Abstract

We introduce the “contrast–contrast asynchrony,” a dynamic stimulus configuration that combines elements of the Shapiro contrast asynchrony with elements of the Chubb contrast–contrast illusion. In the contrast–contrast asynchrony, static textured fields surround two textured fields; one surround has high-contrast texture, and the other has low-contrast texture. The contrasts of the center fields modulate in phase with each other at 1 Hz, and as a consequence, the difference between the contrast of the centers and the contrast of the respective surround modulates in antiphase. Most observers report an antiphase appearance for high-contrast, fine-grained centers. These observers therefore respond to the difference between the center contrast and surround contrast. We also document three observers who do not see the asynchrony for high-contrast modulations of the center, suggesting possibly interesting individual differences.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. H. Helmholtz, Treatise on Physiological Optics, Vol. 2 (Dover, 1866).
  2. E. Hering, Outline of a Theory of Light Sense (Harvard University, 1905).
  3. M. E. Chevreul, The Principles of Harmony and Contrast of Colors and Their Applications to the Arts (Reinhold, 1839).
  4. E. G. Heinemann, “Simultaneous brightness induction as a function of inducing and test-field luminance,” J. Exp. Psychol. 50, 89–96 (1955).
    [CrossRef]
  5. C. Chubb, G. Sperling, and J. A. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
  6. A. G. Shapiro, “Separating color from color contrast,” J. Vis. 8(1):8, 1–18 (2008).
    [CrossRef]
  7. A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, and M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5, 459–468 (2004).
  8. A. G. Shapiro, J. P. Charles, and M. Shear-Heyman, “Visual illusions based on single-field contrast asynchronies,” J. Vis. 5(10):2, 764–782– (2005).
  9. J. Krauskopf and Q. Zaidi, “Induced desensitization,” Vis. Res. 26, 759–762 (1986).
    [CrossRef]
  10. Q. Zaidi, B. Yoshimi, N. Flanigan, and A. Canova, “Lateral interactions within color mechanisms in simultaneous induced contrast,” Vis. Res. 32, 1695–1707 (1992).
    [CrossRef]
  11. R. L. De Valois, M. A. Webster, K. K. De Valois, and B. Lingelbach, “Temporal properties of brightness and color induction,” Vis. Res. 26, 887–897 (1986).
    [CrossRef]
  12. A. G. Shapiro, A. D’Antona, J. B. Smith, L. A. Belano, and J. P. Charles, “Induced contrast asynchronies may be useful for luminance photometry,” Vis. Neurosci. 21, 243–247 (2004).
    [CrossRef]
  13. A. Shapiro and E. Knight, “Spatial and temporal influences on the contrast gauge,” Vis. Res. 48, 2642–2648 (2008).
    [CrossRef]
  14. A. G. Shapiro and A. M. Leaver, “Edges can eliminate the appearance of the contrast asynchrony,” Ophthalmic Physiolog. Opt. 30, 534–544 (2010).
  15. O. J. Flynn and A. G. Shapiro, “The separation of monocular and binocular contrast,” Vis. Res. 93, 19–28 (2013).
    [CrossRef]
  16. B. Singer and M. D’Zmura, “Contrast gain control: a bilinear model for chromatic selectivity,” J. Opt. Soc. Am. A 12, 667–685 (1995).
    [CrossRef]
  17. M. W. Cannon and S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vis. Res. 33, 1685–1695 (1993).
    [CrossRef]
  18. S. Dakin, P. Carlin, and D. Hemsley, “Weak suppression of visual context in chronic schizophrenia,” Curr. Biol. 15, R822–R824 (2005).
    [CrossRef]
  19. M. S. Tibber, E. J. Anderson, T. Bobin, E. Antonova, A. Seabright, B. Wright, P. Carlin, S. S. Shergill, and S. C. Dakin, “Visual surround suppression in schizophrenia,” Front. Psychol. 4, 88 (2013).
  20. D. M. Barch, C. S. Carter, S. C. Dakin, J. Gold, S. J. Luck, A. Macdonald, J. D. Ragland, S. Silverstein, and M. E. Strauss, “The clinical translation of a measure of gain control: the contrast–contrast effect task,” Schizophr. Bull. 38, 135–143 (2012).
    [CrossRef]
  21. B. Singer and M. D’Zmura, “Color contrast induction,” Vis. Res. 34, 3111–3126 (1994).
    [CrossRef]

2013 (2)

O. J. Flynn and A. G. Shapiro, “The separation of monocular and binocular contrast,” Vis. Res. 93, 19–28 (2013).
[CrossRef]

M. S. Tibber, E. J. Anderson, T. Bobin, E. Antonova, A. Seabright, B. Wright, P. Carlin, S. S. Shergill, and S. C. Dakin, “Visual surround suppression in schizophrenia,” Front. Psychol. 4, 88 (2013).

2012 (1)

D. M. Barch, C. S. Carter, S. C. Dakin, J. Gold, S. J. Luck, A. Macdonald, J. D. Ragland, S. Silverstein, and M. E. Strauss, “The clinical translation of a measure of gain control: the contrast–contrast effect task,” Schizophr. Bull. 38, 135–143 (2012).
[CrossRef]

2010 (1)

A. G. Shapiro and A. M. Leaver, “Edges can eliminate the appearance of the contrast asynchrony,” Ophthalmic Physiolog. Opt. 30, 534–544 (2010).

2008 (2)

A. Shapiro and E. Knight, “Spatial and temporal influences on the contrast gauge,” Vis. Res. 48, 2642–2648 (2008).
[CrossRef]

A. G. Shapiro, “Separating color from color contrast,” J. Vis. 8(1):8, 1–18 (2008).
[CrossRef]

2005 (2)

A. G. Shapiro, J. P. Charles, and M. Shear-Heyman, “Visual illusions based on single-field contrast asynchronies,” J. Vis. 5(10):2, 764–782– (2005).

S. Dakin, P. Carlin, and D. Hemsley, “Weak suppression of visual context in chronic schizophrenia,” Curr. Biol. 15, R822–R824 (2005).
[CrossRef]

2004 (2)

A. G. Shapiro, A. D’Antona, J. B. Smith, L. A. Belano, and J. P. Charles, “Induced contrast asynchronies may be useful for luminance photometry,” Vis. Neurosci. 21, 243–247 (2004).
[CrossRef]

A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, and M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5, 459–468 (2004).

1995 (1)

1994 (1)

B. Singer and M. D’Zmura, “Color contrast induction,” Vis. Res. 34, 3111–3126 (1994).
[CrossRef]

1993 (1)

M. W. Cannon and S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vis. Res. 33, 1685–1695 (1993).
[CrossRef]

1992 (1)

Q. Zaidi, B. Yoshimi, N. Flanigan, and A. Canova, “Lateral interactions within color mechanisms in simultaneous induced contrast,” Vis. Res. 32, 1695–1707 (1992).
[CrossRef]

1989 (1)

C. Chubb, G. Sperling, and J. A. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).

1986 (2)

R. L. De Valois, M. A. Webster, K. K. De Valois, and B. Lingelbach, “Temporal properties of brightness and color induction,” Vis. Res. 26, 887–897 (1986).
[CrossRef]

J. Krauskopf and Q. Zaidi, “Induced desensitization,” Vis. Res. 26, 759–762 (1986).
[CrossRef]

1955 (1)

E. G. Heinemann, “Simultaneous brightness induction as a function of inducing and test-field luminance,” J. Exp. Psychol. 50, 89–96 (1955).
[CrossRef]

Anderson, E. J.

M. S. Tibber, E. J. Anderson, T. Bobin, E. Antonova, A. Seabright, B. Wright, P. Carlin, S. S. Shergill, and S. C. Dakin, “Visual surround suppression in schizophrenia,” Front. Psychol. 4, 88 (2013).

Antonova, E.

M. S. Tibber, E. J. Anderson, T. Bobin, E. Antonova, A. Seabright, B. Wright, P. Carlin, S. S. Shergill, and S. C. Dakin, “Visual surround suppression in schizophrenia,” Front. Psychol. 4, 88 (2013).

Barch, D. M.

D. M. Barch, C. S. Carter, S. C. Dakin, J. Gold, S. J. Luck, A. Macdonald, J. D. Ragland, S. Silverstein, and M. E. Strauss, “The clinical translation of a measure of gain control: the contrast–contrast effect task,” Schizophr. Bull. 38, 135–143 (2012).
[CrossRef]

Belano, L. A.

A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, and M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5, 459–468 (2004).

A. G. Shapiro, A. D’Antona, J. B. Smith, L. A. Belano, and J. P. Charles, “Induced contrast asynchronies may be useful for luminance photometry,” Vis. Neurosci. 21, 243–247 (2004).
[CrossRef]

Bobin, T.

M. S. Tibber, E. J. Anderson, T. Bobin, E. Antonova, A. Seabright, B. Wright, P. Carlin, S. S. Shergill, and S. C. Dakin, “Visual surround suppression in schizophrenia,” Front. Psychol. 4, 88 (2013).

Cannon, M. W.

M. W. Cannon and S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vis. Res. 33, 1685–1695 (1993).
[CrossRef]

Canova, A.

Q. Zaidi, B. Yoshimi, N. Flanigan, and A. Canova, “Lateral interactions within color mechanisms in simultaneous induced contrast,” Vis. Res. 32, 1695–1707 (1992).
[CrossRef]

Carlin, P.

M. S. Tibber, E. J. Anderson, T. Bobin, E. Antonova, A. Seabright, B. Wright, P. Carlin, S. S. Shergill, and S. C. Dakin, “Visual surround suppression in schizophrenia,” Front. Psychol. 4, 88 (2013).

S. Dakin, P. Carlin, and D. Hemsley, “Weak suppression of visual context in chronic schizophrenia,” Curr. Biol. 15, R822–R824 (2005).
[CrossRef]

Carter, C. S.

D. M. Barch, C. S. Carter, S. C. Dakin, J. Gold, S. J. Luck, A. Macdonald, J. D. Ragland, S. Silverstein, and M. E. Strauss, “The clinical translation of a measure of gain control: the contrast–contrast effect task,” Schizophr. Bull. 38, 135–143 (2012).
[CrossRef]

Charles, J. P.

A. G. Shapiro, J. P. Charles, and M. Shear-Heyman, “Visual illusions based on single-field contrast asynchronies,” J. Vis. 5(10):2, 764–782– (2005).

A. G. Shapiro, A. D’Antona, J. B. Smith, L. A. Belano, and J. P. Charles, “Induced contrast asynchronies may be useful for luminance photometry,” Vis. Neurosci. 21, 243–247 (2004).
[CrossRef]

A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, and M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5, 459–468 (2004).

Chevreul, M. E.

M. E. Chevreul, The Principles of Harmony and Contrast of Colors and Their Applications to the Arts (Reinhold, 1839).

Chubb, C.

C. Chubb, G. Sperling, and J. A. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).

D’Antona, A.

A. G. Shapiro, A. D’Antona, J. B. Smith, L. A. Belano, and J. P. Charles, “Induced contrast asynchronies may be useful for luminance photometry,” Vis. Neurosci. 21, 243–247 (2004).
[CrossRef]

D’Antona, A. D.

A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, and M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5, 459–468 (2004).

D’Zmura, M.

Dakin, S.

S. Dakin, P. Carlin, and D. Hemsley, “Weak suppression of visual context in chronic schizophrenia,” Curr. Biol. 15, R822–R824 (2005).
[CrossRef]

Dakin, S. C.

M. S. Tibber, E. J. Anderson, T. Bobin, E. Antonova, A. Seabright, B. Wright, P. Carlin, S. S. Shergill, and S. C. Dakin, “Visual surround suppression in schizophrenia,” Front. Psychol. 4, 88 (2013).

D. M. Barch, C. S. Carter, S. C. Dakin, J. Gold, S. J. Luck, A. Macdonald, J. D. Ragland, S. Silverstein, and M. E. Strauss, “The clinical translation of a measure of gain control: the contrast–contrast effect task,” Schizophr. Bull. 38, 135–143 (2012).
[CrossRef]

De Valois, K. K.

R. L. De Valois, M. A. Webster, K. K. De Valois, and B. Lingelbach, “Temporal properties of brightness and color induction,” Vis. Res. 26, 887–897 (1986).
[CrossRef]

De Valois, R. L.

R. L. De Valois, M. A. Webster, K. K. De Valois, and B. Lingelbach, “Temporal properties of brightness and color induction,” Vis. Res. 26, 887–897 (1986).
[CrossRef]

Flanigan, N.

Q. Zaidi, B. Yoshimi, N. Flanigan, and A. Canova, “Lateral interactions within color mechanisms in simultaneous induced contrast,” Vis. Res. 32, 1695–1707 (1992).
[CrossRef]

Flynn, O. J.

O. J. Flynn and A. G. Shapiro, “The separation of monocular and binocular contrast,” Vis. Res. 93, 19–28 (2013).
[CrossRef]

Fullenkamp, S. C.

M. W. Cannon and S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vis. Res. 33, 1685–1695 (1993).
[CrossRef]

Gold, J.

D. M. Barch, C. S. Carter, S. C. Dakin, J. Gold, S. J. Luck, A. Macdonald, J. D. Ragland, S. Silverstein, and M. E. Strauss, “The clinical translation of a measure of gain control: the contrast–contrast effect task,” Schizophr. Bull. 38, 135–143 (2012).
[CrossRef]

Heinemann, E. G.

E. G. Heinemann, “Simultaneous brightness induction as a function of inducing and test-field luminance,” J. Exp. Psychol. 50, 89–96 (1955).
[CrossRef]

Helmholtz, H. H.

H. H. Helmholtz, Treatise on Physiological Optics, Vol. 2 (Dover, 1866).

Hemsley, D.

S. Dakin, P. Carlin, and D. Hemsley, “Weak suppression of visual context in chronic schizophrenia,” Curr. Biol. 15, R822–R824 (2005).
[CrossRef]

Hering, E.

E. Hering, Outline of a Theory of Light Sense (Harvard University, 1905).

Knight, E.

A. Shapiro and E. Knight, “Spatial and temporal influences on the contrast gauge,” Vis. Res. 48, 2642–2648 (2008).
[CrossRef]

Krauskopf, J.

J. Krauskopf and Q. Zaidi, “Induced desensitization,” Vis. Res. 26, 759–762 (1986).
[CrossRef]

Leaver, A. M.

A. G. Shapiro and A. M. Leaver, “Edges can eliminate the appearance of the contrast asynchrony,” Ophthalmic Physiolog. Opt. 30, 534–544 (2010).

Lingelbach, B.

R. L. De Valois, M. A. Webster, K. K. De Valois, and B. Lingelbach, “Temporal properties of brightness and color induction,” Vis. Res. 26, 887–897 (1986).
[CrossRef]

Luck, S. J.

D. M. Barch, C. S. Carter, S. C. Dakin, J. Gold, S. J. Luck, A. Macdonald, J. D. Ragland, S. Silverstein, and M. E. Strauss, “The clinical translation of a measure of gain control: the contrast–contrast effect task,” Schizophr. Bull. 38, 135–143 (2012).
[CrossRef]

Macdonald, A.

D. M. Barch, C. S. Carter, S. C. Dakin, J. Gold, S. J. Luck, A. Macdonald, J. D. Ragland, S. Silverstein, and M. E. Strauss, “The clinical translation of a measure of gain control: the contrast–contrast effect task,” Schizophr. Bull. 38, 135–143 (2012).
[CrossRef]

Ragland, J. D.

D. M. Barch, C. S. Carter, S. C. Dakin, J. Gold, S. J. Luck, A. Macdonald, J. D. Ragland, S. Silverstein, and M. E. Strauss, “The clinical translation of a measure of gain control: the contrast–contrast effect task,” Schizophr. Bull. 38, 135–143 (2012).
[CrossRef]

Seabright, A.

M. S. Tibber, E. J. Anderson, T. Bobin, E. Antonova, A. Seabright, B. Wright, P. Carlin, S. S. Shergill, and S. C. Dakin, “Visual surround suppression in schizophrenia,” Front. Psychol. 4, 88 (2013).

Shapiro, A.

A. Shapiro and E. Knight, “Spatial and temporal influences on the contrast gauge,” Vis. Res. 48, 2642–2648 (2008).
[CrossRef]

Shapiro, A. G.

O. J. Flynn and A. G. Shapiro, “The separation of monocular and binocular contrast,” Vis. Res. 93, 19–28 (2013).
[CrossRef]

A. G. Shapiro and A. M. Leaver, “Edges can eliminate the appearance of the contrast asynchrony,” Ophthalmic Physiolog. Opt. 30, 534–544 (2010).

A. G. Shapiro, “Separating color from color contrast,” J. Vis. 8(1):8, 1–18 (2008).
[CrossRef]

A. G. Shapiro, J. P. Charles, and M. Shear-Heyman, “Visual illusions based on single-field contrast asynchronies,” J. Vis. 5(10):2, 764–782– (2005).

A. G. Shapiro, A. D’Antona, J. B. Smith, L. A. Belano, and J. P. Charles, “Induced contrast asynchronies may be useful for luminance photometry,” Vis. Neurosci. 21, 243–247 (2004).
[CrossRef]

A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, and M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5, 459–468 (2004).

Shear-Heyman, M.

A. G. Shapiro, J. P. Charles, and M. Shear-Heyman, “Visual illusions based on single-field contrast asynchronies,” J. Vis. 5(10):2, 764–782– (2005).

A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, and M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5, 459–468 (2004).

Shergill, S. S.

M. S. Tibber, E. J. Anderson, T. Bobin, E. Antonova, A. Seabright, B. Wright, P. Carlin, S. S. Shergill, and S. C. Dakin, “Visual surround suppression in schizophrenia,” Front. Psychol. 4, 88 (2013).

Silverstein, S.

D. M. Barch, C. S. Carter, S. C. Dakin, J. Gold, S. J. Luck, A. Macdonald, J. D. Ragland, S. Silverstein, and M. E. Strauss, “The clinical translation of a measure of gain control: the contrast–contrast effect task,” Schizophr. Bull. 38, 135–143 (2012).
[CrossRef]

Singer, B.

Smith, J. B.

A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, and M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5, 459–468 (2004).

A. G. Shapiro, A. D’Antona, J. B. Smith, L. A. Belano, and J. P. Charles, “Induced contrast asynchronies may be useful for luminance photometry,” Vis. Neurosci. 21, 243–247 (2004).
[CrossRef]

Solomon, J. A.

C. Chubb, G. Sperling, and J. A. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).

Sperling, G.

C. Chubb, G. Sperling, and J. A. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).

Strauss, M. E.

D. M. Barch, C. S. Carter, S. C. Dakin, J. Gold, S. J. Luck, A. Macdonald, J. D. Ragland, S. Silverstein, and M. E. Strauss, “The clinical translation of a measure of gain control: the contrast–contrast effect task,” Schizophr. Bull. 38, 135–143 (2012).
[CrossRef]

Tibber, M. S.

M. S. Tibber, E. J. Anderson, T. Bobin, E. Antonova, A. Seabright, B. Wright, P. Carlin, S. S. Shergill, and S. C. Dakin, “Visual surround suppression in schizophrenia,” Front. Psychol. 4, 88 (2013).

Webster, M. A.

R. L. De Valois, M. A. Webster, K. K. De Valois, and B. Lingelbach, “Temporal properties of brightness and color induction,” Vis. Res. 26, 887–897 (1986).
[CrossRef]

Wright, B.

M. S. Tibber, E. J. Anderson, T. Bobin, E. Antonova, A. Seabright, B. Wright, P. Carlin, S. S. Shergill, and S. C. Dakin, “Visual surround suppression in schizophrenia,” Front. Psychol. 4, 88 (2013).

Yoshimi, B.

Q. Zaidi, B. Yoshimi, N. Flanigan, and A. Canova, “Lateral interactions within color mechanisms in simultaneous induced contrast,” Vis. Res. 32, 1695–1707 (1992).
[CrossRef]

Zaidi, Q.

Q. Zaidi, B. Yoshimi, N. Flanigan, and A. Canova, “Lateral interactions within color mechanisms in simultaneous induced contrast,” Vis. Res. 32, 1695–1707 (1992).
[CrossRef]

J. Krauskopf and Q. Zaidi, “Induced desensitization,” Vis. Res. 26, 759–762 (1986).
[CrossRef]

Curr. Biol. (1)

S. Dakin, P. Carlin, and D. Hemsley, “Weak suppression of visual context in chronic schizophrenia,” Curr. Biol. 15, R822–R824 (2005).
[CrossRef]

Front. Psychol. (1)

M. S. Tibber, E. J. Anderson, T. Bobin, E. Antonova, A. Seabright, B. Wright, P. Carlin, S. S. Shergill, and S. C. Dakin, “Visual surround suppression in schizophrenia,” Front. Psychol. 4, 88 (2013).

J. Exp. Psychol. (1)

E. G. Heinemann, “Simultaneous brightness induction as a function of inducing and test-field luminance,” J. Exp. Psychol. 50, 89–96 (1955).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vis. (3)

A. G. Shapiro, “Separating color from color contrast,” J. Vis. 8(1):8, 1–18 (2008).
[CrossRef]

A. G. Shapiro, A. D. D’Antona, J. P. Charles, L. A. Belano, J. B. Smith, and M. Shear-Heyman, “Induced contrast asynchronies,” J. Vis. 4(6):5, 459–468 (2004).

A. G. Shapiro, J. P. Charles, and M. Shear-Heyman, “Visual illusions based on single-field contrast asynchronies,” J. Vis. 5(10):2, 764–782– (2005).

Ophthalmic Physiolog. Opt. (1)

A. G. Shapiro and A. M. Leaver, “Edges can eliminate the appearance of the contrast asynchrony,” Ophthalmic Physiolog. Opt. 30, 534–544 (2010).

Proc. Natl. Acad. Sci. USA (1)

C. Chubb, G. Sperling, and J. A. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).

Schizophr. Bull. (1)

D. M. Barch, C. S. Carter, S. C. Dakin, J. Gold, S. J. Luck, A. Macdonald, J. D. Ragland, S. Silverstein, and M. E. Strauss, “The clinical translation of a measure of gain control: the contrast–contrast effect task,” Schizophr. Bull. 38, 135–143 (2012).
[CrossRef]

Vis. Neurosci. (1)

A. G. Shapiro, A. D’Antona, J. B. Smith, L. A. Belano, and J. P. Charles, “Induced contrast asynchronies may be useful for luminance photometry,” Vis. Neurosci. 21, 243–247 (2004).
[CrossRef]

Vis. Res. (7)

A. Shapiro and E. Knight, “Spatial and temporal influences on the contrast gauge,” Vis. Res. 48, 2642–2648 (2008).
[CrossRef]

O. J. Flynn and A. G. Shapiro, “The separation of monocular and binocular contrast,” Vis. Res. 93, 19–28 (2013).
[CrossRef]

M. W. Cannon and S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vis. Res. 33, 1685–1695 (1993).
[CrossRef]

B. Singer and M. D’Zmura, “Color contrast induction,” Vis. Res. 34, 3111–3126 (1994).
[CrossRef]

J. Krauskopf and Q. Zaidi, “Induced desensitization,” Vis. Res. 26, 759–762 (1986).
[CrossRef]

Q. Zaidi, B. Yoshimi, N. Flanigan, and A. Canova, “Lateral interactions within color mechanisms in simultaneous induced contrast,” Vis. Res. 32, 1695–1707 (1992).
[CrossRef]

R. L. De Valois, M. A. Webster, K. K. De Valois, and B. Lingelbach, “Temporal properties of brightness and color induction,” Vis. Res. 26, 887–897 (1986).
[CrossRef]

Other (3)

H. H. Helmholtz, Treatise on Physiological Optics, Vol. 2 (Dover, 1866).

E. Hering, Outline of a Theory of Light Sense (Harvard University, 1905).

M. E. Chevreul, The Principles of Harmony and Contrast of Colors and Their Applications to the Arts (Reinhold, 1839).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Contrast asynchrony [57]. (a) Physically identical disks on a gradient background. The disk on the left has higher contrast relative to the background than the disk on the right. (b) Four frames from the contrast asynchrony which presents two physically identical disks, one with a dark surround and the other with a light surround. In each frame, the luminance levels of the disks are always the same; the contrast between each disk and surround modulates in antiphase. (c) Plots of the changes in luminance and contrast levels over time. The luminance levels of the disks are in phase; the contrast levels are in antiphase.

Fig. 2.
Fig. 2.

Contrast–contrast asynchrony. (a) Version of the static contrast–contrast illusion. The disks all have the same internal contrast and are placed on a contrast gradient. The disk on the left appears to have lower internal contrast than the disk on the right. The paper makes a distinction between the physical contrast inside each disk (C1center) and the difference between the contrast of the disk and the contrast of the surround (C2). (b) Four frames from the contrast–contrast asynchrony. The C1centers of the left and right disks are always the same; the C2 on the left is not always the same as the C2 on the right. (c) Plots of the changes in luminance, contrast, and contrast–contrast over time in the contrast–contrast asynchrony; the luminance levels of disks are always constant. The C1center of the left and right disks modulates in phase; the contrast–contrast (C2) modulates in antiphase.

Fig. 3.
Fig. 3.

Results of Experiment 1: Documentation of the contrast–contrast asynchrony; proportion of trials reported as in phase as a function of modulation amplitude. The filled circles indicate 1 Hz modulation; the squares indicate 3 Hz modulation; the diamonds indicate 6 Hz modulation.

Fig. 4.
Fig. 4.

Results of Experiment 2: Proportion of trials reported as in phase as a function of pixel size for the texture of the center fields. The contrast–contrast asynchrony appears in phase more frequently when the pixels are small.

Fig. 5.
Fig. 5.

Spatial configuration for Experiment 3: In the binocular contrast condition, the contrast-modulated fields were presented to one eye and the surrounding contrast fields were presented to the other eye. In the monocular contrast condition, the contrast-modulated fields and the surrounding contrast fields were presented to the same eye.

Fig. 6.
Fig. 6.

Results of Experiment 3: Proportion of trials reported as in phase as a function of monocular contrast (circles) or binocular contrast (squares). The contrast–contrast asynchrony appears in phase when the modulating field is presented to one eye while the surrounding fields are presented to the other eye.

Fig. 7.
Fig. 7.

Results of Experiment 4. The same as Experiment 1, but conducted with three observers who were selected for the study because they reported not seeing the contrast asynchrony. The proportion of trials reported as in phase as a function of monocular or binocular contrast (the symbols are the same as in Fig. 3). These observers do not see the asynchronous modulation at high-contrast levels.

Metrics