Abstract

The recognition of spatial structures is important for color constancy because we cannot identify an object’s color under different illuminations without knowing which space it is in and how that space is illuminated. To show the importance of the natural structure of environments on color constancy, we investigated the way in which color appearance was affected by unnatural viewing conditions in which a spatial structure was distorted. Observers judged the color of a test patch placed in the center of a small room illuminated by white or reddish lights, as well as two rooms illuminated by white and reddish light, respectively. In the natural viewing condition, an observer saw the room(s) through a viewing window, whereas in an unnatural viewing condition, the scene structure was scrambled by a kaleidoscope-type viewing box. Results of single room condition with one illuminant color showed little difference in color constancy between the two viewing conditions. However, it decreased in the two-rooms condition with a more complex arrangement of space and illumination. The patch’s appearance under the unnatural viewing condition was more influenced by simultaneous contrast than its appearance under the natural viewing condition. It also appears that color appearance under white illumination is more stable compared to that under reddish illumination. These findings suggest that natural spatial structure plays an important role for color constancy in a complex environment.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
    [CrossRef]
  2. J. von Kries, “Chromatic adaptation,” in Sources of Color Vision, D. L. MacAdam, ed. (MIT, 1970), pp. 109–119.
  3. G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
    [CrossRef]
  4. H. Helson, “Some factors and implications of color constancy,” J. Opt. Soc. Am. 33, 555–567 (1943).
    [CrossRef]
  5. M. D’Zmura and P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986).
    [CrossRef]
  6. M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).
  7. Q. Zaidi, B. Spehar, and J. DeBonet, “Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621 (1997).
    [CrossRef]
  8. K. Amano and D. H. Foster, “Colour constancy under simultaneous changes in surface position and illuminant,” Proc. Biol. Sci. 271, 2319–2326 (2004).
  9. J. Golz and D. I. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
    [CrossRef]
  10. F. A. Kingdom, “Color brings relief to human vision,” Nat. Neurosci. 6, 641–644 (2003).
    [CrossRef]
  11. E. H. Land and J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
    [CrossRef]
  12. D. H. Brainard and W. T. Freeman, “Bayesian color constancy,” J. Opt. Soc. Am. A 14, 1393–1411 (1997).
    [CrossRef]
  13. L. T. Maloney, K. R. Gegenfurtner, and L. T. Sharpe, “Physics-based approaches to modeling surface color perception. Color vision: from genes to perception,” in Color Vision: From Genes to Perception (Cambridge University, 1999), pp. 387–422.
  14. D. H. Brainard, W. A. Brunt, and J. M. Speigle, “Color constancy in the nearly natural image. I. Asymmetric matches,” J. Opt. Soc. Am. A 14, 2091–2110 (1997).
    [CrossRef]
  15. D. H. Brainard, “Color constancy in the nearly natural image. 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
    [CrossRef]
  16. L. Arend and A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
    [CrossRef]
  17. M. Hedrich, M. Bloj, and A. I. Ruppertsberg, “Color constancy improves for real 3D objects,” J. Vis. 9(16), 11–16 (2009).
  18. M. Ikeda, Y. Hattori, and H. Shinoda, “Color modification of pictures requiring same color impression as real scene,” Opt. Rev. 9, 282–292 (2002).
    [CrossRef]
  19. Y. Mizokami, M. Ikeda, and H. Shinoda, “Color constancy in a photograph perceived as a three-dimensional space,” Opt. Rev. 11, 288–296 (2004).
    [CrossRef]
  20. Y. Mizokami, M. Ikeda, and H. Shinoda, “Lightness change as perceived in relation to the size of recognized visual space of illumination,” Opt. Rev. 5, 315–319 (1998).
    [CrossRef]
  21. Y. Mizokami, M. Ikeda, and H. Shinoda, “Color property of the recognized visual space of illumination controlled by interior color as the initial visual information,” Opt. Rev. 7, 358–363 (2000).
    [CrossRef]
  22. M. Ikeda, Y. Mizokami, and H. Shinoda, “Three dimensionality of the recognized visual space of illumination proved by hidden illumination,” Opt. Rev. 5, 200–205 (1998).
    [CrossRef]
  23. L. E. Arend, A. Reeves, J. Schirillo, and R. Goldstein, “Simultaneous color constancy: paper with diverse Munsell values,” J. Opt. Soc. Am. A 8, 661–672 (1991).
    [CrossRef]
  24. J. N. Yang and S. K. Shevell, “Stereo disparity improves color constancy,” Vis. Res. 42, 1979–1989 (2002).
    [CrossRef]
  25. P. B. Delahunt and D. H. Brainard, “Does human color constancy incorporate the statistical regularity of natural daylight?” J. Vis. 4(2):1, 57–81 (2004).
    [CrossRef]
  26. J. M. Kraft, S. I. Maloney, and D. H. Brainard, “Surface-illuminant ambiguity and color constancy: effects of scene complexity and depth cues,” Perception 31, 247–263 (2002).
    [CrossRef]
  27. A. L. Gilchrist, “Perceived lightness depends on perceived spatial arrangement,” Science 195, 185–187 (1977).
    [CrossRef]
  28. K. Rattanakasamsuk and H. Shinoda, “Partial exclusion of the local effect from the assessment of recognized illuminant using depth separation,” Opt. Rev. 13, 380–387 (2006).
    [CrossRef]
  29. J. N. Yang and S. K. Shevell, “Surface color perception under two illuminants: the second illuminant reduces color constancy,” J. Vis. 3(5):4, 369–379 (2003).
    [CrossRef]
  30. I. Kuriki, S. Nakadomari, and K. Kitahara, “A case of extreme simultaneous color-contrast in a patient with hypoxic encephalopathy,” Vision 15(4), 223–244 (2003).
  31. M. D’Zmura, K. Knoblauch, M. A. Henaff, and F. Michel, “Dependence of color on context in a case of cortical color vision deficiency,” Vis. Res. 38, 3455–3459 (1998).
    [CrossRef]
  32. A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psycholog. Rev. 106, 795–834 (1999).
    [CrossRef]
  33. A. L. Gilchrist and A. Radonjic, “Functional frameworks of illumination revealed by probe disk technique,” J. Vis. 10(5):6 (2010).
    [CrossRef]

2011 (1)

D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

2010 (1)

A. L. Gilchrist and A. Radonjic, “Functional frameworks of illumination revealed by probe disk technique,” J. Vis. 10(5):6 (2010).
[CrossRef]

2009 (1)

M. Hedrich, M. Bloj, and A. I. Ruppertsberg, “Color constancy improves for real 3D objects,” J. Vis. 9(16), 11–16 (2009).

2006 (1)

K. Rattanakasamsuk and H. Shinoda, “Partial exclusion of the local effect from the assessment of recognized illuminant using depth separation,” Opt. Rev. 13, 380–387 (2006).
[CrossRef]

2004 (3)

P. B. Delahunt and D. H. Brainard, “Does human color constancy incorporate the statistical regularity of natural daylight?” J. Vis. 4(2):1, 57–81 (2004).
[CrossRef]

Y. Mizokami, M. Ikeda, and H. Shinoda, “Color constancy in a photograph perceived as a three-dimensional space,” Opt. Rev. 11, 288–296 (2004).
[CrossRef]

K. Amano and D. H. Foster, “Colour constancy under simultaneous changes in surface position and illuminant,” Proc. Biol. Sci. 271, 2319–2326 (2004).

2003 (3)

F. A. Kingdom, “Color brings relief to human vision,” Nat. Neurosci. 6, 641–644 (2003).
[CrossRef]

J. N. Yang and S. K. Shevell, “Surface color perception under two illuminants: the second illuminant reduces color constancy,” J. Vis. 3(5):4, 369–379 (2003).
[CrossRef]

I. Kuriki, S. Nakadomari, and K. Kitahara, “A case of extreme simultaneous color-contrast in a patient with hypoxic encephalopathy,” Vision 15(4), 223–244 (2003).

2002 (4)

J. N. Yang and S. K. Shevell, “Stereo disparity improves color constancy,” Vis. Res. 42, 1979–1989 (2002).
[CrossRef]

J. M. Kraft, S. I. Maloney, and D. H. Brainard, “Surface-illuminant ambiguity and color constancy: effects of scene complexity and depth cues,” Perception 31, 247–263 (2002).
[CrossRef]

J. Golz and D. I. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[CrossRef]

M. Ikeda, Y. Hattori, and H. Shinoda, “Color modification of pictures requiring same color impression as real scene,” Opt. Rev. 9, 282–292 (2002).
[CrossRef]

2000 (1)

Y. Mizokami, M. Ikeda, and H. Shinoda, “Color property of the recognized visual space of illumination controlled by interior color as the initial visual information,” Opt. Rev. 7, 358–363 (2000).
[CrossRef]

1999 (2)

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psycholog. Rev. 106, 795–834 (1999).
[CrossRef]

M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

1998 (4)

Y. Mizokami, M. Ikeda, and H. Shinoda, “Lightness change as perceived in relation to the size of recognized visual space of illumination,” Opt. Rev. 5, 315–319 (1998).
[CrossRef]

D. H. Brainard, “Color constancy in the nearly natural image. 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
[CrossRef]

M. Ikeda, Y. Mizokami, and H. Shinoda, “Three dimensionality of the recognized visual space of illumination proved by hidden illumination,” Opt. Rev. 5, 200–205 (1998).
[CrossRef]

M. D’Zmura, K. Knoblauch, M. A. Henaff, and F. Michel, “Dependence of color on context in a case of cortical color vision deficiency,” Vis. Res. 38, 3455–3459 (1998).
[CrossRef]

1997 (3)

1991 (1)

1986 (2)

1980 (1)

G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
[CrossRef]

1977 (1)

A. L. Gilchrist, “Perceived lightness depends on perceived spatial arrangement,” Science 195, 185–187 (1977).
[CrossRef]

1971 (1)

1943 (1)

Agostini, T.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psycholog. Rev. 106, 795–834 (1999).
[CrossRef]

Amano, K.

K. Amano and D. H. Foster, “Colour constancy under simultaneous changes in surface position and illuminant,” Proc. Biol. Sci. 271, 2319–2326 (2004).

Annan, V.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psycholog. Rev. 106, 795–834 (1999).
[CrossRef]

Arend, L.

Arend, L. E.

Bloj, M.

M. Hedrich, M. Bloj, and A. I. Ruppertsberg, “Color constancy improves for real 3D objects,” J. Vis. 9(16), 11–16 (2009).

Bloj, M. G.

M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

Bonato, F.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psycholog. Rev. 106, 795–834 (1999).
[CrossRef]

Brainard, D. H.

P. B. Delahunt and D. H. Brainard, “Does human color constancy incorporate the statistical regularity of natural daylight?” J. Vis. 4(2):1, 57–81 (2004).
[CrossRef]

J. M. Kraft, S. I. Maloney, and D. H. Brainard, “Surface-illuminant ambiguity and color constancy: effects of scene complexity and depth cues,” Perception 31, 247–263 (2002).
[CrossRef]

D. H. Brainard, “Color constancy in the nearly natural image. 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
[CrossRef]

D. H. Brainard and W. T. Freeman, “Bayesian color constancy,” J. Opt. Soc. Am. A 14, 1393–1411 (1997).
[CrossRef]

D. H. Brainard, W. A. Brunt, and J. M. Speigle, “Color constancy in the nearly natural image. I. Asymmetric matches,” J. Opt. Soc. Am. A 14, 2091–2110 (1997).
[CrossRef]

Brunt, W. A.

Buchsbaum, G.

G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
[CrossRef]

Cataliotti, J.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psycholog. Rev. 106, 795–834 (1999).
[CrossRef]

D’Zmura, M.

M. D’Zmura, K. Knoblauch, M. A. Henaff, and F. Michel, “Dependence of color on context in a case of cortical color vision deficiency,” Vis. Res. 38, 3455–3459 (1998).
[CrossRef]

M. D’Zmura and P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986).
[CrossRef]

DeBonet, J.

Delahunt, P. B.

P. B. Delahunt and D. H. Brainard, “Does human color constancy incorporate the statistical regularity of natural daylight?” J. Vis. 4(2):1, 57–81 (2004).
[CrossRef]

Economou, E.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psycholog. Rev. 106, 795–834 (1999).
[CrossRef]

Foster, D. H.

D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

K. Amano and D. H. Foster, “Colour constancy under simultaneous changes in surface position and illuminant,” Proc. Biol. Sci. 271, 2319–2326 (2004).

Freeman, W. T.

Gegenfurtner, K. R.

L. T. Maloney, K. R. Gegenfurtner, and L. T. Sharpe, “Physics-based approaches to modeling surface color perception. Color vision: from genes to perception,” in Color Vision: From Genes to Perception (Cambridge University, 1999), pp. 387–422.

Gilchrist, A.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psycholog. Rev. 106, 795–834 (1999).
[CrossRef]

Gilchrist, A. L.

A. L. Gilchrist and A. Radonjic, “Functional frameworks of illumination revealed by probe disk technique,” J. Vis. 10(5):6 (2010).
[CrossRef]

A. L. Gilchrist, “Perceived lightness depends on perceived spatial arrangement,” Science 195, 185–187 (1977).
[CrossRef]

Goldstein, R.

Golz, J.

J. Golz and D. I. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[CrossRef]

Hattori, Y.

M. Ikeda, Y. Hattori, and H. Shinoda, “Color modification of pictures requiring same color impression as real scene,” Opt. Rev. 9, 282–292 (2002).
[CrossRef]

Hedrich, M.

M. Hedrich, M. Bloj, and A. I. Ruppertsberg, “Color constancy improves for real 3D objects,” J. Vis. 9(16), 11–16 (2009).

Helson, H.

Henaff, M. A.

M. D’Zmura, K. Knoblauch, M. A. Henaff, and F. Michel, “Dependence of color on context in a case of cortical color vision deficiency,” Vis. Res. 38, 3455–3459 (1998).
[CrossRef]

Hurlbert, A. C.

M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

Ikeda, M.

Y. Mizokami, M. Ikeda, and H. Shinoda, “Color constancy in a photograph perceived as a three-dimensional space,” Opt. Rev. 11, 288–296 (2004).
[CrossRef]

M. Ikeda, Y. Hattori, and H. Shinoda, “Color modification of pictures requiring same color impression as real scene,” Opt. Rev. 9, 282–292 (2002).
[CrossRef]

Y. Mizokami, M. Ikeda, and H. Shinoda, “Color property of the recognized visual space of illumination controlled by interior color as the initial visual information,” Opt. Rev. 7, 358–363 (2000).
[CrossRef]

M. Ikeda, Y. Mizokami, and H. Shinoda, “Three dimensionality of the recognized visual space of illumination proved by hidden illumination,” Opt. Rev. 5, 200–205 (1998).
[CrossRef]

Y. Mizokami, M. Ikeda, and H. Shinoda, “Lightness change as perceived in relation to the size of recognized visual space of illumination,” Opt. Rev. 5, 315–319 (1998).
[CrossRef]

Kersten, D.

M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

Kingdom, F. A.

F. A. Kingdom, “Color brings relief to human vision,” Nat. Neurosci. 6, 641–644 (2003).
[CrossRef]

Kitahara, K.

I. Kuriki, S. Nakadomari, and K. Kitahara, “A case of extreme simultaneous color-contrast in a patient with hypoxic encephalopathy,” Vision 15(4), 223–244 (2003).

Knoblauch, K.

M. D’Zmura, K. Knoblauch, M. A. Henaff, and F. Michel, “Dependence of color on context in a case of cortical color vision deficiency,” Vis. Res. 38, 3455–3459 (1998).
[CrossRef]

Kossyfidis, C.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psycholog. Rev. 106, 795–834 (1999).
[CrossRef]

Kraft, J. M.

J. M. Kraft, S. I. Maloney, and D. H. Brainard, “Surface-illuminant ambiguity and color constancy: effects of scene complexity and depth cues,” Perception 31, 247–263 (2002).
[CrossRef]

Kuriki, I.

I. Kuriki, S. Nakadomari, and K. Kitahara, “A case of extreme simultaneous color-contrast in a patient with hypoxic encephalopathy,” Vision 15(4), 223–244 (2003).

Land, E. H.

Lennie, P.

Li, X.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psycholog. Rev. 106, 795–834 (1999).
[CrossRef]

MacLeod, D. I.

J. Golz and D. I. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[CrossRef]

Maloney, L. T.

L. T. Maloney, K. R. Gegenfurtner, and L. T. Sharpe, “Physics-based approaches to modeling surface color perception. Color vision: from genes to perception,” in Color Vision: From Genes to Perception (Cambridge University, 1999), pp. 387–422.

Maloney, S. I.

J. M. Kraft, S. I. Maloney, and D. H. Brainard, “Surface-illuminant ambiguity and color constancy: effects of scene complexity and depth cues,” Perception 31, 247–263 (2002).
[CrossRef]

McCann, J. J.

Michel, F.

M. D’Zmura, K. Knoblauch, M. A. Henaff, and F. Michel, “Dependence of color on context in a case of cortical color vision deficiency,” Vis. Res. 38, 3455–3459 (1998).
[CrossRef]

Mizokami, Y.

Y. Mizokami, M. Ikeda, and H. Shinoda, “Color constancy in a photograph perceived as a three-dimensional space,” Opt. Rev. 11, 288–296 (2004).
[CrossRef]

Y. Mizokami, M. Ikeda, and H. Shinoda, “Color property of the recognized visual space of illumination controlled by interior color as the initial visual information,” Opt. Rev. 7, 358–363 (2000).
[CrossRef]

Y. Mizokami, M. Ikeda, and H. Shinoda, “Lightness change as perceived in relation to the size of recognized visual space of illumination,” Opt. Rev. 5, 315–319 (1998).
[CrossRef]

M. Ikeda, Y. Mizokami, and H. Shinoda, “Three dimensionality of the recognized visual space of illumination proved by hidden illumination,” Opt. Rev. 5, 200–205 (1998).
[CrossRef]

Nakadomari, S.

I. Kuriki, S. Nakadomari, and K. Kitahara, “A case of extreme simultaneous color-contrast in a patient with hypoxic encephalopathy,” Vision 15(4), 223–244 (2003).

Radonjic, A.

A. L. Gilchrist and A. Radonjic, “Functional frameworks of illumination revealed by probe disk technique,” J. Vis. 10(5):6 (2010).
[CrossRef]

Rattanakasamsuk, K.

K. Rattanakasamsuk and H. Shinoda, “Partial exclusion of the local effect from the assessment of recognized illuminant using depth separation,” Opt. Rev. 13, 380–387 (2006).
[CrossRef]

Reeves, A.

Ruppertsberg, A. I.

M. Hedrich, M. Bloj, and A. I. Ruppertsberg, “Color constancy improves for real 3D objects,” J. Vis. 9(16), 11–16 (2009).

Schirillo, J.

Sharpe, L. T.

L. T. Maloney, K. R. Gegenfurtner, and L. T. Sharpe, “Physics-based approaches to modeling surface color perception. Color vision: from genes to perception,” in Color Vision: From Genes to Perception (Cambridge University, 1999), pp. 387–422.

Shevell, S. K.

J. N. Yang and S. K. Shevell, “Surface color perception under two illuminants: the second illuminant reduces color constancy,” J. Vis. 3(5):4, 369–379 (2003).
[CrossRef]

J. N. Yang and S. K. Shevell, “Stereo disparity improves color constancy,” Vis. Res. 42, 1979–1989 (2002).
[CrossRef]

Shinoda, H.

K. Rattanakasamsuk and H. Shinoda, “Partial exclusion of the local effect from the assessment of recognized illuminant using depth separation,” Opt. Rev. 13, 380–387 (2006).
[CrossRef]

Y. Mizokami, M. Ikeda, and H. Shinoda, “Color constancy in a photograph perceived as a three-dimensional space,” Opt. Rev. 11, 288–296 (2004).
[CrossRef]

M. Ikeda, Y. Hattori, and H. Shinoda, “Color modification of pictures requiring same color impression as real scene,” Opt. Rev. 9, 282–292 (2002).
[CrossRef]

Y. Mizokami, M. Ikeda, and H. Shinoda, “Color property of the recognized visual space of illumination controlled by interior color as the initial visual information,” Opt. Rev. 7, 358–363 (2000).
[CrossRef]

M. Ikeda, Y. Mizokami, and H. Shinoda, “Three dimensionality of the recognized visual space of illumination proved by hidden illumination,” Opt. Rev. 5, 200–205 (1998).
[CrossRef]

Y. Mizokami, M. Ikeda, and H. Shinoda, “Lightness change as perceived in relation to the size of recognized visual space of illumination,” Opt. Rev. 5, 315–319 (1998).
[CrossRef]

Spehar, B.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psycholog. Rev. 106, 795–834 (1999).
[CrossRef]

Q. Zaidi, B. Spehar, and J. DeBonet, “Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621 (1997).
[CrossRef]

Speigle, J. M.

von Kries, J.

J. von Kries, “Chromatic adaptation,” in Sources of Color Vision, D. L. MacAdam, ed. (MIT, 1970), pp. 109–119.

Yang, J. N.

J. N. Yang and S. K. Shevell, “Surface color perception under two illuminants: the second illuminant reduces color constancy,” J. Vis. 3(5):4, 369–379 (2003).
[CrossRef]

J. N. Yang and S. K. Shevell, “Stereo disparity improves color constancy,” Vis. Res. 42, 1979–1989 (2002).
[CrossRef]

Zaidi, Q.

J. Franklin Inst. (1)

G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (7)

J. Vis. (4)

M. Hedrich, M. Bloj, and A. I. Ruppertsberg, “Color constancy improves for real 3D objects,” J. Vis. 9(16), 11–16 (2009).

P. B. Delahunt and D. H. Brainard, “Does human color constancy incorporate the statistical regularity of natural daylight?” J. Vis. 4(2):1, 57–81 (2004).
[CrossRef]

J. N. Yang and S. K. Shevell, “Surface color perception under two illuminants: the second illuminant reduces color constancy,” J. Vis. 3(5):4, 369–379 (2003).
[CrossRef]

A. L. Gilchrist and A. Radonjic, “Functional frameworks of illumination revealed by probe disk technique,” J. Vis. 10(5):6 (2010).
[CrossRef]

Nat. Neurosci. (1)

F. A. Kingdom, “Color brings relief to human vision,” Nat. Neurosci. 6, 641–644 (2003).
[CrossRef]

Nature (2)

J. Golz and D. I. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[CrossRef]

M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

Opt. Rev. (6)

M. Ikeda, Y. Hattori, and H. Shinoda, “Color modification of pictures requiring same color impression as real scene,” Opt. Rev. 9, 282–292 (2002).
[CrossRef]

Y. Mizokami, M. Ikeda, and H. Shinoda, “Color constancy in a photograph perceived as a three-dimensional space,” Opt. Rev. 11, 288–296 (2004).
[CrossRef]

Y. Mizokami, M. Ikeda, and H. Shinoda, “Lightness change as perceived in relation to the size of recognized visual space of illumination,” Opt. Rev. 5, 315–319 (1998).
[CrossRef]

Y. Mizokami, M. Ikeda, and H. Shinoda, “Color property of the recognized visual space of illumination controlled by interior color as the initial visual information,” Opt. Rev. 7, 358–363 (2000).
[CrossRef]

M. Ikeda, Y. Mizokami, and H. Shinoda, “Three dimensionality of the recognized visual space of illumination proved by hidden illumination,” Opt. Rev. 5, 200–205 (1998).
[CrossRef]

K. Rattanakasamsuk and H. Shinoda, “Partial exclusion of the local effect from the assessment of recognized illuminant using depth separation,” Opt. Rev. 13, 380–387 (2006).
[CrossRef]

Perception (1)

J. M. Kraft, S. I. Maloney, and D. H. Brainard, “Surface-illuminant ambiguity and color constancy: effects of scene complexity and depth cues,” Perception 31, 247–263 (2002).
[CrossRef]

Proc. Biol. Sci. (1)

K. Amano and D. H. Foster, “Colour constancy under simultaneous changes in surface position and illuminant,” Proc. Biol. Sci. 271, 2319–2326 (2004).

Psycholog. Rev. (1)

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psycholog. Rev. 106, 795–834 (1999).
[CrossRef]

Science (1)

A. L. Gilchrist, “Perceived lightness depends on perceived spatial arrangement,” Science 195, 185–187 (1977).
[CrossRef]

Vis. Res. (3)

J. N. Yang and S. K. Shevell, “Stereo disparity improves color constancy,” Vis. Res. 42, 1979–1989 (2002).
[CrossRef]

M. D’Zmura, K. Knoblauch, M. A. Henaff, and F. Michel, “Dependence of color on context in a case of cortical color vision deficiency,” Vis. Res. 38, 3455–3459 (1998).
[CrossRef]

D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

Vision (1)

I. Kuriki, S. Nakadomari, and K. Kitahara, “A case of extreme simultaneous color-contrast in a patient with hypoxic encephalopathy,” Vision 15(4), 223–244 (2003).

Other (2)

L. T. Maloney, K. R. Gegenfurtner, and L. T. Sharpe, “Physics-based approaches to modeling surface color perception. Color vision: from genes to perception,” in Color Vision: From Genes to Perception (Cambridge University, 1999), pp. 387–422.

J. von Kries, “Chromatic adaptation,” in Sources of Color Vision, D. L. MacAdam, ed. (MIT, 1970), pp. 109–119.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Scheme of the experimental booth. FLb, FLf, lamps in back and front rooms (e.g., white and reddish); Tb, Tf, test patches; VB, viewing box; W, window between back and front rooms.

Fig. 2.
Fig. 2.

Examples from view of an observer. (a) shows the condition with reddish illumination in front room (FR) and white illumination in back room (BR). The combination of illumination color was flipped in (b). (1) 1-room condition (natural viewing condition). (2) 2-room condition (natural) with test patch in FR. (3) 2-room condition (natural) with test patch in BR. (4) 1-room condition (unnatural viewing condition). (5) 2-room condition (unnatural) with test patch in FR. (6) 2-room condition (unnatural) with test patch in BR.

Fig. 3.
Fig. 3.

CIE 1931 chromaticity coordinates of test patches with a range of 7.5YR5/0.25–3, N5, 5PB5/0.25–8 (circles) in front room (FR, reddish) and back room (BR, white). Red and Blue crosses show the illuminant of reddish (3000 K) and white (5000 K) room, respectively. Thin curve indicates the black body locus.

Fig. 4.
Fig. 4.

Results from observer YM, CT, and HS on the xy chromaticity diagram in the front(reddish)/back(white) condition. Filled and open symbols indicate natural and unnatural viewing conditions, respectively. Standard deviations are shown by error bars. Circles, front room in 1-room condition; triangles, front room in 2-room condition; squares, back room in 2-room condition. Note that filled squares for YM and HS are not visible since open and filled squares are superimposed almost perfectly.

Fig. 5.
Fig. 5.

Mean results obtained from all observers. Standard deviations are shown by error bars. (a) Front(reddish)/back(white). (b) Front (white)/back (reddish). Filled and open symbols indicate natural and unnatural viewing conditions, respectively. Circles, front room in 1-room condition; triangles, front room in 2-room condition; squares, back room in 2-room condition. Orange and blue symbols indicate reddish and white illumination, respectively.

Fig. 6.
Fig. 6.

Color constancy index. Error bars indicate standard deviation of observers. Significant differences between viewing conditions are shown by the symbols above the bars [**(p<0.01)]. “One room,” “Two, Front,” and “Two, Back” indicate “1-room condition,” “2-room condition with the test patches in the front room” and “2-room condition with the test patches in the back room,” respectively.

Fig. 7.
Fig. 7.

Shift of color appearances in Munsell chroma. Error bars indicate standard deviation of observers. Significant differences between viewing conditions are shown by the symbols above the bars [**(p<0.01), ***(p<0.001)]. “One room,” “Two, Front,” and “Two, Back” indicate “1-room condition,” “2-room condition with the test patches in the front room,” and “2-room condition with the test patches in the back room,” respectively.

Metrics