Abstract

Under conditions of adaptation to a steady neutral field (metameric to Daylight Illuminant D65), forced-choice thresholds for color discrimination were measured for brief targets presented to the human fovea. Measurements were made along +45° and 45° lines in a MacLeod–Boynton chromaticity space scaled so that the locus of unique yellow and unique blue lay at 45°. The lines were symmetrical relative to the tritan line passing through the chromaticity of D65. Thresholds increased with distance of the probe chromaticity from D65. Thresholds were higher for saturation discrimination than for hue discrimination. A region of enhanced discrimination was found for thresholds measured orthogonally to the locus of unique blue and unique yellow. There may be an analogous enhancement near the loci of unique red and unique green.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef]
  2. D. M. Dacey and B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994).
    [CrossRef]
  3. D. M. Dacey and O. S. Packer, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003).
    [CrossRef]
  4. B. B. Lee, P. R. Martin, and U. Grunert, “Retinal connectivity and primate vision,” Prog. Retinal Eye Res. 29, 622–639 (2010).
    [CrossRef]
  5. M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
    [CrossRef]
  6. J. D. Mollon and G. Jordan, “On the nature of unique hues,” in John Dalton’s Colour Vision Legacy, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 381–392.
  7. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
    [CrossRef]
  8. J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
    [CrossRef]
  9. S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
    [CrossRef]
  10. A. M. Liberman, K. S. Harris, H. S. Hoffman, and B. C. Griffith, “The discrimination of speech sounds within and across phoneme boundaries,” J. Exp. Psychol. 54, 358–368 (1957).
    [CrossRef]
  11. M. V. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vis. 10(1):4 (2010).
  12. M. V. Danilova and J. D. Mollon, “Foveal color perception: minimal thresholds at a boundary between perceptual categories,” Vis. Res. 62, 162–172 (2012).
    [CrossRef]
  13. R. L. De Valois and K. K. De Valois, “A multistage color model,” Vis. Res. 33, 1053–1065 (1993).
    [CrossRef]
  14. A. L. Byzov and L. P. Kusnezova, “On the mechanisms of visual adaptation,” Vis. Res. 11, Suppl. 3, 51–63 (1971).
    [CrossRef]
  15. G. Wyszecki and W. S. Stiles, Color Science (Wiley, 1967).
  16. P. DeMarco, J. Pokorny, and V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
    [CrossRef]
  17. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
    [CrossRef]
  18. W. S. Stiles, “Color vision: the approach through increment threshold sensitivity,” Proc. Natl. Acad. Sci. U.S.A. 45, 100–114 (1959).
    [CrossRef]
  19. G. B. Wetherill and H. Levitt, “Sequential estimation of points on a psychometric function,” British J. Math. Statist. Psychol. 18, 1–10 (1965).
    [CrossRef]
  20. J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and of Stilling,” J. Physiol. 414, 5P (1989).
  21. B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
    [CrossRef]
  22. W. D. Wright, “The sensitivity of the eye to small colour differences,” Proc. Phys. Soc. London 53, 93–112 (1941).
    [CrossRef]
  23. G. N. Rautian and V. P. Solov’eva, “Vlijanie svetlogo okrugenija na ostrotu cvetorazlochenija,” Dokl. Akad. Nauk SSSR 95, 513–515 (1954).
  24. J. M. Loomis and T. Berger, “Effects of chromatic adaptation on color discrimination and color appearance,” Vis. Res. 19, 891–901 (1979).
    [CrossRef]
  25. E. Miyahara, V. C. Smith, and J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. A 10, 545–553 (1993).
    [CrossRef]
  26. K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. 92, 406–421 (1938).
  27. R. L. De Valois, I. Abramov, and W. R. Mead, “Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque,” J. Neurophysiol. 30, 415–433 (1967).
  28. C. F. Stromeyer and C. E. Sternheim, “Visibility of red and green spatial patterns upon spectrally mixed adapting fields,” Vis. Res. 21, 397–407 (1981).
    [CrossRef]
  29. E. N. J. Pugh and J. D. Mollon, “A theory of the π1 and π3 color mechanisms of Stiles,” Vis. Res. 19, 293–312 (1979).
    [CrossRef]
  30. P. G. Polden and J. D. Mollon, “Reversed effect of adapting stimuli on visual sensitivity,” Proc. R. Soc. Lond. B 210, 235–272 (1980).
    [CrossRef]
  31. D. L. MacAdam, “Visual sensitivities to color differences in daylight,” J. Opt. Soc. Am. 32, 247–281 (1942).
    [CrossRef]
  32. M. V. Danilova and J. D. Mollon, “Cardinal axes are not independent in color discrimination,” J. Opt. Soc. Am. A 29, A157–A164 (2012).
    [CrossRef]
  33. G. Monge, “Mémoire sur quelques phénomènes de la vision,” Ann. Chim. 3, 131–147 (1789).
  34. J. D. Mollon, “Monge,” Vis. Neurosci. 23, 297–309 (2006).
    [CrossRef]
  35. H.-C. Lee, “Method for computing the scene-illuminant chromaticity from specular highlights,” J. Opt. Soc. Am. A3, 1694–1699 (1986).
    [CrossRef]

2012

M. V. Danilova and J. D. Mollon, “Foveal color perception: minimal thresholds at a boundary between perceptual categories,” Vis. Res. 62, 162–172 (2012).
[CrossRef]

M. V. Danilova and J. D. Mollon, “Cardinal axes are not independent in color discrimination,” J. Opt. Soc. Am. A 29, A157–A164 (2012).
[CrossRef]

2010

B. B. Lee, P. R. Martin, and U. Grunert, “Retinal connectivity and primate vision,” Prog. Retinal Eye Res. 29, 622–639 (2010).
[CrossRef]

M. V. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vis. 10(1):4 (2010).

2006

J. D. Mollon, “Monge,” Vis. Neurosci. 23, 297–309 (2006).
[CrossRef]

2005

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

2003

D. M. Dacey and O. S. Packer, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003).
[CrossRef]

2000

1994

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

D. M. Dacey and B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994).
[CrossRef]

1993

1992

1989

J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and of Stilling,” J. Physiol. 414, 5P (1989).

1986

H.-C. Lee, “Method for computing the scene-illuminant chromaticity from specular highlights,” J. Opt. Soc. Am. A3, 1694–1699 (1986).
[CrossRef]

1982

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

1981

C. F. Stromeyer and C. E. Sternheim, “Visibility of red and green spatial patterns upon spectrally mixed adapting fields,” Vis. Res. 21, 397–407 (1981).
[CrossRef]

1980

P. G. Polden and J. D. Mollon, “Reversed effect of adapting stimuli on visual sensitivity,” Proc. R. Soc. Lond. B 210, 235–272 (1980).
[CrossRef]

1979

E. N. J. Pugh and J. D. Mollon, “A theory of the π1 and π3 color mechanisms of Stiles,” Vis. Res. 19, 293–312 (1979).
[CrossRef]

D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
[CrossRef]

J. M. Loomis and T. Berger, “Effects of chromatic adaptation on color discrimination and color appearance,” Vis. Res. 19, 891–901 (1979).
[CrossRef]

1975

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

1971

A. L. Byzov and L. P. Kusnezova, “On the mechanisms of visual adaptation,” Vis. Res. 11, Suppl. 3, 51–63 (1971).
[CrossRef]

1967

R. L. De Valois, I. Abramov, and W. R. Mead, “Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque,” J. Neurophysiol. 30, 415–433 (1967).

1965

G. B. Wetherill and H. Levitt, “Sequential estimation of points on a psychometric function,” British J. Math. Statist. Psychol. 18, 1–10 (1965).
[CrossRef]

1959

W. S. Stiles, “Color vision: the approach through increment threshold sensitivity,” Proc. Natl. Acad. Sci. U.S.A. 45, 100–114 (1959).
[CrossRef]

1957

A. M. Liberman, K. S. Harris, H. S. Hoffman, and B. C. Griffith, “The discrimination of speech sounds within and across phoneme boundaries,” J. Exp. Psychol. 54, 358–368 (1957).
[CrossRef]

1954

G. N. Rautian and V. P. Solov’eva, “Vlijanie svetlogo okrugenija na ostrotu cvetorazlochenija,” Dokl. Akad. Nauk SSSR 95, 513–515 (1954).

1942

1941

W. D. Wright, “The sensitivity of the eye to small colour differences,” Proc. Phys. Soc. London 53, 93–112 (1941).
[CrossRef]

1938

K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. 92, 406–421 (1938).

1789

G. Monge, “Mémoire sur quelques phénomènes de la vision,” Ann. Chim. 3, 131–147 (1789).

Abramov, I.

R. L. De Valois, I. Abramov, and W. R. Mead, “Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque,” J. Neurophysiol. 30, 415–433 (1967).

Atkinson, P.

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

Berger, T.

J. M. Loomis and T. Berger, “Effects of chromatic adaptation on color discrimination and color appearance,” Vis. Res. 19, 891–901 (1979).
[CrossRef]

Boynton, R. M.

Byzov, A. L.

A. L. Byzov and L. P. Kusnezova, “On the mechanisms of visual adaptation,” Vis. Res. 11, Suppl. 3, 51–63 (1971).
[CrossRef]

Craik, K. J. W.

K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. 92, 406–421 (1938).

Cropper, S.

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

Dacey, D. M.

D. M. Dacey and O. S. Packer, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003).
[CrossRef]

D. M. Dacey and B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994).
[CrossRef]

Danilova, M. V.

M. V. Danilova and J. D. Mollon, “Cardinal axes are not independent in color discrimination,” J. Opt. Soc. Am. A 29, A157–A164 (2012).
[CrossRef]

M. V. Danilova and J. D. Mollon, “Foveal color perception: minimal thresholds at a boundary between perceptual categories,” Vis. Res. 62, 162–172 (2012).
[CrossRef]

M. V. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vis. 10(1):4 (2010).

De Valois, K. K.

R. L. De Valois and K. K. De Valois, “A multistage color model,” Vis. Res. 33, 1053–1065 (1993).
[CrossRef]

De Valois, R. L.

R. L. De Valois and K. K. De Valois, “A multistage color model,” Vis. Res. 33, 1053–1065 (1993).
[CrossRef]

R. L. De Valois, I. Abramov, and W. R. Mead, “Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque,” J. Neurophysiol. 30, 415–433 (1967).

DeMarco, P.

Gegenfurtner, K.

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

Griffith, B. C.

A. M. Liberman, K. S. Harris, H. S. Hoffman, and B. C. Griffith, “The discrimination of speech sounds within and across phoneme boundaries,” J. Exp. Psychol. 54, 358–368 (1957).
[CrossRef]

Grunert, U.

B. B. Lee, P. R. Martin, and U. Grunert, “Retinal connectivity and primate vision,” Prog. Retinal Eye Res. 29, 622–639 (2010).
[CrossRef]

Harris, K. S.

A. M. Liberman, K. S. Harris, H. S. Hoffman, and B. C. Griffith, “The discrimination of speech sounds within and across phoneme boundaries,” J. Exp. Psychol. 54, 358–368 (1957).
[CrossRef]

Heeley, D. W.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Hoffman, H. S.

A. M. Liberman, K. S. Harris, H. S. Hoffman, and B. C. Griffith, “The discrimination of speech sounds within and across phoneme boundaries,” J. Exp. Psychol. 54, 358–368 (1957).
[CrossRef]

Jordan, G.

J. D. Mollon and G. Jordan, “On the nature of unique hues,” in John Dalton’s Colour Vision Legacy, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 381–392.

Krauskopf, J.

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Kusnezova, L. P.

A. L. Byzov and L. P. Kusnezova, “On the mechanisms of visual adaptation,” Vis. Res. 11, Suppl. 3, 51–63 (1971).
[CrossRef]

Lee, B. B.

B. B. Lee, P. R. Martin, and U. Grunert, “Retinal connectivity and primate vision,” Prog. Retinal Eye Res. 29, 622–639 (2010).
[CrossRef]

D. M. Dacey and B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994).
[CrossRef]

Lee, H.-C.

H.-C. Lee, “Method for computing the scene-illuminant chromaticity from specular highlights,” J. Opt. Soc. Am. A3, 1694–1699 (1986).
[CrossRef]

Levitt, H.

G. B. Wetherill and H. Levitt, “Sequential estimation of points on a psychometric function,” British J. Math. Statist. Psychol. 18, 1–10 (1965).
[CrossRef]

Liberman, A. M.

A. M. Liberman, K. S. Harris, H. S. Hoffman, and B. C. Griffith, “The discrimination of speech sounds within and across phoneme boundaries,” J. Exp. Psychol. 54, 358–368 (1957).
[CrossRef]

Loomis, J. M.

J. M. Loomis and T. Berger, “Effects of chromatic adaptation on color discrimination and color appearance,” Vis. Res. 19, 891–901 (1979).
[CrossRef]

MacAdam, D. L.

MacLeod, D. I. A.

Malkoc, G.

Martin, P. R.

B. B. Lee, P. R. Martin, and U. Grunert, “Retinal connectivity and primate vision,” Prog. Retinal Eye Res. 29, 622–639 (2010).
[CrossRef]

Mead, W. R.

R. L. De Valois, I. Abramov, and W. R. Mead, “Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque,” J. Neurophysiol. 30, 415–433 (1967).

Miyahara, E.

Mollon, J. D.

M. V. Danilova and J. D. Mollon, “Foveal color perception: minimal thresholds at a boundary between perceptual categories,” Vis. Res. 62, 162–172 (2012).
[CrossRef]

M. V. Danilova and J. D. Mollon, “Cardinal axes are not independent in color discrimination,” J. Opt. Soc. Am. A 29, A157–A164 (2012).
[CrossRef]

M. V. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vis. 10(1):4 (2010).

J. D. Mollon, “Monge,” Vis. Neurosci. 23, 297–309 (2006).
[CrossRef]

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and of Stilling,” J. Physiol. 414, 5P (1989).

P. G. Polden and J. D. Mollon, “Reversed effect of adapting stimuli on visual sensitivity,” Proc. R. Soc. Lond. B 210, 235–272 (1980).
[CrossRef]

E. N. J. Pugh and J. D. Mollon, “A theory of the π1 and π3 color mechanisms of Stiles,” Vis. Res. 19, 293–312 (1979).
[CrossRef]

J. D. Mollon and G. Jordan, “On the nature of unique hues,” in John Dalton’s Colour Vision Legacy, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 381–392.

Monge, G.

G. Monge, “Mémoire sur quelques phénomènes de la vision,” Ann. Chim. 3, 131–147 (1789).

Packer, O. S.

D. M. Dacey and O. S. Packer, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003).
[CrossRef]

Pokorny, J.

Polden, P. G.

P. G. Polden and J. D. Mollon, “Reversed effect of adapting stimuli on visual sensitivity,” Proc. R. Soc. Lond. B 210, 235–272 (1980).
[CrossRef]

Pugh, E. N. J.

E. N. J. Pugh and J. D. Mollon, “A theory of the π1 and π3 color mechanisms of Stiles,” Vis. Res. 19, 293–312 (1979).
[CrossRef]

Raker, V. E.

Rautian, G. N.

G. N. Rautian and V. P. Solov’eva, “Vlijanie svetlogo okrugenija na ostrotu cvetorazlochenija,” Dokl. Akad. Nauk SSSR 95, 513–515 (1954).

Reffin, J. P.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and of Stilling,” J. Physiol. 414, 5P (1989).

Regan, B. C.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

Smith, V. C.

Solov’eva, V. P.

G. N. Rautian and V. P. Solov’eva, “Vlijanie svetlogo okrugenija na ostrotu cvetorazlochenija,” Dokl. Akad. Nauk SSSR 95, 513–515 (1954).

Sternheim, C. E.

C. F. Stromeyer and C. E. Sternheim, “Visibility of red and green spatial patterns upon spectrally mixed adapting fields,” Vis. Res. 21, 397–407 (1981).
[CrossRef]

Stiles, W. S.

W. S. Stiles, “Color vision: the approach through increment threshold sensitivity,” Proc. Natl. Acad. Sci. U.S.A. 45, 100–114 (1959).
[CrossRef]

G. Wyszecki and W. S. Stiles, Color Science (Wiley, 1967).

Stromeyer, C. F.

C. F. Stromeyer and C. E. Sternheim, “Visibility of red and green spatial patterns upon spectrally mixed adapting fields,” Vis. Res. 21, 397–407 (1981).
[CrossRef]

Webster, M. A.

Wetherill, G. B.

G. B. Wetherill and H. Levitt, “Sequential estimation of points on a psychometric function,” British J. Math. Statist. Psychol. 18, 1–10 (1965).
[CrossRef]

Williams, D. R.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Wright, W. D.

W. D. Wright, “The sensitivity of the eye to small colour differences,” Proc. Phys. Soc. London 53, 93–112 (1941).
[CrossRef]

Wuerger, S. M.

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science (Wiley, 1967).

Ann. Chim.

G. Monge, “Mémoire sur quelques phénomènes de la vision,” Ann. Chim. 3, 131–147 (1789).

British J. Math. Statist. Psychol.

G. B. Wetherill and H. Levitt, “Sequential estimation of points on a psychometric function,” British J. Math. Statist. Psychol. 18, 1–10 (1965).
[CrossRef]

Curr. Opin. Neurobiol.

D. M. Dacey and O. S. Packer, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003).
[CrossRef]

Dokl. Akad. Nauk SSSR

G. N. Rautian and V. P. Solov’eva, “Vlijanie svetlogo okrugenija na ostrotu cvetorazlochenija,” Dokl. Akad. Nauk SSSR 95, 513–515 (1954).

J. Exp. Psychol.

A. M. Liberman, K. S. Harris, H. S. Hoffman, and B. C. Griffith, “The discrimination of speech sounds within and across phoneme boundaries,” J. Exp. Psychol. 54, 358–368 (1957).
[CrossRef]

J. Neurophysiol.

R. L. De Valois, I. Abramov, and W. R. Mead, “Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque,” J. Neurophysiol. 30, 415–433 (1967).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Physiol.

K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. 92, 406–421 (1938).

J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and of Stilling,” J. Physiol. 414, 5P (1989).

J. Vis.

M. V. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vis. 10(1):4 (2010).

Nature

D. M. Dacey and B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

W. S. Stiles, “Color vision: the approach through increment threshold sensitivity,” Proc. Natl. Acad. Sci. U.S.A. 45, 100–114 (1959).
[CrossRef]

Proc. Phys. Soc. London

W. D. Wright, “The sensitivity of the eye to small colour differences,” Proc. Phys. Soc. London 53, 93–112 (1941).
[CrossRef]

Proc. R. Soc. Lond. B

P. G. Polden and J. D. Mollon, “Reversed effect of adapting stimuli on visual sensitivity,” Proc. R. Soc. Lond. B 210, 235–272 (1980).
[CrossRef]

Prog. Retinal Eye Res.

B. B. Lee, P. R. Martin, and U. Grunert, “Retinal connectivity and primate vision,” Prog. Retinal Eye Res. 29, 622–639 (2010).
[CrossRef]

Vis. Neurosci.

J. D. Mollon, “Monge,” Vis. Neurosci. 23, 297–309 (2006).
[CrossRef]

Vis. Res.

C. F. Stromeyer and C. E. Sternheim, “Visibility of red and green spatial patterns upon spectrally mixed adapting fields,” Vis. Res. 21, 397–407 (1981).
[CrossRef]

E. N. J. Pugh and J. D. Mollon, “A theory of the π1 and π3 color mechanisms of Stiles,” Vis. Res. 19, 293–312 (1979).
[CrossRef]

J. M. Loomis and T. Berger, “Effects of chromatic adaptation on color discrimination and color appearance,” Vis. Res. 19, 891–901 (1979).
[CrossRef]

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

M. V. Danilova and J. D. Mollon, “Foveal color perception: minimal thresholds at a boundary between perceptual categories,” Vis. Res. 62, 162–172 (2012).
[CrossRef]

R. L. De Valois and K. K. De Valois, “A multistage color model,” Vis. Res. 33, 1053–1065 (1993).
[CrossRef]

A. L. Byzov and L. P. Kusnezova, “On the mechanisms of visual adaptation,” Vis. Res. 11, Suppl. 3, 51–63 (1971).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

Other

J. D. Mollon and G. Jordan, “On the nature of unique hues,” in John Dalton’s Colour Vision Legacy, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 381–392.

G. Wyszecki and W. S. Stiles, Color Science (Wiley, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Part of the MacLeod–Boynton chromaticity diagram [1], showing the approximate loci of unique hues. The axes of this diagram correspond to two chromatically opponent channels that have been identified in the primate visual system. The ordinate represents the signal S/(L+M), a signal extracted by the small bistratified ganglion cells of the retina, and the abscissa represents the signal L/(L+M), a signal extracted by midget ganglion cells [24]. Note, however, that the boundaries between subjective hue categories are not aligned with the ordinates of the diagram [57]. “D65” indicates the chromaticity of the standard Daylight Illuminant D65; this chromaticity was used as the background field in our experiments. The dotted line shows part of the spectrum locus. The line running from approximately 475–575 nm is the line of unique blues and unique yellows; the line from approximately 520 nm to D65 is the line of unique greens, and the line extending rightward from D65 is the line of unique reds.

Fig. 2.
Fig. 2.

(a) Magnified section of a MacLeod–Boynton chromaticity diagram, with the ordinate scaled so that the yellow–blue line lies at 45°. The dotted line marks part of the spectrum of monochromatic lights. The data shown are for an individual observer in the study of Danilova and Mollon [12]. Thresholds were measured along the +45° lines. The pairs of data points show directly the separation of chromaticities needed to allow the observer to achieve a discrimination performance of 79.4% correct. Notice that the minimal thresholds lie close to the boundary between reddish and greenish hues, and that thresholds on this line may be smaller than thresholds at points that are not on the line but are closer to the chromaticity of D65. (b) Average results for five observers in the same study. The circles show the positions of the minimal thresholds, measured by a spatial forced-choice procedure. The triangles show the chromaticities that the observers subjectively judged pure blue, pure yellow, or white. Error bars are based on between-observer variance and correspond to ±1 SEM. There is a rather close correspondence between the hue boundary and the region of optimal discrimination.

Fig. 3.
Fig. 3.

Magnified section of a MacLeod–Boynton diagram showing the eight lines along which thresholds were measured in the current experiment. The ordinate is scaled so that the boundary between reddish and greenish hues (the “yellow–blue” line) lies at 45°. The test lines running at +45° are designated A B C D, and those running at 45°, a b c d. Part of the monitor gamut is shown. “D65” indicates the chromaticity of Illuminant D65, the chromaticity of the background in the experiments. Inset top right: spatial arrangement of the target stimulus.

Fig. 4.
Fig. 4.

Average thresholds shown directly as dashes in a section of a MacLeod–Boynton chromaticity diagram. The dashes represent the separation of the discriminanda needed to sustain a threshold performance of 79.4%. For visibility in the figure, the measured values have been doubled. The identification of the +45° and 45° lines is as in Fig. 3.

Fig. 5.
Fig. 5.

Relationship between discrimination threshold and the Euclidean distance of the referent stimulus from D65. Thresholds are expressed as the factor by which the discriminanda must differ from the reference chromaticity to sustain the criterion level of correct responses. Distance is expressed in terms of the scaling adopted in this paper for the S/(L+M) axis of the MacLeod–Boynton diagram. Notice the strong overall increase in thresholds according to the distance from the chromaticity to which the observer is adapted. In addition, the data points have been coded in terms of the angle formed between (i) a radial line from D65 to the referent chromaticity and (ii) the direction in which the threshold was measured. Cases where the angle is <45° are represented by open circles, and cases where the angle is 45° are represented as open triangles. The former can be regarded as predominantly measures of saturation thresholds, and the latter as predominantly measures of hue thresholds (see text).

Fig. 6.
Fig. 6.

Thresholds for lines B and b plotted against the L/(L+M) coordinate of the referent stimulus. Thresholds are expressed as the factor by which the discriminanda must differ from the referent chromaticity to allow a 79.4% rate of correct responses. The curves fitted to the data are inverse third-order polynomials and have no theoretical significance. Notice the asymmetry of the two functions, and the large differences in thresholds measured for referents with the same L/(L+M) coordinate but different S/(L+M) coordinates.

Fig. 7.
Fig. 7.

(a) Thresholds for lines A B C D plotted against the L/(L+M) coordinate of the referent stimulus. Ordinate as in Fig. 6. The vertical arrows show the L/(L+M) coordinates at which each line crosses the subjective yellow–blue line measured in the earlier study of Danilova and Mollon [12]. Note that these arrows coincide closely with the minimal thresholds measured in the present experiment. (b) Analogous results for the mirror-image lines a b c d. The vertical arrows indicate the approximate L/(L+M) coordinates of the unique red–green locus, in this case based on estimates from the literature.

Metrics