278 (2006).

2000

S. Liu and B. Zhou, “The research of a printed color code based on computer display,” Inst. Survey. Map. 3, 197–200 (2000).

1991

M. R. Luo, A. A. Clarke, and P. A. Rhodes, “Quantifying colour appearance. part I. LUTCHI colour appearance data,” Color Res. Appl. 16, 166–180 (1991).
[CrossRef]

Clarke, A. A.

M. R. Luo, A. A. Clarke, and P. A. Rhodes, “Quantifying colour appearance. part I. LUTCHI colour appearance data,” Color Res. Appl. 16, 166–180 (1991).
[CrossRef]

Cui, G.

Fu, L.

L. Fu, H. Xu, and M. R. Luo, “Estimating color appearance of pearlescent bottles using digital camera,” Chin. Opt. Lett. 8, 744–747 (2009).

Garcia, P. A.

García, P. A.

Hu, W.

W. Hu, S. Tang, and Z. Zhu, Modern Color Science and Application (Beijing Institute of Technology, 2007).

Huang, Z.

Huertas, R.

Ji, W.

M. Lourdes, G. Martin, and W. Ji, “Measuring colour appearance of red wines,” Food Quality and Preference 6, 862–871 (2007).

Jing, L.

L. Jing, L. Ningfang, and S. Li, “Establishment and evaluation of color appearance datasets about low-gloss color printing atlas,” Acta Opt. Sin. 32, 0533001 (2012).
[CrossRef]

Li, S.

L. Jing, L. Ningfang, and S. Li, “Establishment and evaluation of color appearance datasets about low-gloss color printing atlas,” Acta Opt. Sin. 32, 0533001 (2012).
[CrossRef]

Liao, N. F.

N. F. Liao, J. H. Shi, and W. M. Wu, The Conspectus of Color Information Management for Digital Images (Beijing Institute of Technology, 2009).

Liu, S.

S. Liu and B. Zhou, “The research of a printed color code based on computer display,” Inst. Survey. Map. 3, 197–200 (2000).

Lourdes, M.

M. Lourdes, G. Martin, and W. Ji, “Measuring colour appearance of red wines,” Food Quality and Preference 6, 862–871 (2007).

Luo, M. R.

Z. Huang, H. Xu, and M. R. Luo, “Assessing total differences for effective samples having variations in color, coarseness, and glint,” Chin. Opt. Lett. 8, 717–720 (2010).
[CrossRef]

J. Ma, H. Xu, and M. R. Luo, “Color appearance and visual measurements for color samples with gloss effect,” Chin. Opt. Lett. 9, 869–872 (2009).

L. Fu, H. Xu, and M. R. Luo, “Estimating color appearance of pearlescent bottles using digital camera,” Chin. Opt. Lett. 8, 744–747 (2009).

M. R. Luo, A. A. Clarke, and P. A. Rhodes, “Quantifying colour appearance. part I. LUTCHI colour appearance data,” Color Res. Appl. 16, 166–180 (1991).
[CrossRef]

Ma, J.

J. Ma, H. Xu, and M. R. Luo, “Color appearance and visual measurements for color samples with gloss effect,” Chin. Opt. Lett. 9, 869–872 (2009).

Martin, G.

M. Lourdes, G. Martin, and W. Ji, “Measuring colour appearance of red wines,” Food Quality and Preference 6, 862–871 (2007).

Melgosa, M.

Ningfang, L.

L. Jing, L. Ningfang, and S. Li, “Establishment and evaluation of color appearance datasets about low-gloss color printing atlas,” Acta Opt. Sin. 32, 0533001 (2012).
[CrossRef]

Rhodes, P. A.

M. R. Luo, A. A. Clarke, and P. A. Rhodes, “Quantifying colour appearance. part I. LUTCHI colour appearance data,” Color Res. Appl. 16, 166–180 (1991).
[CrossRef]

Shi, J. H.

N. F. Liao, J. H. Shi, and W. M. Wu, The Conspectus of Color Information Management for Digital Images (Beijing Institute of Technology, 2009).

Tang, S.

W. Hu, S. Tang, and Z. Zhu, Modern Color Science and Application (Beijing Institute of Technology, 2007).

Wang, Z.

Z. Wang and H. Xu, “Lightness threshold evaluation in visual color matching,” Acta Opt. Sin. 8, 1274–1278 (2006).

Wu, W. M.

N. F. Liao, J. H. Shi, and W. M. Wu, The Conspectus of Color Information Management for Digital Images (Beijing Institute of Technology, 2009).

Xu, H.

Z. Huang, H. Xu, and M. R. Luo, “Assessing total differences for effective samples having variations in color, coarseness, and glint,” Chin. Opt. Lett. 8, 717–720 (2010).
[CrossRef]

J. Ma, H. Xu, and M. R. Luo, “Color appearance and visual measurements for color samples with gloss effect,” Chin. Opt. Lett. 9, 869–872 (2009).

L. Fu, H. Xu, and M. R. Luo, “Estimating color appearance of pearlescent bottles using digital camera,” Chin. Opt. Lett. 8, 744–747 (2009).

Z. Wang and H. Xu, “Lightness threshold evaluation in visual color matching,” Acta Opt. Sin. 8, 1274–1278 (2006).

Zhou, B.

S. Liu and B. Zhou, “The research of a printed color code based on computer display,” Inst. Survey. Map. 3, 197–200 (2000).

Zhu, Z.

W. Hu, S. Tang, and Z. Zhu, Modern Color Science and Application (Beijing Institute of Technology, 2007).

Acta Opt. Sin.

L. Jing, L. Ningfang, and S. Li, “Establishment and evaluation of color appearance datasets about low-gloss color printing atlas,” Acta Opt. Sin. 32, 0533001 (2012).
[CrossRef]

Z. Wang and H. Xu, “Lightness threshold evaluation in visual color matching,” Acta Opt. Sin. 8, 1274–1278 (2006).

Chin. Opt. Lett.

L. Fu, H. Xu, and M. R. Luo, “Estimating color appearance of pearlescent bottles using digital camera,” Chin. Opt. Lett. 8, 744–747 (2009).

J. Ma, H. Xu, and M. R. Luo, “Color appearance and visual measurements for color samples with gloss effect,” Chin. Opt. Lett. 9, 869–872 (2009).

Z. Huang, H. Xu, and M. R. Luo, “Assessing total differences for effective samples having variations in color, coarseness, and glint,” Chin. Opt. Lett. 8, 717–720 (2010).
[CrossRef]

Color Res. Appl.

M. R. Luo, A. A. Clarke, and P. A. Rhodes, “Quantifying colour appearance. part I. LUTCHI colour appearance data,” Color Res. Appl. 16, 166–180 (1991).
[CrossRef]

Food Quality and Preference

M. Lourdes, G. Martin, and W. Ji, “Measuring colour appearance of red wines,” Food Quality and Preference 6, 862–871 (2007).

Inst. Survey. Map.

S. Liu and B. Zhou, “The research of a printed color code based on computer display,” Inst. Survey. Map. 3, 197–200 (2000).

J. Opt. Soc. Am. A

Other

N. F. Liao, J. H. Shi, and W. M. Wu, The Conspectus of Color Information Management for Digital Images (Beijing Institute of Technology, 2009).

W. Hu, S. Tang, and Z. Zhu, Modern Color Science and Application (Beijing Institute of Technology, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

CIECAM02 ac, bc plot of test colors under D65 light source.

Fig. 2.
Fig. 2.

CIECAM02 ac, bc plot of test colors under A light source.

Fig. 3.
Fig. 3.

CIECAM02 ac, bc plot of test colors under TL84 light source.

Fig. 4.
Fig. 4.

Experimental setup of visual assessment.

Fig. 5.
Fig. 5.

Comparison between predicted results (y axis) and visual mean results (x axis) for high-gloss printing atlas and low-gloss printing atlas under three light sources: colorfulness (top), lightness (middle), and hue (bottom); D65 (left), A (center), and TL84 (right)

Tables (6)

Tables Icon

Table 1. 1931CIE x, y Chromaticities and Approximated Color Temperatures of the CIE Illuminants and Real Light Sources

Tables Icon

Table 2. Gloss Values of Color Printing Atlas in Different Angles

Tables Icon

Table 3. Calculation Parameters for CIECAM02 Color Appearance Model

Tables Icon

Table 4 R2 between Predicted Results and Visual Mean Results for Low-gloss and High-gloss Printing Atlas under Three Light Sources

Tables Icon

Table 5. CV between Predicted Results and Visual Mean Results for Low-gloss and High-gloss Printing Atlas under Three Light Sources

Tables Icon

Table 6. STRESS between Predicted Results and Visual Mean Results for Low-gloss and High-gloss Printing Atlas under Three Light Sources

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

STRESS=i=1N(XifYi)2i=1Nf2Yi2,
f=i=1NXi2i=1NXiYi,

Metrics