Abstract

The electroretinogram (ERG) provides information about outer retina function in both clinical and research applications. ERG components elicited by light increments and decrements can be separated using a long-flash paradigm in which periods of light ON and OFF are alternated. Here, the ON–OFF ERG is combined with a silent substitution technique to elicit responses from individual cone photoreceptor classes by modulating the intensities of three color lights between the two periods. The results focus on the short wavelength (S) cone pathways since they are vulnerable to disease and because there are many unanswered questions about S-cone ON and OFF circuitry.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kremers, T. Usui, H. P. N. Scholl, and L. T. Sharpe, “Cone signal contributions to electrograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).
  2. D. H. Brainard, J. B. Calderone, A. K. Nugent, and G. H. Jacobs, “Flicker ERG responses to stimuli parametrically modulated in color space,” Investig. Ophthalmol. Vis. Sci. 40, 2840–2847 (1999).
  3. J. Kremers, “The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal human retina,” Prog. Retinal Eye Res. 22, 579–605 (2003).
    [CrossRef]
  4. K. Klug, S. Herr, I. Ngo, P. Sterling, and S. J. Schein, “Macaque retina contains an S-cone OFF midget pathway,” J. Neurosci. 39, 9881–9887 (2003).
  5. S. C. S. Lee, I. Telkes, and U. Grunert, “S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus,” Eur. J. Neurosci. 22, 437–447 (2005).
    [CrossRef]
  6. P. Gouras and C. J. Mackay, “Electroretinographic responses of the short-wavelength-sensitive cones,” Investig. Ophthalmol. Vis. Sci. 31, 1203–1209 (1990).
  7. M. Crognale, G. H. Jacobs, and J. Neitz, “Flicker photometric measurements of short wavelength sensitive cones,” in Colour Vision Deficiencies X, B. Drum, J. D. Moreland, and A. Serra, eds. (Kluwer Academic, 1991), pp. 341–346.
  8. G. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
    [CrossRef]
  9. M. Sawusch, J. Pokorny, and V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Investig. Ophthalmol Vis. Sci. 28, 966–974 (1987).
  10. N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).
  11. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
    [CrossRef]
  12. J. Carroll, C. McMahon, M. Neitz, and J. Neitz, “Flicker-photometric electroretinogram estimates of L: M cone photoreceptor ratio in men with photopigment spectra derived from genetics,” J. Opt. Soc. Am. A 17, 499–509 (2000).
    [CrossRef]
  13. O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982).
    [CrossRef]
  14. J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
    [CrossRef]
  15. A. Stockman, D. I. A. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2520 (1993).
    [CrossRef]
  16. T. W. Kraft, J. Neitz, and M. Neitz, “Spectra of human L cones,” Vis. Res. 38, 3663–3670 (1998).
    [CrossRef]
  17. A. Stockman, L. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength cones,” Vis. Res. 39, 2901–2927 (1999).
    [CrossRef]
  18. A. Stockman and L. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
    [CrossRef]
  19. A. Stockman, L. T. Sharpe, S. Merbs, and J. Nathans, “Spectral sensitivities of human cone visual pigments determined in vivo and in vitro,” Methods Enzymol. 316, 626–650 (2000).
    [CrossRef]
  20. J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325, 439–441 (1987).
    [CrossRef]
  21. L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, and J. Nathans, “Red, green, and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).
  22. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
    [CrossRef]
  23. D. J. Calkins, Y. Tsukamoto, and P. Sterling, “Microcircuitry and mosaic of a blue–yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1998).
  24. S. Herr, K. Klug, P. Sterling, and S. J. Schein, “Inner S-cone bipolar cells provide all of the central elements for s cones in macaque retina,” J. Comp. Neurol. 457, 185–201 (2003).
    [CrossRef]
  25. S. Haverkamp, H. Wassle, J. Duebel, T. Kuner, G. J. Augustine, G. Feng, and T. Euler, “The primordial, blue-cone color system of the mouse retina,” J. Neurosci. 25, 5438–5445 (2005).
    [CrossRef]
  26. P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
    [CrossRef]
  27. J. G. Robson, S. M. Saszik, J. Ahmed, and L. J. Frishman, “Rod and cone contributions to the a-wave of the electroretinogram of the macaque,” J. Physiol. 547, 509–530 (2003).
    [CrossRef]
  28. D. R. Copenhagen, J. F. Ashmore, and J. K. Schnapf, “Kinetics of synaptic transmission from photoreceptors to horizontal and bipolar cells in turtle retina,” Vis. Res. 23, 363–369 (1983).
    [CrossRef]
  29. D. A. Burkhardt, “Contrast processing by ON and OFF bipolar cells,” Vis. Neurosci. 28, 69–75 (2011).
    [CrossRef]
  30. C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Syntaxin-4 is highly enriched beneath S-cone pedicles in the primate retina,” Investig. Ophthalmol. Vis. Sci. 53, ARVO abstract, 6323 (2012).
  31. C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Specialized synaptic pathway for chromatic signals beneath S-cone photoreceptors is common to human, Old and New World primates,” J. Opt. Soc. Am. A 31, A189–A194 (2014).
  32. J. Neitz, M. Neitz, and C. Puller, Department of Ophthalmology, University of Washington, Seattle, Washington 98109, USA, are preparing a manuscript to be called “Synaptic elements for GABAergic feed-forward signaling between HII horizontal cells and blue cone bipolar cells are enriched beneath primate S-cones.”

2014 (1)

2012 (1)

C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Syntaxin-4 is highly enriched beneath S-cone pedicles in the primate retina,” Investig. Ophthalmol. Vis. Sci. 53, ARVO abstract, 6323 (2012).

2011 (1)

D. A. Burkhardt, “Contrast processing by ON and OFF bipolar cells,” Vis. Neurosci. 28, 69–75 (2011).
[CrossRef]

2005 (3)

S. Haverkamp, H. Wassle, J. Duebel, T. Kuner, G. J. Augustine, G. Feng, and T. Euler, “The primordial, blue-cone color system of the mouse retina,” J. Neurosci. 25, 5438–5445 (2005).
[CrossRef]

S. C. S. Lee, I. Telkes, and U. Grunert, “S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus,” Eur. J. Neurosci. 22, 437–447 (2005).
[CrossRef]

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

2003 (4)

J. Kremers, “The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal human retina,” Prog. Retinal Eye Res. 22, 579–605 (2003).
[CrossRef]

K. Klug, S. Herr, I. Ngo, P. Sterling, and S. J. Schein, “Macaque retina contains an S-cone OFF midget pathway,” J. Neurosci. 39, 9881–9887 (2003).

J. G. Robson, S. M. Saszik, J. Ahmed, and L. J. Frishman, “Rod and cone contributions to the a-wave of the electroretinogram of the macaque,” J. Physiol. 547, 509–530 (2003).
[CrossRef]

S. Herr, K. Klug, P. Sterling, and S. J. Schein, “Inner S-cone bipolar cells provide all of the central elements for s cones in macaque retina,” J. Comp. Neurol. 457, 185–201 (2003).
[CrossRef]

2001 (1)

N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).

2000 (3)

J. Carroll, C. McMahon, M. Neitz, and J. Neitz, “Flicker-photometric electroretinogram estimates of L: M cone photoreceptor ratio in men with photopigment spectra derived from genetics,” J. Opt. Soc. Am. A 17, 499–509 (2000).
[CrossRef]

A. Stockman and L. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
[CrossRef]

A. Stockman, L. T. Sharpe, S. Merbs, and J. Nathans, “Spectral sensitivities of human cone visual pigments determined in vivo and in vitro,” Methods Enzymol. 316, 626–650 (2000).
[CrossRef]

1999 (5)

J. Kremers, T. Usui, H. P. N. Scholl, and L. T. Sharpe, “Cone signal contributions to electrograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

D. H. Brainard, J. B. Calderone, A. K. Nugent, and G. H. Jacobs, “Flicker ERG responses to stimuli parametrically modulated in color space,” Investig. Ophthalmol. Vis. Sci. 40, 2840–2847 (1999).

G. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
[CrossRef]

A. Stockman, L. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength cones,” Vis. Res. 39, 2901–2927 (1999).
[CrossRef]

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

1998 (3)

D. J. Calkins, Y. Tsukamoto, and P. Sterling, “Microcircuitry and mosaic of a blue–yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1998).

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, and J. Nathans, “Red, green, and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).

T. W. Kraft, J. Neitz, and M. Neitz, “Spectra of human L cones,” Vis. Res. 38, 3663–3670 (1998).
[CrossRef]

1994 (1)

P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
[CrossRef]

1993 (1)

1990 (1)

P. Gouras and C. J. Mackay, “Electroretinographic responses of the short-wavelength-sensitive cones,” Investig. Ophthalmol. Vis. Sci. 31, 1203–1209 (1990).

1987 (3)

M. Sawusch, J. Pokorny, and V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Investig. Ophthalmol Vis. Sci. 28, 966–974 (1987).

J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325, 439–441 (1987).
[CrossRef]

J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[CrossRef]

1983 (1)

D. R. Copenhagen, J. F. Ashmore, and J. K. Schnapf, “Kinetics of synaptic transmission from photoreceptors to horizontal and bipolar cells in turtle retina,” Vis. Res. 23, 363–369 (1983).
[CrossRef]

1982 (1)

O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982).
[CrossRef]

Ahmed, J.

J. G. Robson, S. M. Saszik, J. Ahmed, and L. J. Frishman, “Rod and cone contributions to the a-wave of the electroretinogram of the macaque,” J. Physiol. 547, 509–530 (2003).
[CrossRef]

Aldebasi, Y. H.

N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).

Arden, G.

G. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
[CrossRef]

Ashmore, J. F.

D. R. Copenhagen, J. F. Ashmore, and J. K. Schnapf, “Kinetics of synaptic transmission from photoreceptors to horizontal and bipolar cells in turtle retina,” Vis. Res. 23, 363–369 (1983).
[CrossRef]

Augustine, G. J.

S. Haverkamp, H. Wassle, J. Duebel, T. Kuner, G. J. Augustine, G. Feng, and T. Euler, “The primordial, blue-cone color system of the mouse retina,” J. Neurosci. 25, 5438–5445 (2005).
[CrossRef]

Baylor, D. A.

J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325, 439–441 (1987).
[CrossRef]

Berninger, T.

G. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
[CrossRef]

Brainard, D. H.

D. H. Brainard, J. B. Calderone, A. K. Nugent, and G. H. Jacobs, “Flicker ERG responses to stimuli parametrically modulated in color space,” Investig. Ophthalmol. Vis. Sci. 40, 2840–2847 (1999).

Burkhardt, D. A.

D. A. Burkhardt, “Contrast processing by ON and OFF bipolar cells,” Vis. Neurosci. 28, 69–75 (2011).
[CrossRef]

C. Puller,

J. Neitz, M. Neitz, and C. Puller, Department of Ophthalmology, University of Washington, Seattle, Washington 98109, USA, are preparing a manuscript to be called “Synaptic elements for GABAergic feed-forward signaling between HII horizontal cells and blue cone bipolar cells are enriched beneath primate S-cones.”

Calderone, J. B.

D. H. Brainard, J. B. Calderone, A. K. Nugent, and G. H. Jacobs, “Flicker ERG responses to stimuli parametrically modulated in color space,” Investig. Ophthalmol. Vis. Sci. 40, 2840–2847 (1999).

Calkins, D. J.

D. J. Calkins, Y. Tsukamoto, and P. Sterling, “Microcircuitry and mosaic of a blue–yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1998).

Carroll, J.

Chiti, Z.

N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).

Copenhagen, D. R.

D. R. Copenhagen, J. F. Ashmore, and J. K. Schnapf, “Kinetics of synaptic transmission from photoreceptors to horizontal and bipolar cells in turtle retina,” Vis. Res. 23, 363–369 (1983).
[CrossRef]

Crognale, M.

M. Crognale, G. H. Jacobs, and J. Neitz, “Flicker photometric measurements of short wavelength sensitive cones,” in Colour Vision Deficiencies X, B. Drum, J. D. Moreland, and A. Serra, eds. (Kluwer Academic, 1991), pp. 341–346.

Drasdo, N.

N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).

Duebel, J.

S. Haverkamp, H. Wassle, J. Duebel, T. Kuner, G. J. Augustine, G. Feng, and T. Euler, “The primordial, blue-cone color system of the mouse retina,” J. Neurosci. 25, 5438–5445 (2005).
[CrossRef]

Estévez, O.

O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982).
[CrossRef]

Euler, T.

S. Haverkamp, H. Wassle, J. Duebel, T. Kuner, G. J. Augustine, G. Feng, and T. Euler, “The primordial, blue-cone color system of the mouse retina,” J. Neurosci. 25, 5438–5445 (2005).
[CrossRef]

Fach, C.

A. Stockman, L. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength cones,” Vis. Res. 39, 2901–2927 (1999).
[CrossRef]

Feng, G.

S. Haverkamp, H. Wassle, J. Duebel, T. Kuner, G. J. Augustine, G. Feng, and T. Euler, “The primordial, blue-cone color system of the mouse retina,” J. Neurosci. 25, 5438–5445 (2005).
[CrossRef]

Frishman, L. J.

J. G. Robson, S. M. Saszik, J. Ahmed, and L. J. Frishman, “Rod and cone contributions to the a-wave of the electroretinogram of the macaque,” J. Physiol. 547, 509–530 (2003).
[CrossRef]

Gouras, P.

P. Gouras and C. J. Mackay, “Electroretinographic responses of the short-wavelength-sensitive cones,” Investig. Ophthalmol. Vis. Sci. 31, 1203–1209 (1990).

Grunert, U.

S. C. S. Lee, I. Telkes, and U. Grunert, “S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus,” Eur. J. Neurosci. 22, 437–447 (2005).
[CrossRef]

Haverkamp, S.

S. Haverkamp, H. Wassle, J. Duebel, T. Kuner, G. J. Augustine, G. Feng, and T. Euler, “The primordial, blue-cone color system of the mouse retina,” J. Neurosci. 25, 5438–5445 (2005).
[CrossRef]

Herr, S.

S. Herr, K. Klug, P. Sterling, and S. J. Schein, “Inner S-cone bipolar cells provide all of the central elements for s cones in macaque retina,” J. Comp. Neurol. 457, 185–201 (2003).
[CrossRef]

K. Klug, S. Herr, I. Ngo, P. Sterling, and S. J. Schein, “Macaque retina contains an S-cone OFF midget pathway,” J. Neurosci. 39, 9881–9887 (2003).

Hofer, H.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

Hogg, C. R.

G. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
[CrossRef]

Holder, G. E.

G. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
[CrossRef]

J. Neitz,

J. Neitz, M. Neitz, and C. Puller, Department of Ophthalmology, University of Washington, Seattle, Washington 98109, USA, are preparing a manuscript to be called “Synaptic elements for GABAergic feed-forward signaling between HII horizontal cells and blue cone bipolar cells are enriched beneath primate S-cones.”

Jacobs, G. H.

D. H. Brainard, J. B. Calderone, A. K. Nugent, and G. H. Jacobs, “Flicker ERG responses to stimuli parametrically modulated in color space,” Investig. Ophthalmol. Vis. Sci. 40, 2840–2847 (1999).

M. Crognale, G. H. Jacobs, and J. Neitz, “Flicker photometric measurements of short wavelength sensitive cones,” in Colour Vision Deficiencies X, B. Drum, J. D. Moreland, and A. Serra, eds. (Kluwer Academic, 1991), pp. 341–346.

Jägle, H.

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, and J. Nathans, “Red, green, and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).

Johnson, N. E.

Klausen, G.

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, and J. Nathans, “Red, green, and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).

Klug, K.

S. Herr, K. Klug, P. Sterling, and S. J. Schein, “Inner S-cone bipolar cells provide all of the central elements for s cones in macaque retina,” J. Comp. Neurol. 457, 185–201 (2003).
[CrossRef]

K. Klug, S. Herr, I. Ngo, P. Sterling, and S. J. Schein, “Macaque retina contains an S-cone OFF midget pathway,” J. Neurosci. 39, 9881–9887 (2003).

Knau, H.

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, and J. Nathans, “Red, green, and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).

Kraft, T. W.

T. W. Kraft, J. Neitz, and M. Neitz, “Spectra of human L cones,” Vis. Res. 38, 3663–3670 (1998).
[CrossRef]

J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325, 439–441 (1987).
[CrossRef]

Kremers, J.

J. Kremers, “The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal human retina,” Prog. Retinal Eye Res. 22, 579–605 (2003).
[CrossRef]

J. Kremers, T. Usui, H. P. N. Scholl, and L. T. Sharpe, “Cone signal contributions to electrograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

Kuner, T.

S. Haverkamp, H. Wassle, J. Duebel, T. Kuner, G. J. Augustine, G. Feng, and T. Euler, “The primordial, blue-cone color system of the mouse retina,” J. Neurosci. 25, 5438–5445 (2005).
[CrossRef]

Lee, S. C. S.

S. C. S. Lee, I. Telkes, and U. Grunert, “S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus,” Eur. J. Neurosci. 22, 437–447 (2005).
[CrossRef]

Lutze, M.

M. Neitz,

J. Neitz, M. Neitz, and C. Puller, Department of Ophthalmology, University of Washington, Seattle, Washington 98109, USA, are preparing a manuscript to be called “Synaptic elements for GABAergic feed-forward signaling between HII horizontal cells and blue cone bipolar cells are enriched beneath primate S-cones.”

Mackay, C. J.

P. Gouras and C. J. Mackay, “Electroretinographic responses of the short-wavelength-sensitive cones,” Investig. Ophthalmol. Vis. Sci. 31, 1203–1209 (1990).

MacLeod, D. I. A.

Manookin, M. B.

C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Specialized synaptic pathway for chromatic signals beneath S-cone photoreceptors is common to human, Old and New World primates,” J. Opt. Soc. Am. A 31, A189–A194 (2014).

C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Syntaxin-4 is highly enriched beneath S-cone pedicles in the primate retina,” Investig. Ophthalmol. Vis. Sci. 53, ARVO abstract, 6323 (2012).

McMahon, C.

Merbs, S.

A. Stockman, L. T. Sharpe, S. Merbs, and J. Nathans, “Spectral sensitivities of human cone visual pigments determined in vivo and in vitro,” Methods Enzymol. 316, 626–650 (2000).
[CrossRef]

Morgan, J. E.

N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).

Mortlock, K. E.

N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).

Murayama, K.

P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
[CrossRef]

Naarendorp, F.

P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
[CrossRef]

Nathans, J.

A. Stockman, L. T. Sharpe, S. Merbs, and J. Nathans, “Spectral sensitivities of human cone visual pigments determined in vivo and in vitro,” Methods Enzymol. 316, 626–650 (2000).
[CrossRef]

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, and J. Nathans, “Red, green, and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).

Neitz, J.

C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Specialized synaptic pathway for chromatic signals beneath S-cone photoreceptors is common to human, Old and New World primates,” J. Opt. Soc. Am. A 31, A189–A194 (2014).

C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Syntaxin-4 is highly enriched beneath S-cone pedicles in the primate retina,” Investig. Ophthalmol. Vis. Sci. 53, ARVO abstract, 6323 (2012).

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

J. Carroll, C. McMahon, M. Neitz, and J. Neitz, “Flicker-photometric electroretinogram estimates of L: M cone photoreceptor ratio in men with photopigment spectra derived from genetics,” J. Opt. Soc. Am. A 17, 499–509 (2000).
[CrossRef]

T. W. Kraft, J. Neitz, and M. Neitz, “Spectra of human L cones,” Vis. Res. 38, 3663–3670 (1998).
[CrossRef]

M. Crognale, G. H. Jacobs, and J. Neitz, “Flicker photometric measurements of short wavelength sensitive cones,” in Colour Vision Deficiencies X, B. Drum, J. D. Moreland, and A. Serra, eds. (Kluwer Academic, 1991), pp. 341–346.

Neitz, M.

C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Specialized synaptic pathway for chromatic signals beneath S-cone photoreceptors is common to human, Old and New World primates,” J. Opt. Soc. Am. A 31, A189–A194 (2014).

C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Syntaxin-4 is highly enriched beneath S-cone pedicles in the primate retina,” Investig. Ophthalmol. Vis. Sci. 53, ARVO abstract, 6323 (2012).

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

J. Carroll, C. McMahon, M. Neitz, and J. Neitz, “Flicker-photometric electroretinogram estimates of L: M cone photoreceptor ratio in men with photopigment spectra derived from genetics,” J. Opt. Soc. Am. A 17, 499–509 (2000).
[CrossRef]

T. W. Kraft, J. Neitz, and M. Neitz, “Spectra of human L cones,” Vis. Res. 38, 3663–3670 (1998).
[CrossRef]

Ngo, I.

K. Klug, S. Herr, I. Ngo, P. Sterling, and S. J. Schein, “Macaque retina contains an S-cone OFF midget pathway,” J. Neurosci. 39, 9881–9887 (2003).

North, R. V.

N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).

Nugent, A. K.

D. H. Brainard, J. B. Calderone, A. K. Nugent, and G. H. Jacobs, “Flicker ERG responses to stimuli parametrically modulated in color space,” Investig. Ophthalmol. Vis. Sci. 40, 2840–2847 (1999).

Pokorny, J.

M. Sawusch, J. Pokorny, and V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Investig. Ophthalmol Vis. Sci. 28, 966–974 (1987).

J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[CrossRef]

Puller, C.

C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Specialized synaptic pathway for chromatic signals beneath S-cone photoreceptors is common to human, Old and New World primates,” J. Opt. Soc. Am. A 31, A189–A194 (2014).

C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Syntaxin-4 is highly enriched beneath S-cone pedicles in the primate retina,” Investig. Ophthalmol. Vis. Sci. 53, ARVO abstract, 6323 (2012).

Reitner, A.

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, and J. Nathans, “Red, green, and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).

Robson, J. G.

J. G. Robson, S. M. Saszik, J. Ahmed, and L. J. Frishman, “Rod and cone contributions to the a-wave of the electroretinogram of the macaque,” J. Physiol. 547, 509–530 (2003).
[CrossRef]

Roorda, A.

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

Saszik, S. M.

J. G. Robson, S. M. Saszik, J. Ahmed, and L. J. Frishman, “Rod and cone contributions to the a-wave of the electroretinogram of the macaque,” J. Physiol. 547, 509–530 (2003).
[CrossRef]

Sawusch, M.

M. Sawusch, J. Pokorny, and V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Investig. Ophthalmol Vis. Sci. 28, 966–974 (1987).

Schein, S. J.

K. Klug, S. Herr, I. Ngo, P. Sterling, and S. J. Schein, “Macaque retina contains an S-cone OFF midget pathway,” J. Neurosci. 39, 9881–9887 (2003).

S. Herr, K. Klug, P. Sterling, and S. J. Schein, “Inner S-cone bipolar cells provide all of the central elements for s cones in macaque retina,” J. Comp. Neurol. 457, 185–201 (2003).
[CrossRef]

Schnapf, J. K.

D. R. Copenhagen, J. F. Ashmore, and J. K. Schnapf, “Kinetics of synaptic transmission from photoreceptors to horizontal and bipolar cells in turtle retina,” Vis. Res. 23, 363–369 (1983).
[CrossRef]

Schnapf, J. L.

J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325, 439–441 (1987).
[CrossRef]

Scholl, H. P. N.

J. Kremers, T. Usui, H. P. N. Scholl, and L. T. Sharpe, “Cone signal contributions to electrograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

Sharpe, L.

A. Stockman and L. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
[CrossRef]

A. Stockman, L. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength cones,” Vis. Res. 39, 2901–2927 (1999).
[CrossRef]

Sharpe, L. T.

A. Stockman, L. T. Sharpe, S. Merbs, and J. Nathans, “Spectral sensitivities of human cone visual pigments determined in vivo and in vitro,” Methods Enzymol. 316, 626–650 (2000).
[CrossRef]

J. Kremers, T. Usui, H. P. N. Scholl, and L. T. Sharpe, “Cone signal contributions to electrograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, and J. Nathans, “Red, green, and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).

Sieving, P. A.

P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
[CrossRef]

Smith, V. C.

J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[CrossRef]

M. Sawusch, J. Pokorny, and V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Investig. Ophthalmol Vis. Sci. 28, 966–974 (1987).

Spekreijse, H.

O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982).
[CrossRef]

Sterling, P.

K. Klug, S. Herr, I. Ngo, P. Sterling, and S. J. Schein, “Macaque retina contains an S-cone OFF midget pathway,” J. Neurosci. 39, 9881–9887 (2003).

S. Herr, K. Klug, P. Sterling, and S. J. Schein, “Inner S-cone bipolar cells provide all of the central elements for s cones in macaque retina,” J. Comp. Neurol. 457, 185–201 (2003).
[CrossRef]

D. J. Calkins, Y. Tsukamoto, and P. Sterling, “Microcircuitry and mosaic of a blue–yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1998).

Stockman, A.

A. Stockman, L. T. Sharpe, S. Merbs, and J. Nathans, “Spectral sensitivities of human cone visual pigments determined in vivo and in vitro,” Methods Enzymol. 316, 626–650 (2000).
[CrossRef]

A. Stockman and L. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
[CrossRef]

A. Stockman, L. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength cones,” Vis. Res. 39, 2901–2927 (1999).
[CrossRef]

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, and J. Nathans, “Red, green, and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).

A. Stockman, D. I. A. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2520 (1993).
[CrossRef]

Telkes, I.

S. C. S. Lee, I. Telkes, and U. Grunert, “S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus,” Eur. J. Neurosci. 22, 437–447 (2005).
[CrossRef]

Tsukamoto, Y.

D. J. Calkins, Y. Tsukamoto, and P. Sterling, “Microcircuitry and mosaic of a blue–yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1998).

Tzekov, R.

G. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
[CrossRef]

Usui, T.

J. Kremers, T. Usui, H. P. N. Scholl, and L. T. Sharpe, “Cone signal contributions to electrograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

Wassle, H.

S. Haverkamp, H. Wassle, J. Duebel, T. Kuner, G. J. Augustine, G. Feng, and T. Euler, “The primordial, blue-cone color system of the mouse retina,” J. Neurosci. 25, 5438–5445 (2005).
[CrossRef]

Williams, D. R.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

Wolf, J.

G. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
[CrossRef]

Appl. Opt. (1)

Eur. J. Neurosci. (1)

S. C. S. Lee, I. Telkes, and U. Grunert, “S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus,” Eur. J. Neurosci. 22, 437–447 (2005).
[CrossRef]

Investig. Ophthalmol Vis. Sci. (1)

M. Sawusch, J. Pokorny, and V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Investig. Ophthalmol Vis. Sci. 28, 966–974 (1987).

Investig. Ophthalmol. Vis. Sci. (5)

N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).

P. Gouras and C. J. Mackay, “Electroretinographic responses of the short-wavelength-sensitive cones,” Investig. Ophthalmol. Vis. Sci. 31, 1203–1209 (1990).

J. Kremers, T. Usui, H. P. N. Scholl, and L. T. Sharpe, “Cone signal contributions to electrograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

D. H. Brainard, J. B. Calderone, A. K. Nugent, and G. H. Jacobs, “Flicker ERG responses to stimuli parametrically modulated in color space,” Investig. Ophthalmol. Vis. Sci. 40, 2840–2847 (1999).

C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Syntaxin-4 is highly enriched beneath S-cone pedicles in the primate retina,” Investig. Ophthalmol. Vis. Sci. 53, ARVO abstract, 6323 (2012).

J. Comp. Neurol. (1)

S. Herr, K. Klug, P. Sterling, and S. J. Schein, “Inner S-cone bipolar cells provide all of the central elements for s cones in macaque retina,” J. Comp. Neurol. 457, 185–201 (2003).
[CrossRef]

J. Neurosci. (5)

S. Haverkamp, H. Wassle, J. Duebel, T. Kuner, G. J. Augustine, G. Feng, and T. Euler, “The primordial, blue-cone color system of the mouse retina,” J. Neurosci. 25, 5438–5445 (2005).
[CrossRef]

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, and J. Nathans, “Red, green, and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).

D. J. Calkins, Y. Tsukamoto, and P. Sterling, “Microcircuitry and mosaic of a blue–yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1998).

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

K. Klug, S. Herr, I. Ngo, P. Sterling, and S. J. Schein, “Macaque retina contains an S-cone OFF midget pathway,” J. Neurosci. 39, 9881–9887 (2003).

J. Opt. Soc. Am. A (3)

J. Physiol. (1)

J. G. Robson, S. M. Saszik, J. Ahmed, and L. J. Frishman, “Rod and cone contributions to the a-wave of the electroretinogram of the macaque,” J. Physiol. 547, 509–530 (2003).
[CrossRef]

Methods Enzymol. (1)

A. Stockman, L. T. Sharpe, S. Merbs, and J. Nathans, “Spectral sensitivities of human cone visual pigments determined in vivo and in vitro,” Methods Enzymol. 316, 626–650 (2000).
[CrossRef]

Nature (2)

J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325, 439–441 (1987).
[CrossRef]

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

Prog. Retinal Eye Res. (1)

J. Kremers, “The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal human retina,” Prog. Retinal Eye Res. 22, 579–605 (2003).
[CrossRef]

Vis. Neurosci. (2)

P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
[CrossRef]

D. A. Burkhardt, “Contrast processing by ON and OFF bipolar cells,” Vis. Neurosci. 28, 69–75 (2011).
[CrossRef]

Vis. Res. (6)

D. R. Copenhagen, J. F. Ashmore, and J. K. Schnapf, “Kinetics of synaptic transmission from photoreceptors to horizontal and bipolar cells in turtle retina,” Vis. Res. 23, 363–369 (1983).
[CrossRef]

O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982).
[CrossRef]

G. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
[CrossRef]

T. W. Kraft, J. Neitz, and M. Neitz, “Spectra of human L cones,” Vis. Res. 38, 3663–3670 (1998).
[CrossRef]

A. Stockman, L. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength cones,” Vis. Res. 39, 2901–2927 (1999).
[CrossRef]

A. Stockman and L. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
[CrossRef]

Other (2)

M. Crognale, G. H. Jacobs, and J. Neitz, “Flicker photometric measurements of short wavelength sensitive cones,” in Colour Vision Deficiencies X, B. Drum, J. D. Moreland, and A. Serra, eds. (Kluwer Academic, 1991), pp. 341–346.

J. Neitz, M. Neitz, and C. Puller, Department of Ophthalmology, University of Washington, Seattle, Washington 98109, USA, are preparing a manuscript to be called “Synaptic elements for GABAergic feed-forward signaling between HII horizontal cells and blue cone bipolar cells are enriched beneath primate S-cones.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

This figure shows how the S-cone ERG settings were systematically adjusted from the theoretically calculated S-isolation point by using the +(L+M) signal contamination. (a) Shows ERG traces with different percentages of long wavelength silencing lights. A value of 1 corresponds to perfect isolation with no estimate for the yellowing of the lens. The top two traces (0.5 and 0.4) contain L/M-contamination at light offset, which indicates the silencing lights are still too bright. The next two traces (0.3 and 0.2) are noisy for the relatively small amount of averages, and the true S-cone ERG is in one or both of those traces; therefore they are not used in the fit. The bottom trace (0.1) contains obvious +(L+M)-contamination at light onset, which indicates the long wavelength silencing lights are too dim. (b) Shows the plots from the +(L+M) b-wave amplitudes. When obvious L/M-contamination showed up at light offset (0.5 and 0.4), b-wave amplitudes were negated and plotted. When obvious L/M contamination showed up at light onset (0.1), b-wave amplitudes were plotted. The data points were fit, and the x intercept was taken as the fine-tuned S-isolated condition. This example would predict turning the long wavelength silencing lights down to 0.25% of their calculated isolation without a lens estimate.

Fig. 2.
Fig. 2.

This graph contains the main L/M- and S-ERGs generated by the ON–OFF ERG paradigm. (a) Contains both the L/M-cone mediated trace (green) and the S-cone mediated trace (violet). The L/M-cone trace has got many of the features indicative of ON–OFF ERGs in response to white-light stimuli, with the exception that the tight filtering characteristics has removed much of the lower frequency noise not representative of photoreceptor or bipolar mediated responses. (b) Expands the first 100 ms after light onset. +(L+M) a and b waves occur at 17.3 and 30.8 ms, respectively (i, ii), and S-cone a and b waves occur at 26.2 and 40.3 ms, respectively (iii, iv). (c) Expands the first 100 ms after light offset. A (L+M) d-wave happens at 20.1 ms after light offset (v), and S-cones have no characteristic depolarization indicative of a d wave. In fact, the waveform seen at the light offset for S-cone responses is opposite in polarity to the d wave.

Fig. 3.
Fig. 3.

This figure shows the lens is the major factor in S-isolation calculations. (a) Is a table that contains four normal subjects (blue circles) and one subject with an IOL implant (red triangle). The empirical technique described in this paper was used on all of the subjects above, and the amount the silencing lights had to be decreased from a theoretical calculation that did not include a lens estimate is shown as the x intercept. The black line in (b) shows the Pokorny et al. age dependent lens transmission estimate multiplied by the 420 nm LED used in this experiment. The blue dots are the x intercept values found in the empirical technique. There is a close match between the intensity required of the longer wavelength silencing lights and the amount that the lens would decrease the 420 nm light. Although it is important to note that the 33-year-old would have had +(L+M) contamination in the +S phase if the pure theoretical calculation had been used. Additionally, the subject with the IOL implant required brighter long wavelength silencing lights then the theoretical calculation predicts.

Fig. 4.
Fig. 4.

This figure shows the results from both the white-light adaptation studies. The four traces, bottom to top, increase the amount of white light adaptation that is present in the ERGs. The column on the left shows baboon ERG responses to 641 nm LED pulses, and the column on the right shows responses to 420 nm LED pulses. These wavelengths were chosen to best approximate white light placed through Wratten filter 29 and Wratten filter 98 in Fig. 4 of the Gouras and MacKay paper describing the technique. This study was not able to reproduce the results that used white light to preferentially elicit ERG responses from S-cones.

Fig. 5.
Fig. 5.

(a) Contains an ERG that was elicited in response to a 420 nm wavelength LED in the presence of a 30,000td 594 nm amber suppressing light. At light onset, two distinct peaks can be observed. (b) Overlays the L/M ERG arbitrarily scaled from the same animal. The timing of the peak lines up with the first peak, indicating this is +(L+M) contamination. (c) Overlays the pure S-cone ERG elicited from the same animal using the technique described in this paper. The S-cone peak is aligned with the second peak, indicating this is a pure S-cone mediated signal.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

QLED(λ)=ILED(λ)·λh·c,
Sact=λ0λnS(λ)(g420Q420(λ)+g525Q525(λ)+g641Q641(λ)),
Mact=λ0λnM(λ)(g420Q420(λ)+g525Q525(λ)+g641Q641(λ)),
Lact=λ0λnL(λ)(g420Q420(λ)+g525Q525(λ)+g641Q641(λ)),

Metrics