Abstract

Signals from rod photoreceptors bias (shift) the hues determined by cone photoreceptors for extrafoveal mesopic stimuli, creating green, blue, and red rod hue biases at long, middle, and short wavelengths, respectively. The fovea contains far fewer rods and S cones but may not be immune to rod hue biases. Here, we determine the biases found for mesopic foveal stimuli presented on a CRT display. The rod green bias was observed at unique yellow for all but one observer with 2° tests and persisted for most observers with 0.5° tests. The rod red bias typically seen at unique blue in extrafoveal studies was not apparent for either size of foveal test stimulus, and it was sometimes replaced by a rod green bias. The rod blue bias typically seen at unique green and unique red in extrafoveal studies was weak on average and inconsistent for both sizes of foveal test stimuli. Thus, small mesopic foveal stimuli permit rod influence on M- and L-cone color pathways but disadvantage rod influence on S-cone pathways, perhaps because of the sparseness of foveal S-cones. However, some observers did show idiosyncratic foveal rod hue biases that do not follow the general trends.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Buck, “Rod-cone interactions,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2004), pp. 863–878.
  2. S. L. Buck, “The interaction of rod and cone signals: pathways and psychophysics,” in The New Visual Neurosciences, J. S. Werner and L. M. Chalupa, eds. (MIT, 2014), pp. 485–497.
  3. S. L. Buck, R. Knight, G. Fowler, and B. Hunt, “Rod influence on hue-scaling functions,” Vis. Res. 38, 3259–3263 (1998).
    [CrossRef]
  4. G. D. Field, M. Greschner, J. L. Gauthier, C. Rangel, J. Shlens, A. Sher, D. W. Marshak, A. M. Litke, and E. J. Chichilnisky, “High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina,” Nat. Neurosci. 12, 1159–1164 (2009).
    [CrossRef]
  5. J. D. Crook, C. M. Davenport, B. B. Peterson, O. S. Packer, P. B. Detwiler, and D. M. Dacey, “Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina,” J. Neurosci. 29, 8372–8387 (2009).
    [CrossRef]
  6. J. L. Nerger, V. J. Volbrecht, and C. J. Ayde, “Unique hue judgments as a function of test size in the fovea and at 20-deg temporal eccentricity,” J. Opt. Soc. Am. A 12, 1225–1232 (1995).
    [CrossRef]
  7. L. Thomas and S. L. Buck, “Foveal vs. extra-foveal contributions to rod hue biases,” Vis. Neurosci. 23, 539–542 (2006).
    [CrossRef]
  8. S. L. Buck, L. Thomas, N. Hillyer, and E. Samuelson, “Do rods influence the hue of foveal stimuli?” Vis. Neurosci. 23, 519–523 (2006).
  9. S. L. Buck and C. Cunningham, “Rod influence on desaturated color mixtures,” J. Vision 9(14):55 (2009).
    [CrossRef]
  10. S. L. Buck, R. Juve, D. Wisner, and A. Concepcion, “Rod hue biases produced on CRT displays,” J. Opt. Soc. Am. A 29, A36–A43 (2012).
    [CrossRef]
  11. L. Thomas and S. L. Buck, “Generality of rod hue biases with smaller, brighter, and photopically specified stimuli,” Vis. Neurosci 21, 257–262 (2004).
    [CrossRef]
  12. R. Knight and S. L. Buck, “Rod influences on hue perception: Effect of background light level,” Color Res. Appl. 26(S1), S60–S64 (2001).
    [CrossRef]
  13. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
    [CrossRef]
  14. V. C. Smith and J. Pokorny, “Color matching and color discrimination,” in The Science of Color, S. K. Shevell, ed., 2nd ed. (Elsevier, 2003), pp. 103–148.
  15. R. Knight and S. L. Buck, “Time-dependent changes of rod influence on hue perception,” Vis. Res. 42, 1651–1662 (2002).
    [CrossRef]
  16. S. L. Buck and R. Knight, “Stimulus duration affects rod influence on hue perception,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 177–184.
  17. S. L. Buck, L. Thomas, C. Connor, K. Green, and T. Quintana, “Time-course of rod influences on hue perception,” Vis. Neurosci. 25, 517–520 (2008).
    [CrossRef]
  18. D. R. Williams, D. I. MacLeod, and M. M. Hayhoe, “Foveal tritanopia,” Vis. Res. 21, 1341–1356 (1981).
    [CrossRef]
  19. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
    [CrossRef]
  20. K. G. Foote, S. L. Buck, J. Neitz, and M. Neitz, “Psychophysiscal consequences of L/M cone ratio,” presented at the OSA Vision Meeting, Houston, Texas, October4–6, 2013.
  21. D. Cao, J. Pokorny, and V. C. Smith, “Matching rod percepts with cone stimuli,” Vis. Res. 45, 2119–2128 (2005).
    [CrossRef]

2012 (1)

2009 (3)

G. D. Field, M. Greschner, J. L. Gauthier, C. Rangel, J. Shlens, A. Sher, D. W. Marshak, A. M. Litke, and E. J. Chichilnisky, “High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina,” Nat. Neurosci. 12, 1159–1164 (2009).
[CrossRef]

J. D. Crook, C. M. Davenport, B. B. Peterson, O. S. Packer, P. B. Detwiler, and D. M. Dacey, “Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina,” J. Neurosci. 29, 8372–8387 (2009).
[CrossRef]

S. L. Buck and C. Cunningham, “Rod influence on desaturated color mixtures,” J. Vision 9(14):55 (2009).
[CrossRef]

2008 (1)

S. L. Buck, L. Thomas, C. Connor, K. Green, and T. Quintana, “Time-course of rod influences on hue perception,” Vis. Neurosci. 25, 517–520 (2008).
[CrossRef]

2006 (2)

L. Thomas and S. L. Buck, “Foveal vs. extra-foveal contributions to rod hue biases,” Vis. Neurosci. 23, 539–542 (2006).
[CrossRef]

S. L. Buck, L. Thomas, N. Hillyer, and E. Samuelson, “Do rods influence the hue of foveal stimuli?” Vis. Neurosci. 23, 519–523 (2006).

2005 (1)

D. Cao, J. Pokorny, and V. C. Smith, “Matching rod percepts with cone stimuli,” Vis. Res. 45, 2119–2128 (2005).
[CrossRef]

2004 (1)

L. Thomas and S. L. Buck, “Generality of rod hue biases with smaller, brighter, and photopically specified stimuli,” Vis. Neurosci 21, 257–262 (2004).
[CrossRef]

2002 (1)

R. Knight and S. L. Buck, “Time-dependent changes of rod influence on hue perception,” Vis. Res. 42, 1651–1662 (2002).
[CrossRef]

2001 (1)

R. Knight and S. L. Buck, “Rod influences on hue perception: Effect of background light level,” Color Res. Appl. 26(S1), S60–S64 (2001).
[CrossRef]

1998 (1)

S. L. Buck, R. Knight, G. Fowler, and B. Hunt, “Rod influence on hue-scaling functions,” Vis. Res. 38, 3259–3263 (1998).
[CrossRef]

1995 (1)

1990 (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef]

1981 (1)

D. R. Williams, D. I. MacLeod, and M. M. Hayhoe, “Foveal tritanopia,” Vis. Res. 21, 1341–1356 (1981).
[CrossRef]

1975 (1)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

Ayde, C. J.

Buck, S. L.

S. L. Buck, R. Juve, D. Wisner, and A. Concepcion, “Rod hue biases produced on CRT displays,” J. Opt. Soc. Am. A 29, A36–A43 (2012).
[CrossRef]

S. L. Buck and C. Cunningham, “Rod influence on desaturated color mixtures,” J. Vision 9(14):55 (2009).
[CrossRef]

S. L. Buck, L. Thomas, C. Connor, K. Green, and T. Quintana, “Time-course of rod influences on hue perception,” Vis. Neurosci. 25, 517–520 (2008).
[CrossRef]

S. L. Buck, L. Thomas, N. Hillyer, and E. Samuelson, “Do rods influence the hue of foveal stimuli?” Vis. Neurosci. 23, 519–523 (2006).

L. Thomas and S. L. Buck, “Foveal vs. extra-foveal contributions to rod hue biases,” Vis. Neurosci. 23, 539–542 (2006).
[CrossRef]

L. Thomas and S. L. Buck, “Generality of rod hue biases with smaller, brighter, and photopically specified stimuli,” Vis. Neurosci 21, 257–262 (2004).
[CrossRef]

R. Knight and S. L. Buck, “Time-dependent changes of rod influence on hue perception,” Vis. Res. 42, 1651–1662 (2002).
[CrossRef]

R. Knight and S. L. Buck, “Rod influences on hue perception: Effect of background light level,” Color Res. Appl. 26(S1), S60–S64 (2001).
[CrossRef]

S. L. Buck, R. Knight, G. Fowler, and B. Hunt, “Rod influence on hue-scaling functions,” Vis. Res. 38, 3259–3263 (1998).
[CrossRef]

K. G. Foote, S. L. Buck, J. Neitz, and M. Neitz, “Psychophysiscal consequences of L/M cone ratio,” presented at the OSA Vision Meeting, Houston, Texas, October4–6, 2013.

S. L. Buck, “Rod-cone interactions,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2004), pp. 863–878.

S. L. Buck and R. Knight, “Stimulus duration affects rod influence on hue perception,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 177–184.

S. L. Buck, “The interaction of rod and cone signals: pathways and psychophysics,” in The New Visual Neurosciences, J. S. Werner and L. M. Chalupa, eds. (MIT, 2014), pp. 485–497.

Cao, D.

D. Cao, J. Pokorny, and V. C. Smith, “Matching rod percepts with cone stimuli,” Vis. Res. 45, 2119–2128 (2005).
[CrossRef]

Chichilnisky, E. J.

G. D. Field, M. Greschner, J. L. Gauthier, C. Rangel, J. Shlens, A. Sher, D. W. Marshak, A. M. Litke, and E. J. Chichilnisky, “High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina,” Nat. Neurosci. 12, 1159–1164 (2009).
[CrossRef]

Concepcion, A.

Connor, C.

S. L. Buck, L. Thomas, C. Connor, K. Green, and T. Quintana, “Time-course of rod influences on hue perception,” Vis. Neurosci. 25, 517–520 (2008).
[CrossRef]

Crook, J. D.

J. D. Crook, C. M. Davenport, B. B. Peterson, O. S. Packer, P. B. Detwiler, and D. M. Dacey, “Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina,” J. Neurosci. 29, 8372–8387 (2009).
[CrossRef]

Cunningham, C.

S. L. Buck and C. Cunningham, “Rod influence on desaturated color mixtures,” J. Vision 9(14):55 (2009).
[CrossRef]

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef]

Dacey, D. M.

J. D. Crook, C. M. Davenport, B. B. Peterson, O. S. Packer, P. B. Detwiler, and D. M. Dacey, “Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina,” J. Neurosci. 29, 8372–8387 (2009).
[CrossRef]

Davenport, C. M.

J. D. Crook, C. M. Davenport, B. B. Peterson, O. S. Packer, P. B. Detwiler, and D. M. Dacey, “Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina,” J. Neurosci. 29, 8372–8387 (2009).
[CrossRef]

Detwiler, P. B.

J. D. Crook, C. M. Davenport, B. B. Peterson, O. S. Packer, P. B. Detwiler, and D. M. Dacey, “Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina,” J. Neurosci. 29, 8372–8387 (2009).
[CrossRef]

Field, G. D.

G. D. Field, M. Greschner, J. L. Gauthier, C. Rangel, J. Shlens, A. Sher, D. W. Marshak, A. M. Litke, and E. J. Chichilnisky, “High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina,” Nat. Neurosci. 12, 1159–1164 (2009).
[CrossRef]

Foote, K. G.

K. G. Foote, S. L. Buck, J. Neitz, and M. Neitz, “Psychophysiscal consequences of L/M cone ratio,” presented at the OSA Vision Meeting, Houston, Texas, October4–6, 2013.

Fowler, G.

S. L. Buck, R. Knight, G. Fowler, and B. Hunt, “Rod influence on hue-scaling functions,” Vis. Res. 38, 3259–3263 (1998).
[CrossRef]

Gauthier, J. L.

G. D. Field, M. Greschner, J. L. Gauthier, C. Rangel, J. Shlens, A. Sher, D. W. Marshak, A. M. Litke, and E. J. Chichilnisky, “High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina,” Nat. Neurosci. 12, 1159–1164 (2009).
[CrossRef]

Green, K.

S. L. Buck, L. Thomas, C. Connor, K. Green, and T. Quintana, “Time-course of rod influences on hue perception,” Vis. Neurosci. 25, 517–520 (2008).
[CrossRef]

Greschner, M.

G. D. Field, M. Greschner, J. L. Gauthier, C. Rangel, J. Shlens, A. Sher, D. W. Marshak, A. M. Litke, and E. J. Chichilnisky, “High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina,” Nat. Neurosci. 12, 1159–1164 (2009).
[CrossRef]

Hayhoe, M. M.

D. R. Williams, D. I. MacLeod, and M. M. Hayhoe, “Foveal tritanopia,” Vis. Res. 21, 1341–1356 (1981).
[CrossRef]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef]

Hillyer, N.

S. L. Buck, L. Thomas, N. Hillyer, and E. Samuelson, “Do rods influence the hue of foveal stimuli?” Vis. Neurosci. 23, 519–523 (2006).

Hunt, B.

S. L. Buck, R. Knight, G. Fowler, and B. Hunt, “Rod influence on hue-scaling functions,” Vis. Res. 38, 3259–3263 (1998).
[CrossRef]

Juve, R.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef]

Knight, R.

R. Knight and S. L. Buck, “Time-dependent changes of rod influence on hue perception,” Vis. Res. 42, 1651–1662 (2002).
[CrossRef]

R. Knight and S. L. Buck, “Rod influences on hue perception: Effect of background light level,” Color Res. Appl. 26(S1), S60–S64 (2001).
[CrossRef]

S. L. Buck, R. Knight, G. Fowler, and B. Hunt, “Rod influence on hue-scaling functions,” Vis. Res. 38, 3259–3263 (1998).
[CrossRef]

S. L. Buck and R. Knight, “Stimulus duration affects rod influence on hue perception,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 177–184.

Litke, A. M.

G. D. Field, M. Greschner, J. L. Gauthier, C. Rangel, J. Shlens, A. Sher, D. W. Marshak, A. M. Litke, and E. J. Chichilnisky, “High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina,” Nat. Neurosci. 12, 1159–1164 (2009).
[CrossRef]

MacLeod, D. I.

D. R. Williams, D. I. MacLeod, and M. M. Hayhoe, “Foveal tritanopia,” Vis. Res. 21, 1341–1356 (1981).
[CrossRef]

Marshak, D. W.

G. D. Field, M. Greschner, J. L. Gauthier, C. Rangel, J. Shlens, A. Sher, D. W. Marshak, A. M. Litke, and E. J. Chichilnisky, “High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina,” Nat. Neurosci. 12, 1159–1164 (2009).
[CrossRef]

Neitz, J.

K. G. Foote, S. L. Buck, J. Neitz, and M. Neitz, “Psychophysiscal consequences of L/M cone ratio,” presented at the OSA Vision Meeting, Houston, Texas, October4–6, 2013.

Neitz, M.

K. G. Foote, S. L. Buck, J. Neitz, and M. Neitz, “Psychophysiscal consequences of L/M cone ratio,” presented at the OSA Vision Meeting, Houston, Texas, October4–6, 2013.

Nerger, J. L.

Packer, O. S.

J. D. Crook, C. M. Davenport, B. B. Peterson, O. S. Packer, P. B. Detwiler, and D. M. Dacey, “Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina,” J. Neurosci. 29, 8372–8387 (2009).
[CrossRef]

Peterson, B. B.

J. D. Crook, C. M. Davenport, B. B. Peterson, O. S. Packer, P. B. Detwiler, and D. M. Dacey, “Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina,” J. Neurosci. 29, 8372–8387 (2009).
[CrossRef]

Pokorny, J.

D. Cao, J. Pokorny, and V. C. Smith, “Matching rod percepts with cone stimuli,” Vis. Res. 45, 2119–2128 (2005).
[CrossRef]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

V. C. Smith and J. Pokorny, “Color matching and color discrimination,” in The Science of Color, S. K. Shevell, ed., 2nd ed. (Elsevier, 2003), pp. 103–148.

Quintana, T.

S. L. Buck, L. Thomas, C. Connor, K. Green, and T. Quintana, “Time-course of rod influences on hue perception,” Vis. Neurosci. 25, 517–520 (2008).
[CrossRef]

Rangel, C.

G. D. Field, M. Greschner, J. L. Gauthier, C. Rangel, J. Shlens, A. Sher, D. W. Marshak, A. M. Litke, and E. J. Chichilnisky, “High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina,” Nat. Neurosci. 12, 1159–1164 (2009).
[CrossRef]

Samuelson, E.

S. L. Buck, L. Thomas, N. Hillyer, and E. Samuelson, “Do rods influence the hue of foveal stimuli?” Vis. Neurosci. 23, 519–523 (2006).

Sher, A.

G. D. Field, M. Greschner, J. L. Gauthier, C. Rangel, J. Shlens, A. Sher, D. W. Marshak, A. M. Litke, and E. J. Chichilnisky, “High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina,” Nat. Neurosci. 12, 1159–1164 (2009).
[CrossRef]

Shlens, J.

G. D. Field, M. Greschner, J. L. Gauthier, C. Rangel, J. Shlens, A. Sher, D. W. Marshak, A. M. Litke, and E. J. Chichilnisky, “High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina,” Nat. Neurosci. 12, 1159–1164 (2009).
[CrossRef]

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef]

Smith, V. C.

D. Cao, J. Pokorny, and V. C. Smith, “Matching rod percepts with cone stimuli,” Vis. Res. 45, 2119–2128 (2005).
[CrossRef]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

V. C. Smith and J. Pokorny, “Color matching and color discrimination,” in The Science of Color, S. K. Shevell, ed., 2nd ed. (Elsevier, 2003), pp. 103–148.

Thomas, L.

S. L. Buck, L. Thomas, C. Connor, K. Green, and T. Quintana, “Time-course of rod influences on hue perception,” Vis. Neurosci. 25, 517–520 (2008).
[CrossRef]

S. L. Buck, L. Thomas, N. Hillyer, and E. Samuelson, “Do rods influence the hue of foveal stimuli?” Vis. Neurosci. 23, 519–523 (2006).

L. Thomas and S. L. Buck, “Foveal vs. extra-foveal contributions to rod hue biases,” Vis. Neurosci. 23, 539–542 (2006).
[CrossRef]

L. Thomas and S. L. Buck, “Generality of rod hue biases with smaller, brighter, and photopically specified stimuli,” Vis. Neurosci 21, 257–262 (2004).
[CrossRef]

Volbrecht, V. J.

Williams, D. R.

D. R. Williams, D. I. MacLeod, and M. M. Hayhoe, “Foveal tritanopia,” Vis. Res. 21, 1341–1356 (1981).
[CrossRef]

Wisner, D.

Color Res. Appl. (1)

R. Knight and S. L. Buck, “Rod influences on hue perception: Effect of background light level,” Color Res. Appl. 26(S1), S60–S64 (2001).
[CrossRef]

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef]

J. Neurosci. (1)

J. D. Crook, C. M. Davenport, B. B. Peterson, O. S. Packer, P. B. Detwiler, and D. M. Dacey, “Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina,” J. Neurosci. 29, 8372–8387 (2009).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Vision (1)

S. L. Buck and C. Cunningham, “Rod influence on desaturated color mixtures,” J. Vision 9(14):55 (2009).
[CrossRef]

Nat. Neurosci. (1)

G. D. Field, M. Greschner, J. L. Gauthier, C. Rangel, J. Shlens, A. Sher, D. W. Marshak, A. M. Litke, and E. J. Chichilnisky, “High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina,” Nat. Neurosci. 12, 1159–1164 (2009).
[CrossRef]

Vis. Neurosci (1)

L. Thomas and S. L. Buck, “Generality of rod hue biases with smaller, brighter, and photopically specified stimuli,” Vis. Neurosci 21, 257–262 (2004).
[CrossRef]

Vis. Neurosci. (3)

L. Thomas and S. L. Buck, “Foveal vs. extra-foveal contributions to rod hue biases,” Vis. Neurosci. 23, 539–542 (2006).
[CrossRef]

S. L. Buck, L. Thomas, N. Hillyer, and E. Samuelson, “Do rods influence the hue of foveal stimuli?” Vis. Neurosci. 23, 519–523 (2006).

S. L. Buck, L. Thomas, C. Connor, K. Green, and T. Quintana, “Time-course of rod influences on hue perception,” Vis. Neurosci. 25, 517–520 (2008).
[CrossRef]

Vis. Res. (5)

D. R. Williams, D. I. MacLeod, and M. M. Hayhoe, “Foveal tritanopia,” Vis. Res. 21, 1341–1356 (1981).
[CrossRef]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

R. Knight and S. L. Buck, “Time-dependent changes of rod influence on hue perception,” Vis. Res. 42, 1651–1662 (2002).
[CrossRef]

S. L. Buck, R. Knight, G. Fowler, and B. Hunt, “Rod influence on hue-scaling functions,” Vis. Res. 38, 3259–3263 (1998).
[CrossRef]

D. Cao, J. Pokorny, and V. C. Smith, “Matching rod percepts with cone stimuli,” Vis. Res. 45, 2119–2128 (2005).
[CrossRef]

Other (5)

S. L. Buck, “Rod-cone interactions,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2004), pp. 863–878.

S. L. Buck, “The interaction of rod and cone signals: pathways and psychophysics,” in The New Visual Neurosciences, J. S. Werner and L. M. Chalupa, eds. (MIT, 2014), pp. 485–497.

S. L. Buck and R. Knight, “Stimulus duration affects rod influence on hue perception,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 177–184.

V. C. Smith and J. Pokorny, “Color matching and color discrimination,” in The Science of Color, S. K. Shevell, ed., 2nd ed. (Elsevier, 2003), pp. 103–148.

K. G. Foote, S. L. Buck, J. Neitz, and M. Neitz, “Psychophysiscal consequences of L/M cone ratio,” presented at the OSA Vision Meeting, Houston, Texas, October4–6, 2013.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Rod influence on all four unique hues for 2.0°-diameter foveal test stimuli, for individual observers (solid bars) and across-observer means (hatched bars). See text for format details. A relatively large rod green bias is shown by seven of eight observers on unique yellow. Average rod hue biases on the other unique hues are smaller and show greater variation in magnitude and direction.

Fig. 2.
Fig. 2.

Rod influence on all four unique hues for 0.5°-diameter foveal test stimuli., for individual observers (solid bars) and across-observer means (hatched bars). Average rod green bias on unique yellow was reduced compared to the 2.0° test conditions, and fewer observers showed a convincing effect. Average rod hue biases on the other three unique hues were eliminated, although some observers still showed idiosyncratic effects.

Metrics