Abstract

In a previous study based on monitor simulations of artistic paintings, it was found that the average correlated color temperature (CCT) of daylight preferred by a large set of observers to illuminate paintings was around 5100 K. The goal of the present study was to test if this result holds in real viewing conditions, i.e., with real paintings and real light sources. The same 11 paintings were tested in real conditions illuminated by a spectrally tunable light source and with accurate monitor simulations. To ensure uniform illumination across the paintings, only a central part of the paintings was visible to the observers. It was found that the average CCT preferred for real and monitor viewing conditions were very similar, 5500 and 5700 K, respectively. The somewhat larger CCT obtained with monitor viewing in relation to the former study was only observed in some paintings and was attributed to the smaller viewing area. These results confirm that CCT for best appreciation of paintings is higher than normally used in museums, and the viewing conditions, real or simulated, have only a minor effect.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Taft, J. W. Mayer, R. Newman, D. Stulik, and P. Kuniholm, The Science of Paintings (Springer, 2000).
  2. CIE, “Control of damage to museum objects by optical radiation,” (CIE, 2004).
  3. M. F. Delgado, C. W. Dirk, J. Druzik, and N. WestFall, “Lighting the world’s treasures: approaches to safer museum lighting,” Color Res. Appl. 36, 238–254 (2011).
    [CrossRef]
  4. D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
    [CrossRef]
  5. M. P. Royer, K. W. Houser, and A. M. Wilkerson, “Color discrimination capability under highly structured spectra,” Color Res. Appl. 37, 441–449 (2012).
    [CrossRef]
  6. O. Masuda and S. M. C. Nascimento, “Lighting spectrum to maximize colorfulness,” Opt. Lett. 37, 407–409 (2012).
    [CrossRef]
  7. W. A. Thornton, “Colour discrimination enhancement by the illuminant,” in Second Symposium of the International Research Group on Colour Vision Deficiencies (Karger, 1974), pp. 312–313.
  8. U. Leonards, R. Baddeley, I. D. Gilchrist, T. Troscianko, P. Ledda, and B. Williamson, “Mediaeval artists: masters in directing the observers’ gaze,” Curr. Biol. 17, R8–R9 (2007).
    [CrossRef]
  9. R. Weale, “The truth and something besides,” New Scientist 4, 13–15 (1973).
  10. X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Lighting Res. Technol. 36, 183–199 (2004).
    [CrossRef]
  11. J. M. M. Linhares and S. M. C. Nascimento, “A chromatic diversity index based on complex scenes,” J. Opt. Soc. Am. A 29, A174–A181 (2012).
    [CrossRef]
  12. K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Correlation between color quality metric predictions and visual appreciation of light sources,” Opt. Express 19, 8151–8166 (2011).
    [CrossRef]
  13. R. S. Berns, “Designing white-light LED lighting for the display of art: a feasibility study,” Color Res. Appl. 36, 324–334 (2011).
    [CrossRef]
  14. M. Scuello, I. Abramov, J. Gordon, S. Weintraub, and S. Weintra, “Museum lighting: optimizing the illuminant,” Color Res. Appl. 29, 121–127 (2004).
    [CrossRef]
  15. P. D. Pinto, J. M. M. Linhares, and S. M. C. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A 25, 623–630 (2008).
  16. P. D. Pinto, J. M. M. Linhares, J. A. Carvalhal, and S. M. C. Nascimento, “Psychophysical estimation of the best illumination for appreciation of Renaissance paintings,” Vis. Neurosci. 23, 669–674 (2006).
    [CrossRef]
  17. A. Liu, A. Tuzikas, A. Zukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
    [CrossRef]
  18. O. Masuda and S. M. C. Nascimento, “Best lighting for naturalness and preference,” J. Vis. 13(7):4 (2013).
    [CrossRef]
  19. S. M. C. Nascimento and O. Masuda, “Visual effects of real light sources of arbitrary spectra on real objects and scenes,” in AIC Colour 2013, 12th Congress of the International Colour Association Newcastle Upon Tyne, L. MacDonald, S. Westland, and S. Wuerger, eds. (AIC International Colour Association, UK, 2013), Vol. 1, pp. 287–290.
  20. D. B. Judd, D. L. Macadam, and G. Wyszecki, “Spectral distribution of typical daylight as function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964).
    [CrossRef]
  21. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).
  22. D. L. MacAdam, “Visual sensitivities to color differences in daylight,” J. Opt. Soc. Am. 32, 247–274 (1942).
    [CrossRef]
  23. M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).
  24. S. K. Shevell and P. R. Miller, “Color perception with test and adapting lights perceived in different depth planes,” Vis. Res. 36, 949–954 (1996).
    [CrossRef]
  25. Y. Yamauchi and K. Uchikawa, “Depth information affects judgment of the surface-color mode appearance,” J. Vis. 14(6), 515–524 (2005).
  26. Y. Z. Ling and A. Hurlbert, “Color and size interactions in a real 3D object similarity task,” J. Vis. 4(9):5, 721–734 (2004).
    [CrossRef]
  27. J. N. Yang and S. K. Shevell, “Stereo disparity improves color constancy,” Vis. Res. 42, 1979–1989 (2002).
    [CrossRef]
  28. A. Werner, “The influence of depth segmentation on colour constancy,” Perception 35, 1171–1184 (2006).
    [CrossRef]
  29. M. Hedrich, M. Bloj, and A. I. Ruppertsberg, “Color constancy improves for real 3D objects,” J. Vis. 9(4):16 (2009).
    [CrossRef]
  30. S. M. C. Nascimento and O. Masuda, “Psychophysical optimization of lighting spectra for naturalness, preference, and chromatic diversity,” J. Opt. Soc. Am. A 29, A144–A151 (2012).

2013 (2)

A. Liu, A. Tuzikas, A. Zukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
[CrossRef]

O. Masuda and S. M. C. Nascimento, “Best lighting for naturalness and preference,” J. Vis. 13(7):4 (2013).
[CrossRef]

2012 (4)

2011 (4)

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Correlation between color quality metric predictions and visual appreciation of light sources,” Opt. Express 19, 8151–8166 (2011).
[CrossRef]

M. F. Delgado, C. W. Dirk, J. Druzik, and N. WestFall, “Lighting the world’s treasures: approaches to safer museum lighting,” Color Res. Appl. 36, 238–254 (2011).
[CrossRef]

D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

R. S. Berns, “Designing white-light LED lighting for the display of art: a feasibility study,” Color Res. Appl. 36, 324–334 (2011).
[CrossRef]

2009 (1)

M. Hedrich, M. Bloj, and A. I. Ruppertsberg, “Color constancy improves for real 3D objects,” J. Vis. 9(4):16 (2009).
[CrossRef]

2008 (1)

2007 (1)

U. Leonards, R. Baddeley, I. D. Gilchrist, T. Troscianko, P. Ledda, and B. Williamson, “Mediaeval artists: masters in directing the observers’ gaze,” Curr. Biol. 17, R8–R9 (2007).
[CrossRef]

2006 (2)

A. Werner, “The influence of depth segmentation on colour constancy,” Perception 35, 1171–1184 (2006).
[CrossRef]

P. D. Pinto, J. M. M. Linhares, J. A. Carvalhal, and S. M. C. Nascimento, “Psychophysical estimation of the best illumination for appreciation of Renaissance paintings,” Vis. Neurosci. 23, 669–674 (2006).
[CrossRef]

2005 (1)

Y. Yamauchi and K. Uchikawa, “Depth information affects judgment of the surface-color mode appearance,” J. Vis. 14(6), 515–524 (2005).

2004 (3)

Y. Z. Ling and A. Hurlbert, “Color and size interactions in a real 3D object similarity task,” J. Vis. 4(9):5, 721–734 (2004).
[CrossRef]

X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Lighting Res. Technol. 36, 183–199 (2004).
[CrossRef]

M. Scuello, I. Abramov, J. Gordon, S. Weintraub, and S. Weintra, “Museum lighting: optimizing the illuminant,” Color Res. Appl. 29, 121–127 (2004).
[CrossRef]

2002 (1)

J. N. Yang and S. K. Shevell, “Stereo disparity improves color constancy,” Vis. Res. 42, 1979–1989 (2002).
[CrossRef]

1999 (1)

M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

1996 (1)

S. K. Shevell and P. R. Miller, “Color perception with test and adapting lights perceived in different depth planes,” Vis. Res. 36, 949–954 (1996).
[CrossRef]

1973 (1)

R. Weale, “The truth and something besides,” New Scientist 4, 13–15 (1973).

1964 (1)

1942 (1)

Abramov, I.

M. Scuello, I. Abramov, J. Gordon, S. Weintraub, and S. Weintra, “Museum lighting: optimizing the illuminant,” Color Res. Appl. 29, 121–127 (2004).
[CrossRef]

Baddeley, R.

U. Leonards, R. Baddeley, I. D. Gilchrist, T. Troscianko, P. Ledda, and B. Williamson, “Mediaeval artists: masters in directing the observers’ gaze,” Curr. Biol. 17, R8–R9 (2007).
[CrossRef]

Berns, R. S.

R. S. Berns, “Designing white-light LED lighting for the display of art: a feasibility study,” Color Res. Appl. 36, 324–334 (2011).
[CrossRef]

Bloj, M.

M. Hedrich, M. Bloj, and A. I. Ruppertsberg, “Color constancy improves for real 3D objects,” J. Vis. 9(4):16 (2009).
[CrossRef]

Bloj, M. G.

M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

Carvalhal, J. A.

P. D. Pinto, J. M. M. Linhares, J. A. Carvalhal, and S. M. C. Nascimento, “Psychophysical estimation of the best illumination for appreciation of Renaissance paintings,” Vis. Neurosci. 23, 669–674 (2006).
[CrossRef]

Deconinck, G.

Delgado, M. F.

M. F. Delgado, C. W. Dirk, J. Druzik, and N. WestFall, “Lighting the world’s treasures: approaches to safer museum lighting,” Color Res. Appl. 36, 238–254 (2011).
[CrossRef]

Dirk, C. W.

M. F. Delgado, C. W. Dirk, J. Druzik, and N. WestFall, “Lighting the world’s treasures: approaches to safer museum lighting,” Color Res. Appl. 36, 238–254 (2011).
[CrossRef]

Druzik, J.

M. F. Delgado, C. W. Dirk, J. Druzik, and N. WestFall, “Lighting the world’s treasures: approaches to safer museum lighting,” Color Res. Appl. 36, 238–254 (2011).
[CrossRef]

Foster, D. H.

D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

Gilchrist, I. D.

U. Leonards, R. Baddeley, I. D. Gilchrist, T. Troscianko, P. Ledda, and B. Williamson, “Mediaeval artists: masters in directing the observers’ gaze,” Curr. Biol. 17, R8–R9 (2007).
[CrossRef]

Gordon, J.

M. Scuello, I. Abramov, J. Gordon, S. Weintraub, and S. Weintra, “Museum lighting: optimizing the illuminant,” Color Res. Appl. 29, 121–127 (2004).
[CrossRef]

Guo, X.

X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Lighting Res. Technol. 36, 183–199 (2004).
[CrossRef]

Hanselaer, P.

Hedrich, M.

M. Hedrich, M. Bloj, and A. I. Ruppertsberg, “Color constancy improves for real 3D objects,” J. Vis. 9(4):16 (2009).
[CrossRef]

Houser, K. W.

M. P. Royer, K. W. Houser, and A. M. Wilkerson, “Color discrimination capability under highly structured spectra,” Color Res. Appl. 37, 441–449 (2012).
[CrossRef]

X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Lighting Res. Technol. 36, 183–199 (2004).
[CrossRef]

Hurlbert, A.

Y. Z. Ling and A. Hurlbert, “Color and size interactions in a real 3D object similarity task,” J. Vis. 4(9):5, 721–734 (2004).
[CrossRef]

Hurlbert, A. C.

M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

Judd, D. B.

Kersten, D.

M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

Kuniholm, P.

W. S. Taft, J. W. Mayer, R. Newman, D. Stulik, and P. Kuniholm, The Science of Paintings (Springer, 2000).

Ledda, P.

U. Leonards, R. Baddeley, I. D. Gilchrist, T. Troscianko, P. Ledda, and B. Williamson, “Mediaeval artists: masters in directing the observers’ gaze,” Curr. Biol. 17, R8–R9 (2007).
[CrossRef]

Leonards, U.

U. Leonards, R. Baddeley, I. D. Gilchrist, T. Troscianko, P. Ledda, and B. Williamson, “Mediaeval artists: masters in directing the observers’ gaze,” Curr. Biol. 17, R8–R9 (2007).
[CrossRef]

Ling, Y. Z.

Y. Z. Ling and A. Hurlbert, “Color and size interactions in a real 3D object similarity task,” J. Vis. 4(9):5, 721–734 (2004).
[CrossRef]

Linhares, J. M. M.

Liu, A.

A. Liu, A. Tuzikas, A. Zukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
[CrossRef]

Macadam, D. L.

Masuda, O.

O. Masuda and S. M. C. Nascimento, “Best lighting for naturalness and preference,” J. Vis. 13(7):4 (2013).
[CrossRef]

O. Masuda and S. M. C. Nascimento, “Lighting spectrum to maximize colorfulness,” Opt. Lett. 37, 407–409 (2012).
[CrossRef]

S. M. C. Nascimento and O. Masuda, “Psychophysical optimization of lighting spectra for naturalness, preference, and chromatic diversity,” J. Opt. Soc. Am. A 29, A144–A151 (2012).

S. M. C. Nascimento and O. Masuda, “Visual effects of real light sources of arbitrary spectra on real objects and scenes,” in AIC Colour 2013, 12th Congress of the International Colour Association Newcastle Upon Tyne, L. MacDonald, S. Westland, and S. Wuerger, eds. (AIC International Colour Association, UK, 2013), Vol. 1, pp. 287–290.

Mayer, J. W.

W. S. Taft, J. W. Mayer, R. Newman, D. Stulik, and P. Kuniholm, The Science of Paintings (Springer, 2000).

Miller, P. R.

S. K. Shevell and P. R. Miller, “Color perception with test and adapting lights perceived in different depth planes,” Vis. Res. 36, 949–954 (1996).
[CrossRef]

Nascimento, S. M. C.

O. Masuda and S. M. C. Nascimento, “Best lighting for naturalness and preference,” J. Vis. 13(7):4 (2013).
[CrossRef]

O. Masuda and S. M. C. Nascimento, “Lighting spectrum to maximize colorfulness,” Opt. Lett. 37, 407–409 (2012).
[CrossRef]

J. M. M. Linhares and S. M. C. Nascimento, “A chromatic diversity index based on complex scenes,” J. Opt. Soc. Am. A 29, A174–A181 (2012).
[CrossRef]

S. M. C. Nascimento and O. Masuda, “Psychophysical optimization of lighting spectra for naturalness, preference, and chromatic diversity,” J. Opt. Soc. Am. A 29, A144–A151 (2012).

P. D. Pinto, J. M. M. Linhares, and S. M. C. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A 25, 623–630 (2008).

P. D. Pinto, J. M. M. Linhares, J. A. Carvalhal, and S. M. C. Nascimento, “Psychophysical estimation of the best illumination for appreciation of Renaissance paintings,” Vis. Neurosci. 23, 669–674 (2006).
[CrossRef]

S. M. C. Nascimento and O. Masuda, “Visual effects of real light sources of arbitrary spectra on real objects and scenes,” in AIC Colour 2013, 12th Congress of the International Colour Association Newcastle Upon Tyne, L. MacDonald, S. Westland, and S. Wuerger, eds. (AIC International Colour Association, UK, 2013), Vol. 1, pp. 287–290.

Newman, R.

W. S. Taft, J. W. Mayer, R. Newman, D. Stulik, and P. Kuniholm, The Science of Paintings (Springer, 2000).

Pinto, P. D.

P. D. Pinto, J. M. M. Linhares, and S. M. C. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A 25, 623–630 (2008).

P. D. Pinto, J. M. M. Linhares, J. A. Carvalhal, and S. M. C. Nascimento, “Psychophysical estimation of the best illumination for appreciation of Renaissance paintings,” Vis. Neurosci. 23, 669–674 (2006).
[CrossRef]

Pointer, M. R.

Royer, M. P.

M. P. Royer, K. W. Houser, and A. M. Wilkerson, “Color discrimination capability under highly structured spectra,” Color Res. Appl. 37, 441–449 (2012).
[CrossRef]

Ruppertsberg, A. I.

M. Hedrich, M. Bloj, and A. I. Ruppertsberg, “Color constancy improves for real 3D objects,” J. Vis. 9(4):16 (2009).
[CrossRef]

Ryckaert, W. R.

Scuello, M.

M. Scuello, I. Abramov, J. Gordon, S. Weintraub, and S. Weintra, “Museum lighting: optimizing the illuminant,” Color Res. Appl. 29, 121–127 (2004).
[CrossRef]

Shevell, S. K.

J. N. Yang and S. K. Shevell, “Stereo disparity improves color constancy,” Vis. Res. 42, 1979–1989 (2002).
[CrossRef]

S. K. Shevell and P. R. Miller, “Color perception with test and adapting lights perceived in different depth planes,” Vis. Res. 36, 949–954 (1996).
[CrossRef]

Shur, M.

A. Liu, A. Tuzikas, A. Zukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
[CrossRef]

Smet, K.

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Stulik, D.

W. S. Taft, J. W. Mayer, R. Newman, D. Stulik, and P. Kuniholm, The Science of Paintings (Springer, 2000).

Taft, W. S.

W. S. Taft, J. W. Mayer, R. Newman, D. Stulik, and P. Kuniholm, The Science of Paintings (Springer, 2000).

Thornton, W. A.

W. A. Thornton, “Colour discrimination enhancement by the illuminant,” in Second Symposium of the International Research Group on Colour Vision Deficiencies (Karger, 1974), pp. 312–313.

Troscianko, T.

U. Leonards, R. Baddeley, I. D. Gilchrist, T. Troscianko, P. Ledda, and B. Williamson, “Mediaeval artists: masters in directing the observers’ gaze,” Curr. Biol. 17, R8–R9 (2007).
[CrossRef]

Tuzikas, A.

A. Liu, A. Tuzikas, A. Zukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
[CrossRef]

Uchikawa, K.

Y. Yamauchi and K. Uchikawa, “Depth information affects judgment of the surface-color mode appearance,” J. Vis. 14(6), 515–524 (2005).

Vaicekauskas, R.

A. Liu, A. Tuzikas, A. Zukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
[CrossRef]

Vitta, P.

A. Liu, A. Tuzikas, A. Zukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
[CrossRef]

Weale, R.

R. Weale, “The truth and something besides,” New Scientist 4, 13–15 (1973).

Weintra, S.

M. Scuello, I. Abramov, J. Gordon, S. Weintraub, and S. Weintra, “Museum lighting: optimizing the illuminant,” Color Res. Appl. 29, 121–127 (2004).
[CrossRef]

Weintraub, S.

M. Scuello, I. Abramov, J. Gordon, S. Weintraub, and S. Weintra, “Museum lighting: optimizing the illuminant,” Color Res. Appl. 29, 121–127 (2004).
[CrossRef]

Werner, A.

A. Werner, “The influence of depth segmentation on colour constancy,” Perception 35, 1171–1184 (2006).
[CrossRef]

WestFall, N.

M. F. Delgado, C. W. Dirk, J. Druzik, and N. WestFall, “Lighting the world’s treasures: approaches to safer museum lighting,” Color Res. Appl. 36, 238–254 (2011).
[CrossRef]

Wilkerson, A. M.

M. P. Royer, K. W. Houser, and A. M. Wilkerson, “Color discrimination capability under highly structured spectra,” Color Res. Appl. 37, 441–449 (2012).
[CrossRef]

Williamson, B.

U. Leonards, R. Baddeley, I. D. Gilchrist, T. Troscianko, P. Ledda, and B. Williamson, “Mediaeval artists: masters in directing the observers’ gaze,” Curr. Biol. 17, R8–R9 (2007).
[CrossRef]

Wyszecki, G.

Yamauchi, Y.

Y. Yamauchi and K. Uchikawa, “Depth information affects judgment of the surface-color mode appearance,” J. Vis. 14(6), 515–524 (2005).

Yang, J. N.

J. N. Yang and S. K. Shevell, “Stereo disparity improves color constancy,” Vis. Res. 42, 1979–1989 (2002).
[CrossRef]

Zukauskas, A.

A. Liu, A. Tuzikas, A. Zukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
[CrossRef]

Color Res. Appl. (4)

M. F. Delgado, C. W. Dirk, J. Druzik, and N. WestFall, “Lighting the world’s treasures: approaches to safer museum lighting,” Color Res. Appl. 36, 238–254 (2011).
[CrossRef]

M. P. Royer, K. W. Houser, and A. M. Wilkerson, “Color discrimination capability under highly structured spectra,” Color Res. Appl. 37, 441–449 (2012).
[CrossRef]

R. S. Berns, “Designing white-light LED lighting for the display of art: a feasibility study,” Color Res. Appl. 36, 324–334 (2011).
[CrossRef]

M. Scuello, I. Abramov, J. Gordon, S. Weintraub, and S. Weintra, “Museum lighting: optimizing the illuminant,” Color Res. Appl. 29, 121–127 (2004).
[CrossRef]

Curr. Biol. (1)

U. Leonards, R. Baddeley, I. D. Gilchrist, T. Troscianko, P. Ledda, and B. Williamson, “Mediaeval artists: masters in directing the observers’ gaze,” Curr. Biol. 17, R8–R9 (2007).
[CrossRef]

IEEE Photonics J. (1)

A. Liu, A. Tuzikas, A. Zukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J. 5(4), 6801010 (2013).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

J. Vis. (4)

Y. Yamauchi and K. Uchikawa, “Depth information affects judgment of the surface-color mode appearance,” J. Vis. 14(6), 515–524 (2005).

Y. Z. Ling and A. Hurlbert, “Color and size interactions in a real 3D object similarity task,” J. Vis. 4(9):5, 721–734 (2004).
[CrossRef]

M. Hedrich, M. Bloj, and A. I. Ruppertsberg, “Color constancy improves for real 3D objects,” J. Vis. 9(4):16 (2009).
[CrossRef]

O. Masuda and S. M. C. Nascimento, “Best lighting for naturalness and preference,” J. Vis. 13(7):4 (2013).
[CrossRef]

Lighting Res. Technol. (1)

X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Lighting Res. Technol. 36, 183–199 (2004).
[CrossRef]

Nature (1)

M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

New Scientist (1)

R. Weale, “The truth and something besides,” New Scientist 4, 13–15 (1973).

Opt. Express (1)

Opt. Lett. (1)

Perception (1)

A. Werner, “The influence of depth segmentation on colour constancy,” Perception 35, 1171–1184 (2006).
[CrossRef]

Vis. Neurosci. (1)

P. D. Pinto, J. M. M. Linhares, J. A. Carvalhal, and S. M. C. Nascimento, “Psychophysical estimation of the best illumination for appreciation of Renaissance paintings,” Vis. Neurosci. 23, 669–674 (2006).
[CrossRef]

Vis. Res. (3)

S. K. Shevell and P. R. Miller, “Color perception with test and adapting lights perceived in different depth planes,” Vis. Res. 36, 949–954 (1996).
[CrossRef]

D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

J. N. Yang and S. K. Shevell, “Stereo disparity improves color constancy,” Vis. Res. 42, 1979–1989 (2002).
[CrossRef]

Other (5)

W. S. Taft, J. W. Mayer, R. Newman, D. Stulik, and P. Kuniholm, The Science of Paintings (Springer, 2000).

CIE, “Control of damage to museum objects by optical radiation,” (CIE, 2004).

W. A. Thornton, “Colour discrimination enhancement by the illuminant,” in Second Symposium of the International Research Group on Colour Vision Deficiencies (Karger, 1974), pp. 312–313.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

S. M. C. Nascimento and O. Masuda, “Visual effects of real light sources of arbitrary spectra on real objects and scenes,” in AIC Colour 2013, 12th Congress of the International Colour Association Newcastle Upon Tyne, L. MacDonald, S. Westland, and S. Wuerger, eds. (AIC International Colour Association, UK, 2013), Vol. 1, pp. 287–290.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Pictures of the paintings used in the experiment. They are the same as those used in the previous study based on monitor simulations [15] and belong to the collection of Museu Nogueira da Silva, Braga, Portugal. The set consisted of 11 oil paintings; seven from the Renaissance époque painted on wood (A–E, H and I) and four (F, G, J, and K) from the 20th century painted on canvas. The pictures represent the full area of each painting and not the areas tested, which were smaller. Adapted from [15].

Fig. 2.
Fig. 2.

Painting illuminated by the tunable light source OL 490. The light from the source is delivered to the painting by a light guide coupled with a diffuser attached to the tip. The size of the portion of the paintings that could be seen was 21 cm × 30 cm corresponding to a visual angle of 12 ° × 17 ° . The illuminance on the paintings was adjusted to be about 200 lux.

Fig. 3.
Fig. 3.

Chromatic grid over and around daylight locus (dots) and the corresponding values measured by the spectroradiometer PR650 on a BaSO4 illuminated by the OL 490 (crosses). Average error in CIE 1960 UCS was 0.002.

Fig. 4.
Fig. 4.

Illustration of daylight spectra produced by the tunable light source OL 490 at different CCT (solid lines) and the corresponding ideal ones (dotted lines). Empirical data was obtained with a spectroradiometer PR650 on a BaSO4 illuminated by the OL 490.

Fig. 5.
Fig. 5.

Results of the experiment for each observer and painting for the two viewing conditions. Gray symbols represent the mean of eight trials for the monitor condition and black symbols the mean of 12 trials for the real paintings illuminated by the OL 490 light source. Error bars represent standard error of the means. The dotted lines are included only to improve visualization. For readability, the vertical axis is labeled in CCT but is spaced uniformly in RCT.

Fig. 6.
Fig. 6.

Averages across observers for each painting and for the two viewing conditions. Gray bars represent the data for the monitor viewing and striped bars the data for the real paintings illuminated by the OL 490 light source. The error bars represent standard error of the means across observers. For readability, the vertical axis is labeled in CCT but is spaced uniformly in RCT. For comparison, the results of the experiment carried out in similar conditions as the monitor viewing condition previously reported [15] are represented by black circles. The error bars in these symbols represent standard error of the means across observers.

Tables (1)

Tables Icon

Table 1. Average RCT and s.e.m Across Observers for Each Painting and for the Two Viewing Conditionsa

Metrics