Abstract

Electroretinograms (ERGs) elicited by transient, square-wave L- and M-cone isolating stimuli were recorded from human trichromatic (n=19) and dichromatic (n=4) observers. The stimuli were generated on a four primary LED stimulator and were equated in terms of cone modulation (cone contrast=0.11) and retinal illuminance (12,000 trolands). L- and M-cone isolated ERGs had waveforms similar to those observed for luminance responses. However, M-cone ERGs exhibited a phase reversal in their responses to onset and offset stimuli relative to the L-cone responses. This on–off response reversal was observed in trichromats but not dichromats. Simultaneous counterphase and inphase combinations of L- and M-cone isolating stimuli generated responses that reflected chromatic and luminance processing, respectively. We conclude that L- and M-cone specific ERGs provide a measure of how photoreceptors contribute to postreceptoral mechanisms.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Bush and P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Investig. Ophthalmol. Vis. Sci. 35, 635–645 (1994).
  2. R. A. Bush and P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996).
    [CrossRef]
  3. L. J. Frishman, “Origins of the electroretinogram,” in Principles and Practice of Clinical Electrophysiology of Vision, J. R. Heckenlively and G. B. Arden, eds. (MIT, 2006), pp. 139–184.
  4. P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram—a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
    [CrossRef]
  5. J. G. Robson, S. M. Saszik, J. Ahmed, and L. J. Frishman, “Rod and cone contributions to the a-wave of the electroretinogram of the macaque,” J. Physiol. 547, 509–530 (2003).
    [CrossRef]
  6. C. Friedburg, C. P. Allen, P. J. Mason, and T. D. Lamb, “Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram,” J. Physiol. 556, 819–834 (2004).
    [CrossRef]
  7. S. Ueno, M. Kondo, M. Ueno, K. Miyata, H. Terasaki, and Y. Miyake, “Contribution of retinal neurons to d-wave of primate photopic electroretinograms,” Vis. Res. 46, 658–664 (2006).
    [CrossRef]
  8. K. Bradshaw and R. Hanitzsch, “Contribution of post-receporal cells to the cone a-wave of the human electroretinogram in congenital stationary night blindness and autoimmune-like retinopathy,” Vis. Res. 50, 2505–2514 (2010).
    [CrossRef]
  9. E. D. Adrian, “Rod and cone components in the electric response of the eye,” J. Physiol. 105, 24–37 (1946).
  10. D. V. Norren and P. Padmos, “Human and macaque blue cones studied with electroretinography,” Vis. Res. 13, 1241–1254 (1973).
    [CrossRef]
  11. L. Mehaffey and E. L. Berson, “Cone mechanisms in electroretinogram of cynomolgus monkey,” Investig. Ophthalmol. 13, 266–273 (1974).
  12. W. S. Baron and R. M. Boynton, “Response of primate cones to sinusoidally flickering homochromatic stimuli,” J. Physiol. 246, 311–331 (1975).
  13. E. Zrenner and P. Gouras, “Blue-sensitive cones of the cat produce a rod like electroretinogram,” Investig. Ophthalmol. Vis. Sci. 18, 1076–1081 (1979).
  14. W. S. Baron, “Cone difference signal in foveal local electroretinogram of primate,” Investig. Ophthalmol. Vis. Sci. 19, 1442–1448 (1980).
  15. W. J. Donovan and W. S. Baron, “Identification of the R-G-cone difference signal in the corneal electroretinogram of the primate,” J. Opt. Soc. Am. 72, 1014–1020 (1982).
    [CrossRef]
  16. M. Sawusch, J. Pokorny, and V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Investig. Ophthalmol. Vis. Sci. 28, 966–974 (1987).
  17. P. Gouras and C. J. Mackay, “Electroretinographic responses of the short-wavelength-sensitive cones,” Investig. Ophthalmol. Vis. Sci. 31, 1203–1209 (1990).
  18. P. Gouras, C. J. Mackay, and S. Yamamoto, “The human S-cone electroretinogram and its variation among subjects with and without L-cone and M-cone function,” Investig. Ophthalmol. Vis. Sci. 34, 2437–2442 (1993).
  19. W. Spileers, F. Falcao-Reis, C. Hogg, and G. B. Arden, “Evidence from human electroretinogram-a and off responses that color processing occurs in the cones,” Investig. Ophthalmol. Vis. Sci. 34, 2079–2091 (1993).
  20. G. B. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
    [CrossRef]
  21. J. Kremers, T. Usui, H. P. Scholl, and L. T. Sharpe, “Cone signal contributions to electroretinograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).
  22. J. Kremers, N. R. Parry, A. Panorgias, and I. J. Murray, “The influence of retinal illuminance on L- and M-cone driven electroretinograms,” Vis. Neurosci. 28, 129–135 (2011).
    [CrossRef]
  23. J. Albrecht, H. Jägle, D. C. Hood, and L. T. Sharpe, “The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina,” J. Vis. 2(8), 543–558 (2002).
  24. Z. Chiti, R. V. North, K. E. Mortlock, and N. Drasdo, “The S-cone electroretinogram: a comparison of techniques, normative data and age-related variation,” Ophthalmic Physiol. Opt. 23, 370–376 (2003).
  25. J. Kremers, “The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal human retina,” Prog. Retin. Eye Res. 22, 579–605 (2003).
  26. I. J. Murray, N. R. Parry, J. Kremers, M. Stepien, and A. Schild, “Photoreceptor topography and cone-specific electroretinograms,” Vis. Neurosci. 21, 231–235 (2004).
    [CrossRef]
  27. K. E. Mortlock, Z. Chiti, N. Drasdo, D. R. Owens, and R. V. North, “Silent substitution S-cone electroretinogram in subjects with diabetes mellitus,” Ophthalmic Physiol. Opt. 25, 392–399 (2005).
  28. S. Yamamoto, M. Kamiyama, K. Nitta, T. Yamada, and S. Hayasaka, “Selective reduction of the S cone electroretinogram in diabetes,” Br. J. Ophthalmol. 80, 973–975 (1996).
    [CrossRef]
  29. S. Yamamoto, S. Takeuchi, and M. Kamiyama, “The short wavelength-sensitive cone electroretinogram in diabetes: relationship to systemic factors,” Doc. Ophthalmol. 94, 193–200 (1997–1998).
    [CrossRef]
  30. N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).
  31. B. Falsini, L. Ziccardi, G. Stifano, G. Iarossi, E. Merendino, A. M. Minnella, A. Fadda, and E. Balestrazzi, “Temporal response properties of the macular cone system: effect of normal aging and age- related maculopathy,” Investig. Ophthalmol. Vis. Sci. 48, 4811–4817 (2007).
    [CrossRef]
  32. M. Korth and S. Sokol, “Electroretinographic and psychophysical measures of cone spectral mechanisms using the 2-color threshold technique,” Vis. Res. 20, 205–212 (1980).
    [CrossRef]
  33. G. H. Jacobs, J. Neitz, and K. Krogh, “Electroretinogram flicker photometry and its applications,” J. Opt. Soc. Am. A 13, 641–648 (1996).
    [CrossRef]
  34. G. H. Jacobs and J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Vis. Neurosci. 14, 921–928 (1997).
    [CrossRef]
  35. G. H. Jacobs and J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1999) pp. 107–112
  36. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
    [CrossRef]
  37. J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
    [CrossRef]
  38. J. Carroll, J. Neitz, and M. Neitz, “Estimates of L:M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8):1, 531–542 (2002).
  39. N. K. Challa, D. McKeefry, N. R. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12  Hz and 30  Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
    [CrossRef]
  40. S. Viswanathan, L. J. Frishman, J. G. Robson, R. S. Harwerth, and E. L. Smith, “The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma,” Investig. Ophthalmol. Vis. Sci. 40, 1124–1136 (1999).
  41. S. Viswanathan, L. J. Frishman, and J. G. Robson, “The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity,” Investig. Ophthalmol. Vis. Sci. 41, 2797–2810 (2000).
  42. S. Viswanathan, L. J. Frishman, and J. G. Robson, “Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques: Macaque photopic sinusoidal flicker ERG,” Doc. Ophthalmol. 105, 223–242 (2002).
    [CrossRef]
  43. J. Kremers and B. Link, “Electroretinographic responses that may reflect activity of parvo- and magnocellular post-receptoral visual pathways,” J. Vis. 8(15):11 (2008).
    [CrossRef]
  44. H. Wassle, “Parallel processing in the mammalian retina,” Nat. Rev. Neurosci. 5, 747–757 (2004).
    [CrossRef]
  45. T. P. Hicks, B. B. Lee, and T. R. Vidyasagar, “The response of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. 337, 183–200 (1983).
  46. B. Dreher, Y. Fukada, and R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiol. 258, 433–452 (1976).
  47. A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).
  48. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  49. R. Shapley and V. H. Perry, “Cat and monkey retinal ganglion cells and their visual functional roles,” Trends Neurosci. 9, 229–235 (1986).
    [CrossRef]
  50. B. B. Lee, A. Valberg, D. A. Tigwell, and J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. Lond. B 230, 293–314 (1987).
    [CrossRef]
  51. B. B. Lee, P. R. Martin, and A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989).
  52. F. M. De Monasterio and P. Gouras, “Functional properites of ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 167–195 (1975).
  53. P. H. Schiller, N. K. Logothetis, and E. R. Charles, “Functions of the colour-opponent and broad-band channels of the visual system,” Nature 343, 68–70 (1990).
    [CrossRef]
  54. D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000).
    [CrossRef]
  55. D. M. Dacey and B. B. Lee, “The blue-on opponent pathway in primate retina originates from a distinct bistratified ganglion-cell type,” Nature 367, 731–735 (1994).
    [CrossRef]
  56. T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
  57. B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).
  58. P. K. Kaiser, B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).
  59. A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion-cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).
  60. J. Kremers, A. R. Rodrigues, L. C. Silveria, and M. da Silva Filho, “Flicker ERGs representing chromaticity and luminance Signals,” Investig. Ophthalmol. Vis. Sci. 51, 577–587 (2010).
    [CrossRef]
  61. N. R. Parry, I. J. Murray, A. Panorgias, D. J. McKeefry, B. B. Lee, and J. Kremers, “Simultaneous chromatic and luminance human electroretinogram responses,” J. Physiol. 590, 3141–3154 (2012).
    [CrossRef]
  62. T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vis. Res. 38, 3391–3396 (1998).
    [CrossRef]
  63. T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength,” Vis. Res. 38, 3247–3251 (1998).
    [CrossRef]
  64. O. Estévez and H. Spekreijse, “Spectral compensation method for determining flicker characteristics of human color mechanisms,” Vis. Res. 14, 823–830 (1974).
    [CrossRef]
  65. O. Estévez and H. Spekreijse, “The “silent substitution” method in visual research,” Vis. Res. 22, 681–691 (1982).
    [CrossRef]
  66. A. G. Shapiro, J. Pokorny, and V. C. Smith, “Cone-rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328 (1996).
    [CrossRef]
  67. H. Sun, J. Pokorny, and V. C. Smith, “Control of the modulation of human photoreceptors,” Color Res. Appl. 26, S69–S75 (2001).
  68. A. Stockman, D. I. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
    [CrossRef]
  69. R. L. DeValois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).
    [CrossRef]
  70. R. L. DeValois, I. Abramov, and G. H. Jacobs, “Analysis of the response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
    [CrossRef]
  71. P. V. McGraw, D. J. McKeefry, D. Whitaker, and C. Vakrou, “Positional adaptation reveals multiple chromatic mechanisms in human vision,” J. Vis. 4(7):8, 626–636 (2004).
    [CrossRef]
  72. D. H. Kelly and D. van Norren, “Two-band model of heterochromatic flicker,” J. Opt. Soc. Am. 67, 1081–1091 (1977).
    [CrossRef]
  73. V. C. Smith, J. Pokorny, M. Davis, and T. Yeh, “Mechanisms subserving temporal-modulation sensitivity in silent-cone substitution,” J. Opt. Soc. Am. A 12, 241–249 (1995).
    [CrossRef]
  74. V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion-cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
  75. D. M. Dacey, “Primate retina: cell types, circuits and colour opponency,” Prog. Retin. Eye Res. 18, 737–763 (1999).
    [CrossRef]
  76. J. Verweij, E. P. Hornstein, and J. L. Schnapf, “Surround antagonism in macaque photoreceptors,” J. Neurosci. 23, 10249–10257 (2003).
  77. H. U. Evers and P. Gouras, “Three cone mechanisms in the primate electroretinogram—two with, one without off-center bipolar responses,” Vis. Res. 26, 245–254 (1986).
    [CrossRef]
  78. W. Li and S. H. DeVries, “Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina,” Nat. Neurosci. 9, 669–675 (2006).
    [CrossRef]
  79. T. Breuninger, C. Puller, S. Havercamp, and T. Euler, “Chromatic bipolar cell pathways in the mouse retina,” J. Neurosci. 31, 6504–6517 (2011).
    [CrossRef]
  80. D. Dacey, O. S. Packer, L. Diller, D. Brainard, B. Peterson, and B. B. Lee, “Center surround receptive field structure of cone bipolar cells in primate retina,” Vis. Res. 40, 1801–1811 (2000).
    [CrossRef]
  81. B. Erikoz, P. R. Jusuf, K. A. Percival, and U. Grünert, “Distribution of bipolar input to midget and parasol ganglion cells in marmoset retina,” Vis. Neurosci. 25, 67–76 (2008).
    [CrossRef]
  82. S. S. Deeb, L. C. Diller, D. R. Williams, and D. M. Dacey, “Interindividual and topographical variation of L∶M cone ratios in monkey retinas,” J. Opt. Soc. Am. A 17, 538–544 (2000).
    [CrossRef]
  83. A. Roorda, A. B. Metha, P. Lennie, and D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vis. Res. 41, 1291–1306 (2001).
    [CrossRef]
  84. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
    [CrossRef]
  85. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
    [CrossRef]

2012 (1)

N. R. Parry, I. J. Murray, A. Panorgias, D. J. McKeefry, B. B. Lee, and J. Kremers, “Simultaneous chromatic and luminance human electroretinogram responses,” J. Physiol. 590, 3141–3154 (2012).
[CrossRef]

2011 (2)

T. Breuninger, C. Puller, S. Havercamp, and T. Euler, “Chromatic bipolar cell pathways in the mouse retina,” J. Neurosci. 31, 6504–6517 (2011).
[CrossRef]

J. Kremers, N. R. Parry, A. Panorgias, and I. J. Murray, “The influence of retinal illuminance on L- and M-cone driven electroretinograms,” Vis. Neurosci. 28, 129–135 (2011).
[CrossRef]

2010 (3)

N. K. Challa, D. McKeefry, N. R. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12  Hz and 30  Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
[CrossRef]

K. Bradshaw and R. Hanitzsch, “Contribution of post-receporal cells to the cone a-wave of the human electroretinogram in congenital stationary night blindness and autoimmune-like retinopathy,” Vis. Res. 50, 2505–2514 (2010).
[CrossRef]

J. Kremers, A. R. Rodrigues, L. C. Silveria, and M. da Silva Filho, “Flicker ERGs representing chromaticity and luminance Signals,” Investig. Ophthalmol. Vis. Sci. 51, 577–587 (2010).
[CrossRef]

2008 (3)

J. Kremers and B. Link, “Electroretinographic responses that may reflect activity of parvo- and magnocellular post-receptoral visual pathways,” J. Vis. 8(15):11 (2008).
[CrossRef]

B. Erikoz, P. R. Jusuf, K. A. Percival, and U. Grünert, “Distribution of bipolar input to midget and parasol ganglion cells in marmoset retina,” Vis. Neurosci. 25, 67–76 (2008).
[CrossRef]

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

2007 (1)

B. Falsini, L. Ziccardi, G. Stifano, G. Iarossi, E. Merendino, A. M. Minnella, A. Fadda, and E. Balestrazzi, “Temporal response properties of the macular cone system: effect of normal aging and age- related maculopathy,” Investig. Ophthalmol. Vis. Sci. 48, 4811–4817 (2007).
[CrossRef]

2006 (2)

S. Ueno, M. Kondo, M. Ueno, K. Miyata, H. Terasaki, and Y. Miyake, “Contribution of retinal neurons to d-wave of primate photopic electroretinograms,” Vis. Res. 46, 658–664 (2006).
[CrossRef]

W. Li and S. H. DeVries, “Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina,” Nat. Neurosci. 9, 669–675 (2006).
[CrossRef]

2005 (2)

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

K. E. Mortlock, Z. Chiti, N. Drasdo, D. R. Owens, and R. V. North, “Silent substitution S-cone electroretinogram in subjects with diabetes mellitus,” Ophthalmic Physiol. Opt. 25, 392–399 (2005).

2004 (4)

I. J. Murray, N. R. Parry, J. Kremers, M. Stepien, and A. Schild, “Photoreceptor topography and cone-specific electroretinograms,” Vis. Neurosci. 21, 231–235 (2004).
[CrossRef]

H. Wassle, “Parallel processing in the mammalian retina,” Nat. Rev. Neurosci. 5, 747–757 (2004).
[CrossRef]

C. Friedburg, C. P. Allen, P. J. Mason, and T. D. Lamb, “Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram,” J. Physiol. 556, 819–834 (2004).
[CrossRef]

P. V. McGraw, D. J. McKeefry, D. Whitaker, and C. Vakrou, “Positional adaptation reveals multiple chromatic mechanisms in human vision,” J. Vis. 4(7):8, 626–636 (2004).
[CrossRef]

2003 (4)

J. G. Robson, S. M. Saszik, J. Ahmed, and L. J. Frishman, “Rod and cone contributions to the a-wave of the electroretinogram of the macaque,” J. Physiol. 547, 509–530 (2003).
[CrossRef]

J. Verweij, E. P. Hornstein, and J. L. Schnapf, “Surround antagonism in macaque photoreceptors,” J. Neurosci. 23, 10249–10257 (2003).

Z. Chiti, R. V. North, K. E. Mortlock, and N. Drasdo, “The S-cone electroretinogram: a comparison of techniques, normative data and age-related variation,” Ophthalmic Physiol. Opt. 23, 370–376 (2003).

J. Kremers, “The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal human retina,” Prog. Retin. Eye Res. 22, 579–605 (2003).

2002 (3)

J. Albrecht, H. Jägle, D. C. Hood, and L. T. Sharpe, “The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina,” J. Vis. 2(8), 543–558 (2002).

J. Carroll, J. Neitz, and M. Neitz, “Estimates of L:M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8):1, 531–542 (2002).

S. Viswanathan, L. J. Frishman, and J. G. Robson, “Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques: Macaque photopic sinusoidal flicker ERG,” Doc. Ophthalmol. 105, 223–242 (2002).
[CrossRef]

2001 (3)

N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).

H. Sun, J. Pokorny, and V. C. Smith, “Control of the modulation of human photoreceptors,” Color Res. Appl. 26, S69–S75 (2001).

A. Roorda, A. B. Metha, P. Lennie, and D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vis. Res. 41, 1291–1306 (2001).
[CrossRef]

2000 (7)

J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
[CrossRef]

S. S. Deeb, L. C. Diller, D. R. Williams, and D. M. Dacey, “Interindividual and topographical variation of L∶M cone ratios in monkey retinas,” J. Opt. Soc. Am. A 17, 538–544 (2000).
[CrossRef]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

R. L. DeValois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).
[CrossRef]

D. Dacey, O. S. Packer, L. Diller, D. Brainard, B. Peterson, and B. B. Lee, “Center surround receptive field structure of cone bipolar cells in primate retina,” Vis. Res. 40, 1801–1811 (2000).
[CrossRef]

D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000).
[CrossRef]

S. Viswanathan, L. J. Frishman, and J. G. Robson, “The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity,” Investig. Ophthalmol. Vis. Sci. 41, 2797–2810 (2000).

1999 (4)

S. Viswanathan, L. J. Frishman, J. G. Robson, R. S. Harwerth, and E. L. Smith, “The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma,” Investig. Ophthalmol. Vis. Sci. 40, 1124–1136 (1999).

G. B. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
[CrossRef]

J. Kremers, T. Usui, H. P. Scholl, and L. T. Sharpe, “Cone signal contributions to electroretinograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

D. M. Dacey, “Primate retina: cell types, circuits and colour opponency,” Prog. Retin. Eye Res. 18, 737–763 (1999).
[CrossRef]

1998 (2)

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vis. Res. 38, 3391–3396 (1998).
[CrossRef]

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength,” Vis. Res. 38, 3247–3251 (1998).
[CrossRef]

1997 (2)

G. H. Jacobs and J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Vis. Neurosci. 14, 921–928 (1997).
[CrossRef]

S. Yamamoto, S. Takeuchi, and M. Kamiyama, “The short wavelength-sensitive cone electroretinogram in diabetes: relationship to systemic factors,” Doc. Ophthalmol. 94, 193–200 (1997–1998).
[CrossRef]

1996 (4)

1995 (1)

1994 (3)

R. A. Bush and P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Investig. Ophthalmol. Vis. Sci. 35, 635–645 (1994).

D. M. Dacey and B. B. Lee, “The blue-on opponent pathway in primate retina originates from a distinct bistratified ganglion-cell type,” Nature 367, 731–735 (1994).
[CrossRef]

P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram—a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
[CrossRef]

1993 (3)

P. Gouras, C. J. Mackay, and S. Yamamoto, “The human S-cone electroretinogram and its variation among subjects with and without L-cone and M-cone function,” Investig. Ophthalmol. Vis. Sci. 34, 2437–2442 (1993).

W. Spileers, F. Falcao-Reis, C. Hogg, and G. B. Arden, “Evidence from human electroretinogram-a and off responses that color processing occurs in the cones,” Investig. Ophthalmol. Vis. Sci. 34, 2079–2091 (1993).

A. Stockman, D. I. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
[CrossRef]

1992 (2)

A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion-cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion-cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).

1990 (3)

P. K. Kaiser, B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).

P. H. Schiller, N. K. Logothetis, and E. R. Charles, “Functions of the colour-opponent and broad-band channels of the visual system,” Nature 343, 68–70 (1990).
[CrossRef]

P. Gouras and C. J. Mackay, “Electroretinographic responses of the short-wavelength-sensitive cones,” Investig. Ophthalmol. Vis. Sci. 31, 1203–1209 (1990).

1989 (1)

B. B. Lee, P. R. Martin, and A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989).

1988 (1)

B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).

1987 (2)

B. B. Lee, A. Valberg, D. A. Tigwell, and J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. Lond. B 230, 293–314 (1987).
[CrossRef]

M. Sawusch, J. Pokorny, and V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Investig. Ophthalmol. Vis. Sci. 28, 966–974 (1987).

1986 (2)

R. Shapley and V. H. Perry, “Cat and monkey retinal ganglion cells and their visual functional roles,” Trends Neurosci. 9, 229–235 (1986).
[CrossRef]

H. U. Evers and P. Gouras, “Three cone mechanisms in the primate electroretinogram—two with, one without off-center bipolar responses,” Vis. Res. 26, 245–254 (1986).
[CrossRef]

1984 (2)

A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

1983 (1)

T. P. Hicks, B. B. Lee, and T. R. Vidyasagar, “The response of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. 337, 183–200 (1983).

1982 (2)

1980 (2)

W. S. Baron, “Cone difference signal in foveal local electroretinogram of primate,” Investig. Ophthalmol. Vis. Sci. 19, 1442–1448 (1980).

M. Korth and S. Sokol, “Electroretinographic and psychophysical measures of cone spectral mechanisms using the 2-color threshold technique,” Vis. Res. 20, 205–212 (1980).
[CrossRef]

1979 (1)

E. Zrenner and P. Gouras, “Blue-sensitive cones of the cat produce a rod like electroretinogram,” Investig. Ophthalmol. Vis. Sci. 18, 1076–1081 (1979).

1977 (1)

1976 (1)

B. Dreher, Y. Fukada, and R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiol. 258, 433–452 (1976).

1975 (2)

F. M. De Monasterio and P. Gouras, “Functional properites of ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 167–195 (1975).

W. S. Baron and R. M. Boynton, “Response of primate cones to sinusoidally flickering homochromatic stimuli,” J. Physiol. 246, 311–331 (1975).

1974 (2)

L. Mehaffey and E. L. Berson, “Cone mechanisms in electroretinogram of cynomolgus monkey,” Investig. Ophthalmol. 13, 266–273 (1974).

O. Estévez and H. Spekreijse, “Spectral compensation method for determining flicker characteristics of human color mechanisms,” Vis. Res. 14, 823–830 (1974).
[CrossRef]

1973 (1)

D. V. Norren and P. Padmos, “Human and macaque blue cones studied with electroretinography,” Vis. Res. 13, 1241–1254 (1973).
[CrossRef]

1966 (2)

T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).

R. L. DeValois, I. Abramov, and G. H. Jacobs, “Analysis of the response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
[CrossRef]

1946 (1)

E. D. Adrian, “Rod and cone components in the electric response of the eye,” J. Physiol. 105, 24–37 (1946).

Abramov, I.

Adrian, E. D.

E. D. Adrian, “Rod and cone components in the electric response of the eye,” J. Physiol. 105, 24–37 (1946).

Ahmed, J.

J. G. Robson, S. M. Saszik, J. Ahmed, and L. J. Frishman, “Rod and cone contributions to the a-wave of the electroretinogram of the macaque,” J. Physiol. 547, 509–530 (2003).
[CrossRef]

Albrecht, J.

J. Albrecht, H. Jägle, D. C. Hood, and L. T. Sharpe, “The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina,” J. Vis. 2(8), 543–558 (2002).

Aldebasi, Y. H.

N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).

Allen, C. P.

C. Friedburg, C. P. Allen, P. J. Mason, and T. D. Lamb, “Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram,” J. Physiol. 556, 819–834 (2004).
[CrossRef]

Arden, G. B.

G. B. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
[CrossRef]

W. Spileers, F. Falcao-Reis, C. Hogg, and G. B. Arden, “Evidence from human electroretinogram-a and off responses that color processing occurs in the cones,” Investig. Ophthalmol. Vis. Sci. 34, 2079–2091 (1993).

Balestrazzi, E.

B. Falsini, L. Ziccardi, G. Stifano, G. Iarossi, E. Merendino, A. M. Minnella, A. Fadda, and E. Balestrazzi, “Temporal response properties of the macular cone system: effect of normal aging and age- related maculopathy,” Investig. Ophthalmol. Vis. Sci. 48, 4811–4817 (2007).
[CrossRef]

Baron, W. S.

W. J. Donovan and W. S. Baron, “Identification of the R-G-cone difference signal in the corneal electroretinogram of the primate,” J. Opt. Soc. Am. 72, 1014–1020 (1982).
[CrossRef]

W. S. Baron, “Cone difference signal in foveal local electroretinogram of primate,” Investig. Ophthalmol. Vis. Sci. 19, 1442–1448 (1980).

W. S. Baron and R. M. Boynton, “Response of primate cones to sinusoidally flickering homochromatic stimuli,” J. Physiol. 246, 311–331 (1975).

Berendschot, T. T.

Berninger, T.

G. B. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
[CrossRef]

Berson, E. L.

L. Mehaffey and E. L. Berson, “Cone mechanisms in electroretinogram of cynomolgus monkey,” Investig. Ophthalmol. 13, 266–273 (1974).

Boynton, R. M.

W. S. Baron and R. M. Boynton, “Response of primate cones to sinusoidally flickering homochromatic stimuli,” J. Physiol. 246, 311–331 (1975).

Bradshaw, K.

K. Bradshaw and R. Hanitzsch, “Contribution of post-receporal cells to the cone a-wave of the human electroretinogram in congenital stationary night blindness and autoimmune-like retinopathy,” Vis. Res. 50, 2505–2514 (2010).
[CrossRef]

Brainard, D.

D. Dacey, O. S. Packer, L. Diller, D. Brainard, B. Peterson, and B. B. Lee, “Center surround receptive field structure of cone bipolar cells in primate retina,” Vis. Res. 40, 1801–1811 (2000).
[CrossRef]

Brainard, D. H.

Breuninger, T.

T. Breuninger, C. Puller, S. Havercamp, and T. Euler, “Chromatic bipolar cell pathways in the mouse retina,” J. Neurosci. 31, 6504–6517 (2011).
[CrossRef]

Bush, R. A.

R. A. Bush and P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996).
[CrossRef]

R. A. Bush and P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Investig. Ophthalmol. Vis. Sci. 35, 635–645 (1994).

Calderone, J. B.

Carroll, J.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

J. Carroll, J. Neitz, and M. Neitz, “Estimates of L:M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8):1, 531–542 (2002).

Challa, N. K.

N. K. Challa, D. McKeefry, N. R. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12  Hz and 30  Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
[CrossRef]

Charles, E. R.

P. H. Schiller, N. K. Logothetis, and E. R. Charles, “Functions of the colour-opponent and broad-band channels of the visual system,” Nature 343, 68–70 (1990).
[CrossRef]

Chiti, Z.

K. E. Mortlock, Z. Chiti, N. Drasdo, D. R. Owens, and R. V. North, “Silent substitution S-cone electroretinogram in subjects with diabetes mellitus,” Ophthalmic Physiol. Opt. 25, 392–399 (2005).

Z. Chiti, R. V. North, K. E. Mortlock, and N. Drasdo, “The S-cone electroretinogram: a comparison of techniques, normative data and age-related variation,” Ophthalmic Physiol. Opt. 23, 370–376 (2003).

N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).

Cottaris, N. P.

R. L. DeValois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).
[CrossRef]

da Silva Filho, M.

J. Kremers, A. R. Rodrigues, L. C. Silveria, and M. da Silva Filho, “Flicker ERGs representing chromaticity and luminance Signals,” Investig. Ophthalmol. Vis. Sci. 51, 577–587 (2010).
[CrossRef]

Dacey, D.

D. Dacey, O. S. Packer, L. Diller, D. Brainard, B. Peterson, and B. B. Lee, “Center surround receptive field structure of cone bipolar cells in primate retina,” Vis. Res. 40, 1801–1811 (2000).
[CrossRef]

Dacey, D. M.

S. S. Deeb, L. C. Diller, D. R. Williams, and D. M. Dacey, “Interindividual and topographical variation of L∶M cone ratios in monkey retinas,” J. Opt. Soc. Am. A 17, 538–544 (2000).
[CrossRef]

D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000).
[CrossRef]

D. M. Dacey, “Primate retina: cell types, circuits and colour opponency,” Prog. Retin. Eye Res. 18, 737–763 (1999).
[CrossRef]

D. M. Dacey and B. B. Lee, “The blue-on opponent pathway in primate retina originates from a distinct bistratified ganglion-cell type,” Nature 367, 731–735 (1994).
[CrossRef]

Davis, M.

De Monasterio, F. M.

F. M. De Monasterio and P. Gouras, “Functional properites of ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 167–195 (1975).

Deeb, S. S.

Deegan, J. F.

G. H. Jacobs and J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Vis. Neurosci. 14, 921–928 (1997).
[CrossRef]

Derrington, A. M.

A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

DeValois, R. L.

R. L. DeValois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).
[CrossRef]

R. L. DeValois, I. Abramov, and G. H. Jacobs, “Analysis of the response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
[CrossRef]

DeVries, S. H.

W. Li and S. H. DeVries, “Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina,” Nat. Neurosci. 9, 669–675 (2006).
[CrossRef]

Diller, L.

D. Dacey, O. S. Packer, L. Diller, D. Brainard, B. Peterson, and B. B. Lee, “Center surround receptive field structure of cone bipolar cells in primate retina,” Vis. Res. 40, 1801–1811 (2000).
[CrossRef]

Diller, L. C.

Donovan, W. J.

Drasdo, N.

K. E. Mortlock, Z. Chiti, N. Drasdo, D. R. Owens, and R. V. North, “Silent substitution S-cone electroretinogram in subjects with diabetes mellitus,” Ophthalmic Physiol. Opt. 25, 392–399 (2005).

Z. Chiti, R. V. North, K. E. Mortlock, and N. Drasdo, “The S-cone electroretinogram: a comparison of techniques, normative data and age-related variation,” Ophthalmic Physiol. Opt. 23, 370–376 (2003).

N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).

Dreher, B.

B. Dreher, Y. Fukada, and R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiol. 258, 433–452 (1976).

Elfar, S. D.

R. L. DeValois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).
[CrossRef]

Erikoz, B.

B. Erikoz, P. R. Jusuf, K. A. Percival, and U. Grünert, “Distribution of bipolar input to midget and parasol ganglion cells in marmoset retina,” Vis. Neurosci. 25, 67–76 (2008).
[CrossRef]

Estévez, O.

O. Estévez and H. Spekreijse, “The “silent substitution” method in visual research,” Vis. Res. 22, 681–691 (1982).
[CrossRef]

O. Estévez and H. Spekreijse, “Spectral compensation method for determining flicker characteristics of human color mechanisms,” Vis. Res. 14, 823–830 (1974).
[CrossRef]

Euler, T.

T. Breuninger, C. Puller, S. Havercamp, and T. Euler, “Chromatic bipolar cell pathways in the mouse retina,” J. Neurosci. 31, 6504–6517 (2011).
[CrossRef]

Evers, H. U.

H. U. Evers and P. Gouras, “Three cone mechanisms in the primate electroretinogram—two with, one without off-center bipolar responses,” Vis. Res. 26, 245–254 (1986).
[CrossRef]

Fadda, A.

B. Falsini, L. Ziccardi, G. Stifano, G. Iarossi, E. Merendino, A. M. Minnella, A. Fadda, and E. Balestrazzi, “Temporal response properties of the macular cone system: effect of normal aging and age- related maculopathy,” Investig. Ophthalmol. Vis. Sci. 48, 4811–4817 (2007).
[CrossRef]

Falcao-Reis, F.

W. Spileers, F. Falcao-Reis, C. Hogg, and G. B. Arden, “Evidence from human electroretinogram-a and off responses that color processing occurs in the cones,” Investig. Ophthalmol. Vis. Sci. 34, 2079–2091 (1993).

Falsini, B.

B. Falsini, L. Ziccardi, G. Stifano, G. Iarossi, E. Merendino, A. M. Minnella, A. Fadda, and E. Balestrazzi, “Temporal response properties of the macular cone system: effect of normal aging and age- related maculopathy,” Investig. Ophthalmol. Vis. Sci. 48, 4811–4817 (2007).
[CrossRef]

Friedburg, C.

C. Friedburg, C. P. Allen, P. J. Mason, and T. D. Lamb, “Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram,” J. Physiol. 556, 819–834 (2004).
[CrossRef]

Frishman, L. J.

J. G. Robson, S. M. Saszik, J. Ahmed, and L. J. Frishman, “Rod and cone contributions to the a-wave of the electroretinogram of the macaque,” J. Physiol. 547, 509–530 (2003).
[CrossRef]

S. Viswanathan, L. J. Frishman, and J. G. Robson, “Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques: Macaque photopic sinusoidal flicker ERG,” Doc. Ophthalmol. 105, 223–242 (2002).
[CrossRef]

S. Viswanathan, L. J. Frishman, and J. G. Robson, “The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity,” Investig. Ophthalmol. Vis. Sci. 41, 2797–2810 (2000).

S. Viswanathan, L. J. Frishman, J. G. Robson, R. S. Harwerth, and E. L. Smith, “The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma,” Investig. Ophthalmol. Vis. Sci. 40, 1124–1136 (1999).

L. J. Frishman, “Origins of the electroretinogram,” in Principles and Practice of Clinical Electrophysiology of Vision, J. R. Heckenlively and G. B. Arden, eds. (MIT, 2006), pp. 139–184.

Fukada, Y.

B. Dreher, Y. Fukada, and R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiol. 258, 433–452 (1976).

Gouras, P.

P. Gouras, C. J. Mackay, and S. Yamamoto, “The human S-cone electroretinogram and its variation among subjects with and without L-cone and M-cone function,” Investig. Ophthalmol. Vis. Sci. 34, 2437–2442 (1993).

P. Gouras and C. J. Mackay, “Electroretinographic responses of the short-wavelength-sensitive cones,” Investig. Ophthalmol. Vis. Sci. 31, 1203–1209 (1990).

H. U. Evers and P. Gouras, “Three cone mechanisms in the primate electroretinogram—two with, one without off-center bipolar responses,” Vis. Res. 26, 245–254 (1986).
[CrossRef]

E. Zrenner and P. Gouras, “Blue-sensitive cones of the cat produce a rod like electroretinogram,” Investig. Ophthalmol. Vis. Sci. 18, 1076–1081 (1979).

F. M. De Monasterio and P. Gouras, “Functional properites of ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 167–195 (1975).

Grünert, U.

B. Erikoz, P. R. Jusuf, K. A. Percival, and U. Grünert, “Distribution of bipolar input to midget and parasol ganglion cells in marmoset retina,” Vis. Neurosci. 25, 67–76 (2008).
[CrossRef]

Hanitzsch, R.

K. Bradshaw and R. Hanitzsch, “Contribution of post-receporal cells to the cone a-wave of the human electroretinogram in congenital stationary night blindness and autoimmune-like retinopathy,” Vis. Res. 50, 2505–2514 (2010).
[CrossRef]

Harwerth, R. S.

S. Viswanathan, L. J. Frishman, J. G. Robson, R. S. Harwerth, and E. L. Smith, “The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma,” Investig. Ophthalmol. Vis. Sci. 40, 1124–1136 (1999).

Havercamp, S.

T. Breuninger, C. Puller, S. Havercamp, and T. Euler, “Chromatic bipolar cell pathways in the mouse retina,” J. Neurosci. 31, 6504–6517 (2011).
[CrossRef]

Hayasaka, S.

S. Yamamoto, M. Kamiyama, K. Nitta, T. Yamada, and S. Hayasaka, “Selective reduction of the S cone electroretinogram in diabetes,” Br. J. Ophthalmol. 80, 973–975 (1996).
[CrossRef]

Hicks, T. P.

T. P. Hicks, B. B. Lee, and T. R. Vidyasagar, “The response of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. 337, 183–200 (1983).

Hofer, H.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

Hogg, C.

W. Spileers, F. Falcao-Reis, C. Hogg, and G. B. Arden, “Evidence from human electroretinogram-a and off responses that color processing occurs in the cones,” Investig. Ophthalmol. Vis. Sci. 34, 2079–2091 (1993).

Hogg, C. R.

G. B. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
[CrossRef]

Holder, G. E.

G. B. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
[CrossRef]

Hood, D. C.

J. Albrecht, H. Jägle, D. C. Hood, and L. T. Sharpe, “The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina,” J. Vis. 2(8), 543–558 (2002).

Hornstein, E. P.

J. Verweij, E. P. Hornstein, and J. L. Schnapf, “Surround antagonism in macaque photoreceptors,” J. Neurosci. 23, 10249–10257 (2003).

Hubel, D. H.

T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).

Iarossi, G.

B. Falsini, L. Ziccardi, G. Stifano, G. Iarossi, E. Merendino, A. M. Minnella, A. Fadda, and E. Balestrazzi, “Temporal response properties of the macular cone system: effect of normal aging and age- related maculopathy,” Investig. Ophthalmol. Vis. Sci. 48, 4811–4817 (2007).
[CrossRef]

Jacobs, G. H.

Jägle, H.

J. Albrecht, H. Jägle, D. C. Hood, and L. T. Sharpe, “The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina,” J. Vis. 2(8), 543–558 (2002).

Johnson, N. E.

Jusuf, P. R.

B. Erikoz, P. R. Jusuf, K. A. Percival, and U. Grünert, “Distribution of bipolar input to midget and parasol ganglion cells in marmoset retina,” Vis. Neurosci. 25, 67–76 (2008).
[CrossRef]

Kaiser, P. K.

A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion-cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).

P. K. Kaiser, B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).

Kamiyama, M.

S. Yamamoto, S. Takeuchi, and M. Kamiyama, “The short wavelength-sensitive cone electroretinogram in diabetes: relationship to systemic factors,” Doc. Ophthalmol. 94, 193–200 (1997–1998).
[CrossRef]

S. Yamamoto, M. Kamiyama, K. Nitta, T. Yamada, and S. Hayasaka, “Selective reduction of the S cone electroretinogram in diabetes,” Br. J. Ophthalmol. 80, 973–975 (1996).
[CrossRef]

Kelly, D. H.

Knau, H.

Kondo, M.

S. Ueno, M. Kondo, M. Ueno, K. Miyata, H. Terasaki, and Y. Miyake, “Contribution of retinal neurons to d-wave of primate photopic electroretinograms,” Vis. Res. 46, 658–664 (2006).
[CrossRef]

Korth, M.

M. Korth and S. Sokol, “Electroretinographic and psychophysical measures of cone spectral mechanisms using the 2-color threshold technique,” Vis. Res. 20, 205–212 (1980).
[CrossRef]

Krauskopf, J.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Kremers, J.

N. R. Parry, I. J. Murray, A. Panorgias, D. J. McKeefry, B. B. Lee, and J. Kremers, “Simultaneous chromatic and luminance human electroretinogram responses,” J. Physiol. 590, 3141–3154 (2012).
[CrossRef]

J. Kremers, N. R. Parry, A. Panorgias, and I. J. Murray, “The influence of retinal illuminance on L- and M-cone driven electroretinograms,” Vis. Neurosci. 28, 129–135 (2011).
[CrossRef]

J. Kremers, A. R. Rodrigues, L. C. Silveria, and M. da Silva Filho, “Flicker ERGs representing chromaticity and luminance Signals,” Investig. Ophthalmol. Vis. Sci. 51, 577–587 (2010).
[CrossRef]

N. K. Challa, D. McKeefry, N. R. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12  Hz and 30  Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
[CrossRef]

J. Kremers and B. Link, “Electroretinographic responses that may reflect activity of parvo- and magnocellular post-receptoral visual pathways,” J. Vis. 8(15):11 (2008).
[CrossRef]

I. J. Murray, N. R. Parry, J. Kremers, M. Stepien, and A. Schild, “Photoreceptor topography and cone-specific electroretinograms,” Vis. Neurosci. 21, 231–235 (2004).
[CrossRef]

J. Kremers, “The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal human retina,” Prog. Retin. Eye Res. 22, 579–605 (2003).

J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
[CrossRef]

J. Kremers, T. Usui, H. P. Scholl, and L. T. Sharpe, “Cone signal contributions to electroretinograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vis. Res. 38, 3391–3396 (1998).
[CrossRef]

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength,” Vis. Res. 38, 3247–3251 (1998).
[CrossRef]

A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion-cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).

Krogh, K.

Lamb, T. D.

C. Friedburg, C. P. Allen, P. J. Mason, and T. D. Lamb, “Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram,” J. Physiol. 556, 819–834 (2004).
[CrossRef]

Lee, B. B.

N. R. Parry, I. J. Murray, A. Panorgias, D. J. McKeefry, B. B. Lee, and J. Kremers, “Simultaneous chromatic and luminance human electroretinogram responses,” J. Physiol. 590, 3141–3154 (2012).
[CrossRef]

D. Dacey, O. S. Packer, L. Diller, D. Brainard, B. Peterson, and B. B. Lee, “Center surround receptive field structure of cone bipolar cells in primate retina,” Vis. Res. 40, 1801–1811 (2000).
[CrossRef]

D. M. Dacey and B. B. Lee, “The blue-on opponent pathway in primate retina originates from a distinct bistratified ganglion-cell type,” Nature 367, 731–735 (1994).
[CrossRef]

A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion-cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion-cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).

P. K. Kaiser, B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).

B. B. Lee, P. R. Martin, and A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989).

B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).

B. B. Lee, A. Valberg, D. A. Tigwell, and J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. Lond. B 230, 293–314 (1987).
[CrossRef]

T. P. Hicks, B. B. Lee, and T. R. Vidyasagar, “The response of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. 337, 183–200 (1983).

Lennie, P.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

A. Roorda, A. B. Metha, P. Lennie, and D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vis. Res. 41, 1291–1306 (2001).
[CrossRef]

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).

Li, W.

W. Li and S. H. DeVries, “Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina,” Nat. Neurosci. 9, 669–675 (2006).
[CrossRef]

Link, B.

J. Kremers and B. Link, “Electroretinographic responses that may reflect activity of parvo- and magnocellular post-receptoral visual pathways,” J. Vis. 8(15):11 (2008).
[CrossRef]

Logothetis, N. K.

P. H. Schiller, N. K. Logothetis, and E. R. Charles, “Functions of the colour-opponent and broad-band channels of the visual system,” Nature 343, 68–70 (1990).
[CrossRef]

Mackay, C. J.

P. Gouras, C. J. Mackay, and S. Yamamoto, “The human S-cone electroretinogram and its variation among subjects with and without L-cone and M-cone function,” Investig. Ophthalmol. Vis. Sci. 34, 2437–2442 (1993).

P. Gouras and C. J. Mackay, “Electroretinographic responses of the short-wavelength-sensitive cones,” Investig. Ophthalmol. Vis. Sci. 31, 1203–1209 (1990).

MacLeod, D. I.

Mahon, L. E.

R. L. DeValois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).
[CrossRef]

Martin, P. R.

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion-cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).

P. K. Kaiser, B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).

B. B. Lee, P. R. Martin, and A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989).

B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).

Mason, P. J.

C. Friedburg, C. P. Allen, P. J. Mason, and T. D. Lamb, “Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram,” J. Physiol. 556, 819–834 (2004).
[CrossRef]

McGraw, P. V.

P. V. McGraw, D. J. McKeefry, D. Whitaker, and C. Vakrou, “Positional adaptation reveals multiple chromatic mechanisms in human vision,” J. Vis. 4(7):8, 626–636 (2004).
[CrossRef]

McKeefry, D.

N. K. Challa, D. McKeefry, N. R. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12  Hz and 30  Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
[CrossRef]

McKeefry, D. J.

N. R. Parry, I. J. Murray, A. Panorgias, D. J. McKeefry, B. B. Lee, and J. Kremers, “Simultaneous chromatic and luminance human electroretinogram responses,” J. Physiol. 590, 3141–3154 (2012).
[CrossRef]

P. V. McGraw, D. J. McKeefry, D. Whitaker, and C. Vakrou, “Positional adaptation reveals multiple chromatic mechanisms in human vision,” J. Vis. 4(7):8, 626–636 (2004).
[CrossRef]

Mehaffey, L.

L. Mehaffey and E. L. Berson, “Cone mechanisms in electroretinogram of cynomolgus monkey,” Investig. Ophthalmol. 13, 266–273 (1974).

Merendino, E.

B. Falsini, L. Ziccardi, G. Stifano, G. Iarossi, E. Merendino, A. M. Minnella, A. Fadda, and E. Balestrazzi, “Temporal response properties of the macular cone system: effect of normal aging and age- related maculopathy,” Investig. Ophthalmol. Vis. Sci. 48, 4811–4817 (2007).
[CrossRef]

Metha, A.

Metha, A. B.

A. Roorda, A. B. Metha, P. Lennie, and D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vis. Res. 41, 1291–1306 (2001).
[CrossRef]

Minnella, A. M.

B. Falsini, L. Ziccardi, G. Stifano, G. Iarossi, E. Merendino, A. M. Minnella, A. Fadda, and E. Balestrazzi, “Temporal response properties of the macular cone system: effect of normal aging and age- related maculopathy,” Investig. Ophthalmol. Vis. Sci. 48, 4811–4817 (2007).
[CrossRef]

Miyake, Y.

S. Ueno, M. Kondo, M. Ueno, K. Miyata, H. Terasaki, and Y. Miyake, “Contribution of retinal neurons to d-wave of primate photopic electroretinograms,” Vis. Res. 46, 658–664 (2006).
[CrossRef]

Miyata, K.

S. Ueno, M. Kondo, M. Ueno, K. Miyata, H. Terasaki, and Y. Miyake, “Contribution of retinal neurons to d-wave of primate photopic electroretinograms,” Vis. Res. 46, 658–664 (2006).
[CrossRef]

Morgan, J. E.

N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).

Mortlock, K. E.

K. E. Mortlock, Z. Chiti, N. Drasdo, D. R. Owens, and R. V. North, “Silent substitution S-cone electroretinogram in subjects with diabetes mellitus,” Ophthalmic Physiol. Opt. 25, 392–399 (2005).

Z. Chiti, R. V. North, K. E. Mortlock, and N. Drasdo, “The S-cone electroretinogram: a comparison of techniques, normative data and age-related variation,” Ophthalmic Physiol. Opt. 23, 370–376 (2003).

N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).

Murayama, K.

P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram—a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
[CrossRef]

Murray, I. J.

N. R. Parry, I. J. Murray, A. Panorgias, D. J. McKeefry, B. B. Lee, and J. Kremers, “Simultaneous chromatic and luminance human electroretinogram responses,” J. Physiol. 590, 3141–3154 (2012).
[CrossRef]

J. Kremers, N. R. Parry, A. Panorgias, and I. J. Murray, “The influence of retinal illuminance on L- and M-cone driven electroretinograms,” Vis. Neurosci. 28, 129–135 (2011).
[CrossRef]

N. K. Challa, D. McKeefry, N. R. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12  Hz and 30  Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
[CrossRef]

I. J. Murray, N. R. Parry, J. Kremers, M. Stepien, and A. Schild, “Photoreceptor topography and cone-specific electroretinograms,” Vis. Neurosci. 21, 231–235 (2004).
[CrossRef]

Naarendorp, F.

P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram—a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
[CrossRef]

Neitz, J.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

J. Carroll, J. Neitz, and M. Neitz, “Estimates of L:M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8):1, 531–542 (2002).

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

G. H. Jacobs, J. Neitz, and K. Krogh, “Electroretinogram flicker photometry and its applications,” J. Opt. Soc. Am. A 13, 641–648 (1996).
[CrossRef]

G. H. Jacobs and J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1999) pp. 107–112

Neitz, M.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

J. Carroll, J. Neitz, and M. Neitz, “Estimates of L:M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8):1, 531–542 (2002).

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

Nitta, K.

S. Yamamoto, M. Kamiyama, K. Nitta, T. Yamada, and S. Hayasaka, “Selective reduction of the S cone electroretinogram in diabetes,” Br. J. Ophthalmol. 80, 973–975 (1996).
[CrossRef]

Norren, D. V.

D. V. Norren and P. Padmos, “Human and macaque blue cones studied with electroretinography,” Vis. Res. 13, 1241–1254 (1973).
[CrossRef]

North, R. V.

K. E. Mortlock, Z. Chiti, N. Drasdo, D. R. Owens, and R. V. North, “Silent substitution S-cone electroretinogram in subjects with diabetes mellitus,” Ophthalmic Physiol. Opt. 25, 392–399 (2005).

Z. Chiti, R. V. North, K. E. Mortlock, and N. Drasdo, “The S-cone electroretinogram: a comparison of techniques, normative data and age-related variation,” Ophthalmic Physiol. Opt. 23, 370–376 (2003).

N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).

Owens, D. R.

K. E. Mortlock, Z. Chiti, N. Drasdo, D. R. Owens, and R. V. North, “Silent substitution S-cone electroretinogram in subjects with diabetes mellitus,” Ophthalmic Physiol. Opt. 25, 392–399 (2005).

Packer, O. S.

D. Dacey, O. S. Packer, L. Diller, D. Brainard, B. Peterson, and B. B. Lee, “Center surround receptive field structure of cone bipolar cells in primate retina,” Vis. Res. 40, 1801–1811 (2000).
[CrossRef]

Padmos, P.

D. V. Norren and P. Padmos, “Human and macaque blue cones studied with electroretinography,” Vis. Res. 13, 1241–1254 (1973).
[CrossRef]

Panorgias, A.

N. R. Parry, I. J. Murray, A. Panorgias, D. J. McKeefry, B. B. Lee, and J. Kremers, “Simultaneous chromatic and luminance human electroretinogram responses,” J. Physiol. 590, 3141–3154 (2012).
[CrossRef]

J. Kremers, N. R. Parry, A. Panorgias, and I. J. Murray, “The influence of retinal illuminance on L- and M-cone driven electroretinograms,” Vis. Neurosci. 28, 129–135 (2011).
[CrossRef]

N. K. Challa, D. McKeefry, N. R. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12  Hz and 30  Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
[CrossRef]

Parry, N. R.

N. R. Parry, I. J. Murray, A. Panorgias, D. J. McKeefry, B. B. Lee, and J. Kremers, “Simultaneous chromatic and luminance human electroretinogram responses,” J. Physiol. 590, 3141–3154 (2012).
[CrossRef]

J. Kremers, N. R. Parry, A. Panorgias, and I. J. Murray, “The influence of retinal illuminance on L- and M-cone driven electroretinograms,” Vis. Neurosci. 28, 129–135 (2011).
[CrossRef]

N. K. Challa, D. McKeefry, N. R. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12  Hz and 30  Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
[CrossRef]

I. J. Murray, N. R. Parry, J. Kremers, M. Stepien, and A. Schild, “Photoreceptor topography and cone-specific electroretinograms,” Vis. Neurosci. 21, 231–235 (2004).
[CrossRef]

Percival, K. A.

B. Erikoz, P. R. Jusuf, K. A. Percival, and U. Grünert, “Distribution of bipolar input to midget and parasol ganglion cells in marmoset retina,” Vis. Neurosci. 25, 67–76 (2008).
[CrossRef]

Perry, V. H.

R. Shapley and V. H. Perry, “Cat and monkey retinal ganglion cells and their visual functional roles,” Trends Neurosci. 9, 229–235 (1986).
[CrossRef]

Peterson, B.

D. Dacey, O. S. Packer, L. Diller, D. Brainard, B. Peterson, and B. B. Lee, “Center surround receptive field structure of cone bipolar cells in primate retina,” Vis. Res. 40, 1801–1811 (2000).
[CrossRef]

Pokorny, J.

H. Sun, J. Pokorny, and V. C. Smith, “Control of the modulation of human photoreceptors,” Color Res. Appl. 26, S69–S75 (2001).

A. G. Shapiro, J. Pokorny, and V. C. Smith, “Cone-rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328 (1996).
[CrossRef]

V. C. Smith, J. Pokorny, M. Davis, and T. Yeh, “Mechanisms subserving temporal-modulation sensitivity in silent-cone substitution,” J. Opt. Soc. Am. A 12, 241–249 (1995).
[CrossRef]

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion-cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).

M. Sawusch, J. Pokorny, and V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Investig. Ophthalmol. Vis. Sci. 28, 966–974 (1987).

Puller, C.

T. Breuninger, C. Puller, S. Havercamp, and T. Euler, “Chromatic bipolar cell pathways in the mouse retina,” J. Neurosci. 31, 6504–6517 (2011).
[CrossRef]

Robson, J. G.

J. G. Robson, S. M. Saszik, J. Ahmed, and L. J. Frishman, “Rod and cone contributions to the a-wave of the electroretinogram of the macaque,” J. Physiol. 547, 509–530 (2003).
[CrossRef]

S. Viswanathan, L. J. Frishman, and J. G. Robson, “Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques: Macaque photopic sinusoidal flicker ERG,” Doc. Ophthalmol. 105, 223–242 (2002).
[CrossRef]

S. Viswanathan, L. J. Frishman, and J. G. Robson, “The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity,” Investig. Ophthalmol. Vis. Sci. 41, 2797–2810 (2000).

S. Viswanathan, L. J. Frishman, J. G. Robson, R. S. Harwerth, and E. L. Smith, “The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma,” Investig. Ophthalmol. Vis. Sci. 40, 1124–1136 (1999).

Rodieck, R. W.

B. Dreher, Y. Fukada, and R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiol. 258, 433–452 (1976).

Rodrigues, A. R.

J. Kremers, A. R. Rodrigues, L. C. Silveria, and M. da Silva Filho, “Flicker ERGs representing chromaticity and luminance Signals,” Investig. Ophthalmol. Vis. Sci. 51, 577–587 (2010).
[CrossRef]

Roorda, A.

Saszik, S. M.

J. G. Robson, S. M. Saszik, J. Ahmed, and L. J. Frishman, “Rod and cone contributions to the a-wave of the electroretinogram of the macaque,” J. Physiol. 547, 509–530 (2003).
[CrossRef]

Sawusch, M.

M. Sawusch, J. Pokorny, and V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Investig. Ophthalmol. Vis. Sci. 28, 966–974 (1987).

Schild, A.

I. J. Murray, N. R. Parry, J. Kremers, M. Stepien, and A. Schild, “Photoreceptor topography and cone-specific electroretinograms,” Vis. Neurosci. 21, 231–235 (2004).
[CrossRef]

Schiller, P. H.

P. H. Schiller, N. K. Logothetis, and E. R. Charles, “Functions of the colour-opponent and broad-band channels of the visual system,” Nature 343, 68–70 (1990).
[CrossRef]

Schnapf, J. L.

J. Verweij, E. P. Hornstein, and J. L. Schnapf, “Surround antagonism in macaque photoreceptors,” J. Neurosci. 23, 10249–10257 (2003).

Scholl, H. P.

J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
[CrossRef]

J. Kremers, T. Usui, H. P. Scholl, and L. T. Sharpe, “Cone signal contributions to electroretinograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

Shapiro, A. G.

Shapley, R.

R. Shapley and V. H. Perry, “Cat and monkey retinal ganglion cells and their visual functional roles,” Trends Neurosci. 9, 229–235 (1986).
[CrossRef]

Sharpe, L. T.

J. Albrecht, H. Jägle, D. C. Hood, and L. T. Sharpe, “The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina,” J. Vis. 2(8), 543–558 (2002).

J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
[CrossRef]

J. Kremers, T. Usui, H. P. Scholl, and L. T. Sharpe, “Cone signal contributions to electroretinograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vis. Res. 38, 3391–3396 (1998).
[CrossRef]

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength,” Vis. Res. 38, 3247–3251 (1998).
[CrossRef]

Sieving, P. A.

R. A. Bush and P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996).
[CrossRef]

P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram—a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
[CrossRef]

R. A. Bush and P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Investig. Ophthalmol. Vis. Sci. 35, 635–645 (1994).

Silveria, L. C.

J. Kremers, A. R. Rodrigues, L. C. Silveria, and M. da Silva Filho, “Flicker ERGs representing chromaticity and luminance Signals,” Investig. Ophthalmol. Vis. Sci. 51, 577–587 (2010).
[CrossRef]

Smith, E. L.

S. Viswanathan, L. J. Frishman, J. G. Robson, R. S. Harwerth, and E. L. Smith, “The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma,” Investig. Ophthalmol. Vis. Sci. 40, 1124–1136 (1999).

Smith, V. C.

H. Sun, J. Pokorny, and V. C. Smith, “Control of the modulation of human photoreceptors,” Color Res. Appl. 26, S69–S75 (2001).

A. G. Shapiro, J. Pokorny, and V. C. Smith, “Cone-rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328 (1996).
[CrossRef]

V. C. Smith, J. Pokorny, M. Davis, and T. Yeh, “Mechanisms subserving temporal-modulation sensitivity in silent-cone substitution,” J. Opt. Soc. Am. A 12, 241–249 (1995).
[CrossRef]

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion-cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).

M. Sawusch, J. Pokorny, and V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Investig. Ophthalmol. Vis. Sci. 28, 966–974 (1987).

Sokol, S.

M. Korth and S. Sokol, “Electroretinographic and psychophysical measures of cone spectral mechanisms using the 2-color threshold technique,” Vis. Res. 20, 205–212 (1980).
[CrossRef]

Solomon, S. G.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

Spekreijse, H.

O. Estévez and H. Spekreijse, “The “silent substitution” method in visual research,” Vis. Res. 22, 681–691 (1982).
[CrossRef]

O. Estévez and H. Spekreijse, “Spectral compensation method for determining flicker characteristics of human color mechanisms,” Vis. Res. 14, 823–830 (1974).
[CrossRef]

Spileers, W.

W. Spileers, F. Falcao-Reis, C. Hogg, and G. B. Arden, “Evidence from human electroretinogram-a and off responses that color processing occurs in the cones,” Investig. Ophthalmol. Vis. Sci. 34, 2079–2091 (1993).

Stepien, M.

I. J. Murray, N. R. Parry, J. Kremers, M. Stepien, and A. Schild, “Photoreceptor topography and cone-specific electroretinograms,” Vis. Neurosci. 21, 231–235 (2004).
[CrossRef]

Stifano, G.

B. Falsini, L. Ziccardi, G. Stifano, G. Iarossi, E. Merendino, A. M. Minnella, A. Fadda, and E. Balestrazzi, “Temporal response properties of the macular cone system: effect of normal aging and age- related maculopathy,” Investig. Ophthalmol. Vis. Sci. 48, 4811–4817 (2007).
[CrossRef]

Stockman, A.

Sun, H.

H. Sun, J. Pokorny, and V. C. Smith, “Control of the modulation of human photoreceptors,” Color Res. Appl. 26, S69–S75 (2001).

Tailby, C.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

Takeuchi, S.

S. Yamamoto, S. Takeuchi, and M. Kamiyama, “The short wavelength-sensitive cone electroretinogram in diabetes: relationship to systemic factors,” Doc. Ophthalmol. 94, 193–200 (1997–1998).
[CrossRef]

Terasaki, H.

S. Ueno, M. Kondo, M. Ueno, K. Miyata, H. Terasaki, and Y. Miyake, “Contribution of retinal neurons to d-wave of primate photopic electroretinograms,” Vis. Res. 46, 658–664 (2006).
[CrossRef]

Tigwell, D. A.

B. B. Lee, A. Valberg, D. A. Tigwell, and J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. Lond. B 230, 293–314 (1987).
[CrossRef]

Tryti, J.

B. B. Lee, A. Valberg, D. A. Tigwell, and J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. Lond. B 230, 293–314 (1987).
[CrossRef]

Tzekov, R.

G. B. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
[CrossRef]

Ueno, M.

S. Ueno, M. Kondo, M. Ueno, K. Miyata, H. Terasaki, and Y. Miyake, “Contribution of retinal neurons to d-wave of primate photopic electroretinograms,” Vis. Res. 46, 658–664 (2006).
[CrossRef]

Ueno, S.

S. Ueno, M. Kondo, M. Ueno, K. Miyata, H. Terasaki, and Y. Miyake, “Contribution of retinal neurons to d-wave of primate photopic electroretinograms,” Vis. Res. 46, 658–664 (2006).
[CrossRef]

Usui, T.

J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
[CrossRef]

J. Kremers, T. Usui, H. P. Scholl, and L. T. Sharpe, “Cone signal contributions to electroretinograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength,” Vis. Res. 38, 3247–3251 (1998).
[CrossRef]

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vis. Res. 38, 3391–3396 (1998).
[CrossRef]

Vakrou, C.

P. V. McGraw, D. J. McKeefry, D. Whitaker, and C. Vakrou, “Positional adaptation reveals multiple chromatic mechanisms in human vision,” J. Vis. 4(7):8, 626–636 (2004).
[CrossRef]

Valberg, A.

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion-cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).

A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion-cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).

P. K. Kaiser, B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).

B. B. Lee, P. R. Martin, and A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989).

B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).

B. B. Lee, A. Valberg, D. A. Tigwell, and J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. Lond. B 230, 293–314 (1987).
[CrossRef]

van Norren, D.

Verweij, J.

J. Verweij, E. P. Hornstein, and J. L. Schnapf, “Surround antagonism in macaque photoreceptors,” J. Neurosci. 23, 10249–10257 (2003).

Vidyasagar, T. R.

T. P. Hicks, B. B. Lee, and T. R. Vidyasagar, “The response of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. 337, 183–200 (1983).

Viswanathan, S.

S. Viswanathan, L. J. Frishman, and J. G. Robson, “Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques: Macaque photopic sinusoidal flicker ERG,” Doc. Ophthalmol. 105, 223–242 (2002).
[CrossRef]

S. Viswanathan, L. J. Frishman, and J. G. Robson, “The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity,” Investig. Ophthalmol. Vis. Sci. 41, 2797–2810 (2000).

S. Viswanathan, L. J. Frishman, J. G. Robson, R. S. Harwerth, and E. L. Smith, “The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma,” Investig. Ophthalmol. Vis. Sci. 40, 1124–1136 (1999).

Wassle, H.

H. Wassle, “Parallel processing in the mammalian retina,” Nat. Rev. Neurosci. 5, 747–757 (2004).
[CrossRef]

Whitaker, D.

P. V. McGraw, D. J. McKeefry, D. Whitaker, and C. Vakrou, “Positional adaptation reveals multiple chromatic mechanisms in human vision,” J. Vis. 4(7):8, 626–636 (2004).
[CrossRef]

Wiesel, T. N.

T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).

Williams, D. R.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

A. Roorda, A. B. Metha, P. Lennie, and D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vis. Res. 41, 1291–1306 (2001).
[CrossRef]

S. S. Deeb, L. C. Diller, D. R. Williams, and D. M. Dacey, “Interindividual and topographical variation of L∶M cone ratios in monkey retinas,” J. Opt. Soc. Am. A 17, 538–544 (2000).
[CrossRef]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

Wilson, J. A.

R. L. DeValois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).
[CrossRef]

Wolf, J.

G. B. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
[CrossRef]

Yamada, T.

S. Yamamoto, M. Kamiyama, K. Nitta, T. Yamada, and S. Hayasaka, “Selective reduction of the S cone electroretinogram in diabetes,” Br. J. Ophthalmol. 80, 973–975 (1996).
[CrossRef]

Yamamoto, S.

S. Yamamoto, S. Takeuchi, and M. Kamiyama, “The short wavelength-sensitive cone electroretinogram in diabetes: relationship to systemic factors,” Doc. Ophthalmol. 94, 193–200 (1997–1998).
[CrossRef]

S. Yamamoto, M. Kamiyama, K. Nitta, T. Yamada, and S. Hayasaka, “Selective reduction of the S cone electroretinogram in diabetes,” Br. J. Ophthalmol. 80, 973–975 (1996).
[CrossRef]

P. Gouras, C. J. Mackay, and S. Yamamoto, “The human S-cone electroretinogram and its variation among subjects with and without L-cone and M-cone function,” Investig. Ophthalmol. Vis. Sci. 34, 2437–2442 (1993).

Yamauchi, Y.

Yeh, T.

Ziccardi, L.

B. Falsini, L. Ziccardi, G. Stifano, G. Iarossi, E. Merendino, A. M. Minnella, A. Fadda, and E. Balestrazzi, “Temporal response properties of the macular cone system: effect of normal aging and age- related maculopathy,” Investig. Ophthalmol. Vis. Sci. 48, 4811–4817 (2007).
[CrossRef]

Zrenner, E.

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vis. Res. 38, 3391–3396 (1998).
[CrossRef]

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength,” Vis. Res. 38, 3247–3251 (1998).
[CrossRef]

E. Zrenner and P. Gouras, “Blue-sensitive cones of the cat produce a rod like electroretinogram,” Investig. Ophthalmol. Vis. Sci. 18, 1076–1081 (1979).

Annu. Rev. Neurosci. (1)

D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000).
[CrossRef]

Br. J. Ophthalmol. (1)

S. Yamamoto, M. Kamiyama, K. Nitta, T. Yamada, and S. Hayasaka, “Selective reduction of the S cone electroretinogram in diabetes,” Br. J. Ophthalmol. 80, 973–975 (1996).
[CrossRef]

Color Res. Appl. (1)

H. Sun, J. Pokorny, and V. C. Smith, “Control of the modulation of human photoreceptors,” Color Res. Appl. 26, S69–S75 (2001).

Doc. Ophthalmol. (2)

S. Yamamoto, S. Takeuchi, and M. Kamiyama, “The short wavelength-sensitive cone electroretinogram in diabetes: relationship to systemic factors,” Doc. Ophthalmol. 94, 193–200 (1997–1998).
[CrossRef]

S. Viswanathan, L. J. Frishman, and J. G. Robson, “Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques: Macaque photopic sinusoidal flicker ERG,” Doc. Ophthalmol. 105, 223–242 (2002).
[CrossRef]

Investig. Ophthalmol. (1)

L. Mehaffey and E. L. Berson, “Cone mechanisms in electroretinogram of cynomolgus monkey,” Investig. Ophthalmol. 13, 266–273 (1974).

Investig. Ophthalmol. Vis. Sci. (13)

E. Zrenner and P. Gouras, “Blue-sensitive cones of the cat produce a rod like electroretinogram,” Investig. Ophthalmol. Vis. Sci. 18, 1076–1081 (1979).

W. S. Baron, “Cone difference signal in foveal local electroretinogram of primate,” Investig. Ophthalmol. Vis. Sci. 19, 1442–1448 (1980).

R. A. Bush and P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Investig. Ophthalmol. Vis. Sci. 35, 635–645 (1994).

J. Kremers, A. R. Rodrigues, L. C. Silveria, and M. da Silva Filho, “Flicker ERGs representing chromaticity and luminance Signals,” Investig. Ophthalmol. Vis. Sci. 51, 577–587 (2010).
[CrossRef]

S. Viswanathan, L. J. Frishman, J. G. Robson, R. S. Harwerth, and E. L. Smith, “The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma,” Investig. Ophthalmol. Vis. Sci. 40, 1124–1136 (1999).

S. Viswanathan, L. J. Frishman, and J. G. Robson, “The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity,” Investig. Ophthalmol. Vis. Sci. 41, 2797–2810 (2000).

N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).

B. Falsini, L. Ziccardi, G. Stifano, G. Iarossi, E. Merendino, A. M. Minnella, A. Fadda, and E. Balestrazzi, “Temporal response properties of the macular cone system: effect of normal aging and age- related maculopathy,” Investig. Ophthalmol. Vis. Sci. 48, 4811–4817 (2007).
[CrossRef]

J. Kremers, T. Usui, H. P. Scholl, and L. T. Sharpe, “Cone signal contributions to electroretinograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

M. Sawusch, J. Pokorny, and V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Investig. Ophthalmol. Vis. Sci. 28, 966–974 (1987).

P. Gouras and C. J. Mackay, “Electroretinographic responses of the short-wavelength-sensitive cones,” Investig. Ophthalmol. Vis. Sci. 31, 1203–1209 (1990).

P. Gouras, C. J. Mackay, and S. Yamamoto, “The human S-cone electroretinogram and its variation among subjects with and without L-cone and M-cone function,” Investig. Ophthalmol. Vis. Sci. 34, 2437–2442 (1993).

W. Spileers, F. Falcao-Reis, C. Hogg, and G. B. Arden, “Evidence from human electroretinogram-a and off responses that color processing occurs in the cones,” Investig. Ophthalmol. Vis. Sci. 34, 2079–2091 (1993).

J. Neurophysiol. (1)

T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).

J. Neurosci. (4)

J. Verweij, E. P. Hornstein, and J. L. Schnapf, “Surround antagonism in macaque photoreceptors,” J. Neurosci. 23, 10249–10257 (2003).

T. Breuninger, C. Puller, S. Havercamp, and T. Euler, “Chromatic bipolar cell pathways in the mouse retina,” J. Neurosci. 31, 6504–6517 (2011).
[CrossRef]

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (8)

A. G. Shapiro, J. Pokorny, and V. C. Smith, “Cone-rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328 (1996).
[CrossRef]

J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
[CrossRef]

S. S. Deeb, L. C. Diller, D. R. Williams, and D. M. Dacey, “Interindividual and topographical variation of L∶M cone ratios in monkey retinas,” J. Opt. Soc. Am. A 17, 538–544 (2000).
[CrossRef]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

A. Stockman, D. I. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
[CrossRef]

R. A. Bush and P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996).
[CrossRef]

G. H. Jacobs, J. Neitz, and K. Krogh, “Electroretinogram flicker photometry and its applications,” J. Opt. Soc. Am. A 13, 641–648 (1996).
[CrossRef]

V. C. Smith, J. Pokorny, M. Davis, and T. Yeh, “Mechanisms subserving temporal-modulation sensitivity in silent-cone substitution,” J. Opt. Soc. Am. A 12, 241–249 (1995).
[CrossRef]

J. Physiol. (15)

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion-cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).

W. S. Baron and R. M. Boynton, “Response of primate cones to sinusoidally flickering homochromatic stimuli,” J. Physiol. 246, 311–331 (1975).

N. R. Parry, I. J. Murray, A. Panorgias, D. J. McKeefry, B. B. Lee, and J. Kremers, “Simultaneous chromatic and luminance human electroretinogram responses,” J. Physiol. 590, 3141–3154 (2012).
[CrossRef]

J. G. Robson, S. M. Saszik, J. Ahmed, and L. J. Frishman, “Rod and cone contributions to the a-wave of the electroretinogram of the macaque,” J. Physiol. 547, 509–530 (2003).
[CrossRef]

C. Friedburg, C. P. Allen, P. J. Mason, and T. D. Lamb, “Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram,” J. Physiol. 556, 819–834 (2004).
[CrossRef]

E. D. Adrian, “Rod and cone components in the electric response of the eye,” J. Physiol. 105, 24–37 (1946).

B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).

P. K. Kaiser, B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).

A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion-cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).

B. B. Lee, P. R. Martin, and A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989).

F. M. De Monasterio and P. Gouras, “Functional properites of ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 167–195 (1975).

T. P. Hicks, B. B. Lee, and T. R. Vidyasagar, “The response of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. 337, 183–200 (1983).

B. Dreher, Y. Fukada, and R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiol. 258, 433–452 (1976).

A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

J. Vis. (4)

J. Kremers and B. Link, “Electroretinographic responses that may reflect activity of parvo- and magnocellular post-receptoral visual pathways,” J. Vis. 8(15):11 (2008).
[CrossRef]

J. Albrecht, H. Jägle, D. C. Hood, and L. T. Sharpe, “The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina,” J. Vis. 2(8), 543–558 (2002).

J. Carroll, J. Neitz, and M. Neitz, “Estimates of L:M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8):1, 531–542 (2002).

P. V. McGraw, D. J. McKeefry, D. Whitaker, and C. Vakrou, “Positional adaptation reveals multiple chromatic mechanisms in human vision,” J. Vis. 4(7):8, 626–636 (2004).
[CrossRef]

Nat. Neurosci. (1)

W. Li and S. H. DeVries, “Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina,” Nat. Neurosci. 9, 669–675 (2006).
[CrossRef]

Nat. Rev. Neurosci. (1)

H. Wassle, “Parallel processing in the mammalian retina,” Nat. Rev. Neurosci. 5, 747–757 (2004).
[CrossRef]

Nature (2)

P. H. Schiller, N. K. Logothetis, and E. R. Charles, “Functions of the colour-opponent and broad-band channels of the visual system,” Nature 343, 68–70 (1990).
[CrossRef]

D. M. Dacey and B. B. Lee, “The blue-on opponent pathway in primate retina originates from a distinct bistratified ganglion-cell type,” Nature 367, 731–735 (1994).
[CrossRef]

Ophthalmic Physiol. Opt. (3)

K. E. Mortlock, Z. Chiti, N. Drasdo, D. R. Owens, and R. V. North, “Silent substitution S-cone electroretinogram in subjects with diabetes mellitus,” Ophthalmic Physiol. Opt. 25, 392–399 (2005).

N. K. Challa, D. McKeefry, N. R. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12  Hz and 30  Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
[CrossRef]

Z. Chiti, R. V. North, K. E. Mortlock, and N. Drasdo, “The S-cone electroretinogram: a comparison of techniques, normative data and age-related variation,” Ophthalmic Physiol. Opt. 23, 370–376 (2003).

Proc. Natl. Acad. Sci. USA (1)

R. L. DeValois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).
[CrossRef]

Proc. R. Soc. Lond. B (1)

B. B. Lee, A. Valberg, D. A. Tigwell, and J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. Lond. B 230, 293–314 (1987).
[CrossRef]

Prog. Retin. Eye Res. (2)

J. Kremers, “The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal human retina,” Prog. Retin. Eye Res. 22, 579–605 (2003).

D. M. Dacey, “Primate retina: cell types, circuits and colour opponency,” Prog. Retin. Eye Res. 18, 737–763 (1999).
[CrossRef]

Trends Neurosci. (1)

R. Shapley and V. H. Perry, “Cat and monkey retinal ganglion cells and their visual functional roles,” Trends Neurosci. 9, 229–235 (1986).
[CrossRef]

Vis. Neurosci. (5)

I. J. Murray, N. R. Parry, J. Kremers, M. Stepien, and A. Schild, “Photoreceptor topography and cone-specific electroretinograms,” Vis. Neurosci. 21, 231–235 (2004).
[CrossRef]

J. Kremers, N. R. Parry, A. Panorgias, and I. J. Murray, “The influence of retinal illuminance on L- and M-cone driven electroretinograms,” Vis. Neurosci. 28, 129–135 (2011).
[CrossRef]

P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram—a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994).
[CrossRef]

G. H. Jacobs and J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Vis. Neurosci. 14, 921–928 (1997).
[CrossRef]

B. Erikoz, P. R. Jusuf, K. A. Percival, and U. Grünert, “Distribution of bipolar input to midget and parasol ganglion cells in marmoset retina,” Vis. Neurosci. 25, 67–76 (2008).
[CrossRef]

Vis. Res. (12)

A. Roorda, A. B. Metha, P. Lennie, and D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vis. Res. 41, 1291–1306 (2001).
[CrossRef]

D. V. Norren and P. Padmos, “Human and macaque blue cones studied with electroretinography,” Vis. Res. 13, 1241–1254 (1973).
[CrossRef]

S. Ueno, M. Kondo, M. Ueno, K. Miyata, H. Terasaki, and Y. Miyake, “Contribution of retinal neurons to d-wave of primate photopic electroretinograms,” Vis. Res. 46, 658–664 (2006).
[CrossRef]

K. Bradshaw and R. Hanitzsch, “Contribution of post-receporal cells to the cone a-wave of the human electroretinogram in congenital stationary night blindness and autoimmune-like retinopathy,” Vis. Res. 50, 2505–2514 (2010).
[CrossRef]

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vis. Res. 38, 3391–3396 (1998).
[CrossRef]

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength,” Vis. Res. 38, 3247–3251 (1998).
[CrossRef]

O. Estévez and H. Spekreijse, “Spectral compensation method for determining flicker characteristics of human color mechanisms,” Vis. Res. 14, 823–830 (1974).
[CrossRef]

O. Estévez and H. Spekreijse, “The “silent substitution” method in visual research,” Vis. Res. 22, 681–691 (1982).
[CrossRef]

D. Dacey, O. S. Packer, L. Diller, D. Brainard, B. Peterson, and B. B. Lee, “Center surround receptive field structure of cone bipolar cells in primate retina,” Vis. Res. 40, 1801–1811 (2000).
[CrossRef]

H. U. Evers and P. Gouras, “Three cone mechanisms in the primate electroretinogram—two with, one without off-center bipolar responses,” Vis. Res. 26, 245–254 (1986).
[CrossRef]

M. Korth and S. Sokol, “Electroretinographic and psychophysical measures of cone spectral mechanisms using the 2-color threshold technique,” Vis. Res. 20, 205–212 (1980).
[CrossRef]

G. B. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999).
[CrossRef]

Other (2)

L. J. Frishman, “Origins of the electroretinogram,” in Principles and Practice of Clinical Electrophysiology of Vision, J. R. Heckenlively and G. B. Arden, eds. (MIT, 2006), pp. 139–184.

G. H. Jacobs and J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1999) pp. 107–112

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Temporal profiles of the transient square-wave pulse stimuli used to elicit ERGs. (a) The plots show the variation in the luminance output of the four (red, green, amber, and blue) LED primaries over time required to generate L-cone isolating stimuli. The plot on the left-hand side shows an L-cone on–off stimulus consisting of a cone excitation increment (onset), which occurs at time=0ms and lasts for 100 ms, after which a cone excitation decrement (offset) occurs. The plot on the right shows the luminance variations for an L-cone off–on stimulus in which a decrement occurs at time=0ms and an increment occurs after 100 ms. Similar LED manipulations can be generated to produce M-cone isolating on–off and off–on stimuli. (b) The variations in luminance output of the four LEDs required in order to generate luminance on–off and off–on stimuli. Note that in this case the variations of the four LEDs occur synchronously and with the same polarity to generate these non-cone-isolating stimuli. (c) Temporal profiles of the combined L- and M-cone stimuli. The upper row shows the composition of counterphase stimuli (+LM and L+M) and the lower row inphase stimuli (+L+M and LM). For each stimulus the total contrast change (ΔC) equals 0.11.

Fig. 2.
Fig. 2.

L- and M-cone isolated ERGs from color normal, trichromatic observers. (a) Group averaged (n=19) ERGs elicited by a 250 ms on–off transient square-wave pulse (ΔC=0.11), which was L-cone isolating (upper trace), M-cone isolating (middle trace), or a luminance (LUM) stimulus. On each trace, we have identified the principle response components. For the cone-isolated responses, we have adopted a nomenclature that first identifies the polarity of the component (negative=N, positive=P). Subsequent responses are labeled as late negative (LN) or positive components. The first subscript letter identifies whether the response is elicited by either an L- or M-cone isolating stimulus. The second subscript letter identifies whether the response is the result of a contrast increment (i) or decrement (d). In the case of the L-cone ERG, the NLi and the PLi are correlates of the a- and b-waves previously identified as the main response components of the luminance response (lower trace), while the PLd component corresponds to the d-wave. In the M-cone ERG, there is a reversal in the response phase in that the NMd and PMd components, which are correlates of the a- and b-waves, are generated by contrast decrements as opposed to increments. (b) The group averaged responses to the same L-cone, M-cone, and luminance contrast increment (onset) and decrement (offset) stimuli plotted with the ±95% confidence limits in order to provide an indication of the variability of the responses. (c) Examples of individual L- and M-cone ERGs from six of the trichromatic observers.

Fig. 3.
Fig. 3.

On–off response inversion of the M-cone ERG in trichromats. Group averaged (n=6) L- and M-cone ERGs elicited by on–off (contrast increment followed by a decrement) and off–on (contrast decrement followed by a increment) stimuli. The stimuli in this experiment had the same cone contrast as used previously (ΔC=0.11) but had a shorter duty cycle (250 ms) and an unequal mark:space ratio (100ms150ms).

Fig. 4.
Fig. 4.

L- and M-cone isolated ERGs in dichromatic observers. (a) L-cone (upper traces) and M-cone (lower traces) ERGs recorded from two deuteranopic observers (IB and MAW). (b) L- and M-cone ERGs recorded from two protanopic observers (IP and SP).

Fig. 5.
Fig. 5.

Counterphase and inphase cone stimulation. (a) ERGs recorded from trichromats (n=6) in response to counterphase (left column) and inphase stimulation (middle column). The two rows show responses to stimuli of opposite polarity (+LM versus L+M (upper row) and +L+M versus LM (lower row). Also shown are responses to luminance increment (+LUM) and decrement (LUM) stimuli of matched contrast (right-hand column). (b) Responses elicited from a protanopic observer (IP) in response to the same counterphase and inphase stimulus set.

Fig. 6.
Fig. 6.

Response additivity in the chromatic and luminance ERG. (a) A simple linear addition of the of the L-cone ERG elicited by an increment stimulus (+L) and M-cone ERG elicited by a decrement (M) generates a computed response that is similar to that generated by +LM counterphase stimulation. (b) A similar combination of +L and +M cone isolated responses leads to the generation of an ERG that is similar in form to that elicited by inphase and luminance stimulation.

Tables (1)

Tables Icon

Table 1. Photoreceptor Contrasts (%) of the L- and M-Cone Isolating Stimuli Used

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EL,R(t)=FR·LR(t)·380780IR(λ)·AL(λ)·dλ,

Metrics