Abstract

The watercolor effect is a visual illusion that manifests itself as a combination of long-range color spreading and figure–ground organization. The current study uses behavioral and physiological measures to study the watercolor effect. We utilize a novel technique of measuring the cortical response of the illusion using the visual evoked potential (VEP). To this end, three experiments were done to investigate the contributions of luminance and hue to the magnitude of the illusion. Results of both VEP and behavior indicate a marked decrease in the S (yellow) direction in illusion magnitude compared to the +S (blue) illusion, even though these colors were previously matched for perceptual salience.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Chevreul, The Principles of Harmony and Contrast of Colours, and Their Applications to the Arts (Longman, Brown, Green, and Longmans, 1855).
  2. W. Von Bezold, The Theory of Color in Its Relation to Art and Art-Industry (L. Prang and Company, 1876).
  3. H. Helson, “Studies of anomalous contrast and assimilation,” J. Opt. Soc. Am. 53, 179–184 (1963).
    [CrossRef]
  4. C. Fach and L. T. Sharpe, “Assimilative hue shifts in color depend on bar width,” Percept. psychophys. 40, 412–418 (1986).
    [CrossRef]
  5. V. C. Smith, P. Q. Jin, and J. Pokorny, “The role of spatial frequency in color induction,” Vis. Res. 41, 1007–1021 (2001).
    [CrossRef]
  6. M. White, “A new effect of pattern on perceived lightness,” Perception 8, 413–416 (1979).
    [CrossRef]
  7. S. Anstis, “White’s effect in lightness, color, and motion,” in Seeing Spatial Form (Oxford University, 2006).
  8. R. Shapley and M. J. Hawken, “Color in the cortex: single-and double-opponent cells,” Vis. Res. 51, 701–717 (2011).
    [CrossRef]
  9. D. Varin, “Fenomeni di contrasto e diffusione cromatica nell’organizzazione spaziale del campo percettivo, ,” Istituto di psicologia della facoltà di lettere e filosofia dell’università degli studi di Milano, 1971).
  10. H. F. J. M. Van Tuijl, “A new visual illusion: neonlike color spreading and complementary color induction between subjective contours,” Acta Psychologica 39, 441–445 (1975).
    [CrossRef]
  11. P. Bressan, E. Mingolla, L. Spillmann, and T. Watanabe, “Neon color spreading: a review,” Perception 26, 1353–1366 (1997).
    [CrossRef]
  12. B. Pinna, “Un effetto di colorazione” in Il Laboratorio e la Città, V. Majer, M. Maeran, and M. Santinello, eds. (XXI Congresso degli Psicologi Italiani, 1987), p. 158.
  13. B. Pinna, G. Brelstaff, and L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vis. Res. 41, 2669–2676 (2001).
    [CrossRef]
  14. B. Pinna and S. Grossberg, “The watercolor illusion and neon color spreading: a unified analysis of new cases and neural mechanisms,” J. Opt. Soc. Am. 22, 2207–2221 (2005).
    [CrossRef]
  15. L. Spillman, B. Pinna, and J. Werner, “Form-from-watercolor in surface perception, and old maps,” in Seeing Spatial Form (Oxford University, 2006).
  16. B. Pinna and G. Mariotti, “Old maps and the watercolor illusion: cartography, vision science, and figure ground segregation principles,” Systemics of Emergence: Research and Development (Springer, 2006), pp. 261–278.
  17. B. Pinna, J. Werner, and L. Spillman, “The watercolor effect: a new principle of grouping and figure ground organization,” Vis. Res. 43, 43–52 (2003).
    [CrossRef]
  18. R. von der Heydt and R. Pierson, “Dissociation of color and figure-ground effects in the watercolor illusion,” Spatial Vis. 19, 323–340 (2006).
  19. F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005).
    [CrossRef]
  20. F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vis. 6(5):7, 625–633 (2006).
    [CrossRef]
  21. B. Cao, A. Yazdanbakhsh, and E. Mingolla, “The effect of contrast intensity and polarity in the achromatic watercolor effect,” J. Vis. 11(3):18, 1–8 (2011).
    [CrossRef]
  22. F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006).
    [CrossRef]
  23. D. Cao and S. K. Shevell, “Chromatic assimilation: spread light or neural mechanism?” Vis. Res. 45, 1031–1045 (2005).
    [CrossRef]
  24. F. Devinck and K. Knoblauch, “A common signal detection model accounts for both perception and discrimination of the watercolor effect,” J. Vis. 12(3):19, 425–428 (2012).
    [CrossRef]
  25. E. Switkes and M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?” Vis. Res. 39, 1823–1831 (1999).
    [CrossRef]
  26. E. Switkes, “Contrast salience across three-dimensional chromoluminance space,” Vis. Res. 48, 1812–1819 (2008).
    [CrossRef]
  27. H. A. Jasper, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. 10, 371–375 (1958).
  28. J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, and A. P. Tormene, “ISCEV standard for clinical visual evoked potentials (2009 update),” Documenta Ophthalmologica 120, 111–119 (2010).
    [CrossRef]
  29. M. A. Crognale, E. Switkes, and A. J. Adams, “Temporal response characteristics of the spatiochromatic visual evoked potential: nonlinearities and departures from psychophysics,” J. Opt. Soc. Am. A 14, 2595–2607 (1997).
    [CrossRef]
  30. D. I. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef]
  31. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  32. W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 293–297 (1951).
  33. J. D. Victor and J. Mast, “A new statistic for steady-state evoked potentials,” Electroencephalogr. Clin. Neurophysiol. 78, 378–388 (1991).

2012 (1)

F. Devinck and K. Knoblauch, “A common signal detection model accounts for both perception and discrimination of the watercolor effect,” J. Vis. 12(3):19, 425–428 (2012).
[CrossRef]

2011 (2)

B. Cao, A. Yazdanbakhsh, and E. Mingolla, “The effect of contrast intensity and polarity in the achromatic watercolor effect,” J. Vis. 11(3):18, 1–8 (2011).
[CrossRef]

R. Shapley and M. J. Hawken, “Color in the cortex: single-and double-opponent cells,” Vis. Res. 51, 701–717 (2011).
[CrossRef]

2010 (1)

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, and A. P. Tormene, “ISCEV standard for clinical visual evoked potentials (2009 update),” Documenta Ophthalmologica 120, 111–119 (2010).
[CrossRef]

2008 (1)

E. Switkes, “Contrast salience across three-dimensional chromoluminance space,” Vis. Res. 48, 1812–1819 (2008).
[CrossRef]

2006 (3)

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006).
[CrossRef]

R. von der Heydt and R. Pierson, “Dissociation of color and figure-ground effects in the watercolor illusion,” Spatial Vis. 19, 323–340 (2006).

F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vis. 6(5):7, 625–633 (2006).
[CrossRef]

2005 (3)

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005).
[CrossRef]

D. Cao and S. K. Shevell, “Chromatic assimilation: spread light or neural mechanism?” Vis. Res. 45, 1031–1045 (2005).
[CrossRef]

B. Pinna and S. Grossberg, “The watercolor illusion and neon color spreading: a unified analysis of new cases and neural mechanisms,” J. Opt. Soc. Am. 22, 2207–2221 (2005).
[CrossRef]

2003 (1)

B. Pinna, J. Werner, and L. Spillman, “The watercolor effect: a new principle of grouping and figure ground organization,” Vis. Res. 43, 43–52 (2003).
[CrossRef]

2001 (2)

V. C. Smith, P. Q. Jin, and J. Pokorny, “The role of spatial frequency in color induction,” Vis. Res. 41, 1007–1021 (2001).
[CrossRef]

B. Pinna, G. Brelstaff, and L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vis. Res. 41, 2669–2676 (2001).
[CrossRef]

1999 (1)

E. Switkes and M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?” Vis. Res. 39, 1823–1831 (1999).
[CrossRef]

1997 (2)

1991 (1)

J. D. Victor and J. Mast, “A new statistic for steady-state evoked potentials,” Electroencephalogr. Clin. Neurophysiol. 78, 378–388 (1991).

1986 (1)

C. Fach and L. T. Sharpe, “Assimilative hue shifts in color depend on bar width,” Percept. psychophys. 40, 412–418 (1986).
[CrossRef]

1984 (1)

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

1979 (2)

1975 (1)

H. F. J. M. Van Tuijl, “A new visual illusion: neonlike color spreading and complementary color induction between subjective contours,” Acta Psychologica 39, 441–445 (1975).
[CrossRef]

1963 (1)

1958 (1)

H. A. Jasper, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. 10, 371–375 (1958).

1951 (1)

W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 293–297 (1951).

Adams, A. J.

Anstis, S.

S. Anstis, “White’s effect in lightness, color, and motion,” in Seeing Spatial Form (Oxford University, 2006).

Bach, M.

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, and A. P. Tormene, “ISCEV standard for clinical visual evoked potentials (2009 update),” Documenta Ophthalmologica 120, 111–119 (2010).
[CrossRef]

Boynton, R. M.

Brelstaff, G.

B. Pinna, G. Brelstaff, and L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vis. Res. 41, 2669–2676 (2001).
[CrossRef]

Bressan, P.

P. Bressan, E. Mingolla, L. Spillmann, and T. Watanabe, “Neon color spreading: a review,” Perception 26, 1353–1366 (1997).
[CrossRef]

Brigell, M.

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, and A. P. Tormene, “ISCEV standard for clinical visual evoked potentials (2009 update),” Documenta Ophthalmologica 120, 111–119 (2010).
[CrossRef]

Cao, B.

B. Cao, A. Yazdanbakhsh, and E. Mingolla, “The effect of contrast intensity and polarity in the achromatic watercolor effect,” J. Vis. 11(3):18, 1–8 (2011).
[CrossRef]

Cao, D.

D. Cao and S. K. Shevell, “Chromatic assimilation: spread light or neural mechanism?” Vis. Res. 45, 1031–1045 (2005).
[CrossRef]

Chevreul, M. E.

M. E. Chevreul, The Principles of Harmony and Contrast of Colours, and Their Applications to the Arts (Longman, Brown, Green, and Longmans, 1855).

Crognale, M. A.

Delahunt, P. B.

F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vis. 6(5):7, 625–633 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005).
[CrossRef]

Derrington, A. M.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Devinck, F.

F. Devinck and K. Knoblauch, “A common signal detection model accounts for both perception and discrimination of the watercolor effect,” J. Vis. 12(3):19, 425–428 (2012).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006).
[CrossRef]

F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vis. 6(5):7, 625–633 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005).
[CrossRef]

Fach, C.

C. Fach and L. T. Sharpe, “Assimilative hue shifts in color depend on bar width,” Percept. psychophys. 40, 412–418 (1986).
[CrossRef]

Grossberg, S.

B. Pinna and S. Grossberg, “The watercolor illusion and neon color spreading: a unified analysis of new cases and neural mechanisms,” J. Opt. Soc. Am. 22, 2207–2221 (2005).
[CrossRef]

Hardy, J. L.

F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vis. 6(5):7, 625–633 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005).
[CrossRef]

Hawken, M. J.

R. Shapley and M. J. Hawken, “Color in the cortex: single-and double-opponent cells,” Vis. Res. 51, 701–717 (2011).
[CrossRef]

Helson, H.

Holder, G. E.

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, and A. P. Tormene, “ISCEV standard for clinical visual evoked potentials (2009 update),” Documenta Ophthalmologica 120, 111–119 (2010).
[CrossRef]

Jasper, H. A.

H. A. Jasper, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. 10, 371–375 (1958).

Jin, P. Q.

V. C. Smith, P. Q. Jin, and J. Pokorny, “The role of spatial frequency in color induction,” Vis. Res. 41, 1007–1021 (2001).
[CrossRef]

Knoblauch, K.

F. Devinck and K. Knoblauch, “A common signal detection model accounts for both perception and discrimination of the watercolor effect,” J. Vis. 12(3):19, 425–428 (2012).
[CrossRef]

Krauskopf, J.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Lennie, P.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

MacLeod, D. I.

Mariotti, G.

B. Pinna and G. Mariotti, “Old maps and the watercolor illusion: cartography, vision science, and figure ground segregation principles,” Systemics of Emergence: Research and Development (Springer, 2006), pp. 261–278.

Mast, J.

J. D. Victor and J. Mast, “A new statistic for steady-state evoked potentials,” Electroencephalogr. Clin. Neurophysiol. 78, 378–388 (1991).

McCulloch, D. L.

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, and A. P. Tormene, “ISCEV standard for clinical visual evoked potentials (2009 update),” Documenta Ophthalmologica 120, 111–119 (2010).
[CrossRef]

Mingolla, E.

B. Cao, A. Yazdanbakhsh, and E. Mingolla, “The effect of contrast intensity and polarity in the achromatic watercolor effect,” J. Vis. 11(3):18, 1–8 (2011).
[CrossRef]

P. Bressan, E. Mingolla, L. Spillmann, and T. Watanabe, “Neon color spreading: a review,” Perception 26, 1353–1366 (1997).
[CrossRef]

Odom, J. V.

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, and A. P. Tormene, “ISCEV standard for clinical visual evoked potentials (2009 update),” Documenta Ophthalmologica 120, 111–119 (2010).
[CrossRef]

Pierson, R.

R. von der Heydt and R. Pierson, “Dissociation of color and figure-ground effects in the watercolor illusion,” Spatial Vis. 19, 323–340 (2006).

Pinna, B.

B. Pinna and S. Grossberg, “The watercolor illusion and neon color spreading: a unified analysis of new cases and neural mechanisms,” J. Opt. Soc. Am. 22, 2207–2221 (2005).
[CrossRef]

B. Pinna, J. Werner, and L. Spillman, “The watercolor effect: a new principle of grouping and figure ground organization,” Vis. Res. 43, 43–52 (2003).
[CrossRef]

B. Pinna, G. Brelstaff, and L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vis. Res. 41, 2669–2676 (2001).
[CrossRef]

B. Pinna, “Un effetto di colorazione” in Il Laboratorio e la Città, V. Majer, M. Maeran, and M. Santinello, eds. (XXI Congresso degli Psicologi Italiani, 1987), p. 158.

B. Pinna and G. Mariotti, “Old maps and the watercolor illusion: cartography, vision science, and figure ground segregation principles,” Systemics of Emergence: Research and Development (Springer, 2006), pp. 261–278.

L. Spillman, B. Pinna, and J. Werner, “Form-from-watercolor in surface perception, and old maps,” in Seeing Spatial Form (Oxford University, 2006).

Pokorny, J.

V. C. Smith, P. Q. Jin, and J. Pokorny, “The role of spatial frequency in color induction,” Vis. Res. 41, 1007–1021 (2001).
[CrossRef]

Shapley, R.

R. Shapley and M. J. Hawken, “Color in the cortex: single-and double-opponent cells,” Vis. Res. 51, 701–717 (2011).
[CrossRef]

Sharpe, L. T.

C. Fach and L. T. Sharpe, “Assimilative hue shifts in color depend on bar width,” Percept. psychophys. 40, 412–418 (1986).
[CrossRef]

Shevell, S. K.

D. Cao and S. K. Shevell, “Chromatic assimilation: spread light or neural mechanism?” Vis. Res. 45, 1031–1045 (2005).
[CrossRef]

Smith, V. C.

V. C. Smith, P. Q. Jin, and J. Pokorny, “The role of spatial frequency in color induction,” Vis. Res. 41, 1007–1021 (2001).
[CrossRef]

Spillman, L.

B. Pinna, J. Werner, and L. Spillman, “The watercolor effect: a new principle of grouping and figure ground organization,” Vis. Res. 43, 43–52 (2003).
[CrossRef]

L. Spillman, B. Pinna, and J. Werner, “Form-from-watercolor in surface perception, and old maps,” in Seeing Spatial Form (Oxford University, 2006).

Spillmann, L.

F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vis. 6(5):7, 625–633 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005).
[CrossRef]

B. Pinna, G. Brelstaff, and L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vis. Res. 41, 2669–2676 (2001).
[CrossRef]

P. Bressan, E. Mingolla, L. Spillmann, and T. Watanabe, “Neon color spreading: a review,” Perception 26, 1353–1366 (1997).
[CrossRef]

Switkes, E.

E. Switkes, “Contrast salience across three-dimensional chromoluminance space,” Vis. Res. 48, 1812–1819 (2008).
[CrossRef]

E. Switkes and M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?” Vis. Res. 39, 1823–1831 (1999).
[CrossRef]

M. A. Crognale, E. Switkes, and A. J. Adams, “Temporal response characteristics of the spatiochromatic visual evoked potential: nonlinearities and departures from psychophysics,” J. Opt. Soc. Am. A 14, 2595–2607 (1997).
[CrossRef]

Tormene, A. P.

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, and A. P. Tormene, “ISCEV standard for clinical visual evoked potentials (2009 update),” Documenta Ophthalmologica 120, 111–119 (2010).
[CrossRef]

Van Tuijl, H. F. J. M.

H. F. J. M. Van Tuijl, “A new visual illusion: neonlike color spreading and complementary color induction between subjective contours,” Acta Psychologica 39, 441–445 (1975).
[CrossRef]

Varin, D.

D. Varin, “Fenomeni di contrasto e diffusione cromatica nell’organizzazione spaziale del campo percettivo, ,” Istituto di psicologia della facoltà di lettere e filosofia dell’università degli studi di Milano, 1971).

Victor, J. D.

J. D. Victor and J. Mast, “A new statistic for steady-state evoked potentials,” Electroencephalogr. Clin. Neurophysiol. 78, 378–388 (1991).

Von Bezold, W.

W. Von Bezold, The Theory of Color in Its Relation to Art and Art-Industry (L. Prang and Company, 1876).

von der Heydt, R.

R. von der Heydt and R. Pierson, “Dissociation of color and figure-ground effects in the watercolor illusion,” Spatial Vis. 19, 323–340 (2006).

Watanabe, T.

P. Bressan, E. Mingolla, L. Spillmann, and T. Watanabe, “Neon color spreading: a review,” Perception 26, 1353–1366 (1997).
[CrossRef]

Weibull, W.

W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 293–297 (1951).

Werner, J.

B. Pinna, J. Werner, and L. Spillman, “The watercolor effect: a new principle of grouping and figure ground organization,” Vis. Res. 43, 43–52 (2003).
[CrossRef]

L. Spillman, B. Pinna, and J. Werner, “Form-from-watercolor in surface perception, and old maps,” in Seeing Spatial Form (Oxford University, 2006).

Werner, J. S.

F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vis. 6(5):7, 625–633 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005).
[CrossRef]

White, M.

M. White, “A new effect of pattern on perceived lightness,” Perception 8, 413–416 (1979).
[CrossRef]

Yazdanbakhsh, A.

B. Cao, A. Yazdanbakhsh, and E. Mingolla, “The effect of contrast intensity and polarity in the achromatic watercolor effect,” J. Vis. 11(3):18, 1–8 (2011).
[CrossRef]

Acta Psychologica (1)

H. F. J. M. Van Tuijl, “A new visual illusion: neonlike color spreading and complementary color induction between subjective contours,” Acta Psychologica 39, 441–445 (1975).
[CrossRef]

Documenta Ophthalmologica (1)

J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, and A. P. Tormene, “ISCEV standard for clinical visual evoked potentials (2009 update),” Documenta Ophthalmologica 120, 111–119 (2010).
[CrossRef]

Electroencephalogr. Clin. Neurophysiol. (2)

H. A. Jasper, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. 10, 371–375 (1958).

J. D. Victor and J. Mast, “A new statistic for steady-state evoked potentials,” Electroencephalogr. Clin. Neurophysiol. 78, 378–388 (1991).

J. Appl. Mech. (1)

W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 293–297 (1951).

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

J. Physiol. (1)

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

J. Vis. (3)

F. Devinck and K. Knoblauch, “A common signal detection model accounts for both perception and discrimination of the watercolor effect,” J. Vis. 12(3):19, 425–428 (2012).
[CrossRef]

F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vis. 6(5):7, 625–633 (2006).
[CrossRef]

B. Cao, A. Yazdanbakhsh, and E. Mingolla, “The effect of contrast intensity and polarity in the achromatic watercolor effect,” J. Vis. 11(3):18, 1–8 (2011).
[CrossRef]

Percept. psychophys. (1)

C. Fach and L. T. Sharpe, “Assimilative hue shifts in color depend on bar width,” Percept. psychophys. 40, 412–418 (1986).
[CrossRef]

Perception (3)

M. White, “A new effect of pattern on perceived lightness,” Perception 8, 413–416 (1979).
[CrossRef]

P. Bressan, E. Mingolla, L. Spillmann, and T. Watanabe, “Neon color spreading: a review,” Perception 26, 1353–1366 (1997).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006).
[CrossRef]

Spatial Vis. (1)

R. von der Heydt and R. Pierson, “Dissociation of color and figure-ground effects in the watercolor illusion,” Spatial Vis. 19, 323–340 (2006).

Vis. Res. (8)

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005).
[CrossRef]

E. Switkes and M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?” Vis. Res. 39, 1823–1831 (1999).
[CrossRef]

E. Switkes, “Contrast salience across three-dimensional chromoluminance space,” Vis. Res. 48, 1812–1819 (2008).
[CrossRef]

D. Cao and S. K. Shevell, “Chromatic assimilation: spread light or neural mechanism?” Vis. Res. 45, 1031–1045 (2005).
[CrossRef]

B. Pinna, G. Brelstaff, and L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vis. Res. 41, 2669–2676 (2001).
[CrossRef]

B. Pinna, J. Werner, and L. Spillman, “The watercolor effect: a new principle of grouping and figure ground organization,” Vis. Res. 43, 43–52 (2003).
[CrossRef]

R. Shapley and M. J. Hawken, “Color in the cortex: single-and double-opponent cells,” Vis. Res. 51, 701–717 (2011).
[CrossRef]

V. C. Smith, P. Q. Jin, and J. Pokorny, “The role of spatial frequency in color induction,” Vis. Res. 41, 1007–1021 (2001).
[CrossRef]

Other (7)

S. Anstis, “White’s effect in lightness, color, and motion,” in Seeing Spatial Form (Oxford University, 2006).

D. Varin, “Fenomeni di contrasto e diffusione cromatica nell’organizzazione spaziale del campo percettivo, ,” Istituto di psicologia della facoltà di lettere e filosofia dell’università degli studi di Milano, 1971).

B. Pinna, “Un effetto di colorazione” in Il Laboratorio e la Città, V. Majer, M. Maeran, and M. Santinello, eds. (XXI Congresso degli Psicologi Italiani, 1987), p. 158.

L. Spillman, B. Pinna, and J. Werner, “Form-from-watercolor in surface perception, and old maps,” in Seeing Spatial Form (Oxford University, 2006).

B. Pinna and G. Mariotti, “Old maps and the watercolor illusion: cartography, vision science, and figure ground segregation principles,” Systemics of Emergence: Research and Development (Springer, 2006), pp. 261–278.

M. E. Chevreul, The Principles of Harmony and Contrast of Colours, and Their Applications to the Arts (Longman, Brown, Green, and Longmans, 1855).

W. Von Bezold, The Theory of Color in Its Relation to Art and Art-Industry (L. Prang and Company, 1876).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

2AFC test watercolor illusion stimulus. In this example the inducing pattern is on the left, and the variable control pattern is on the right.

Fig. 2.
Fig. 2.

Effect of outer contour luminance on the magnitude of the watercolor illusion. Error bars indicate ±1 standard error of the mean. X axis represents Weber contrast of outer contour to background. Y axis represents percentage of inducing contour needed to match illusion in MBDKL color space.

Fig. 3.
Fig. 3.

Averaged VEP amplitudes (extracted from FFT) for the 2 and 4 Hz components as a function of contrast between the background and the outer contour. X axis represents Weber contrast of outer contour to background. Error bars indicate ± 1 SEM. The units of Fourier amplitude approximate microvolts by multiplying by a factor of 0.04.

Fig. 4.
Fig. 4.

Averaged VEP amplitudes (2 and 4 Hz components) of experimental (illusion), filled control (control with tinted inner area), and control (no filled/illusory color).

Fig. 5.
Fig. 5.

Averaged percentage of the inducing color match as a function of the luminance contrast of background and inner (chromatic) contour. X axis represents Weber contrast of inner contour to background. Error bars indicate ±1 SEM.

Fig. 6.
Fig. 6.

Average VEP amplitudes of 2 Hz (left) and 4 Hz (right) components as a function of the luminance contrast of background and inner contour. X axis represents Weber contrast of inner contour to background. Error bars indicate ±1 SEM.

Fig. 7.
Fig. 7.

Psychophysical watercolor illusion strength as a function of hue of inducing contour. Distance away from origin represents strength of illusion. +LM is a reddish color, while LM is greenish. +S is bluish and S is yellowish.

Fig. 8.
Fig. 8.

VEP amplitudes of 2 and 4 Hz components of watercolor illusion. Dark lines represent control conditions while light lines represent experimental conditions. The distance from the origin represents the amplitude of the FFT component.

Tables (1)

Tables Icon

Table 1. CIE x and y Coordinates and Corresponding Color Angle of Supra-Threshold Contrast Colors Averaged across Observersa

Metrics