Abstract

The spatial selectivity of the watercolor effect (WCE) was assessed by measuring its strength as a function of the luminance contrast of its inducing contours for different spatial configurations, using a maximum likelihood scaling procedure. The approach has previously been demonstrated to provide an efficient method for investigating the WCE as well as other perceptual dimensions. We show that the strength is narrowly tuned to the width of the contour, that it is optimal when its pair of inducing contours are of equal width, and that the strength can be increased by varying the overall size of the stimulus when the width of the inducing contour is not optimal. The results support a neural substrate that has characteristics not unlike double-opponent, color-luminance cells observed in cortical area V1.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Pinna, “Un effeto di colorazione,” in Il laboratorio e la citt. XXI Congresso degli Psicologi Italiani, V. Majer and M. Santinello, eds. (Società Italiana di Psicologia, 1987), p. 158.
  2. B. Pinna, G. Brelstaff, and L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vis. Res. 41, 2669–2676 (2001).
    [CrossRef]
  3. F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005).
    [CrossRef]
  4. B. Cao, A. Yazdanbakhsh, and E. Mingolla, “The effect of contrast intensity and polarity in the achromatic watercolor effect,” J. Vision 11(3):18, 1–8 (2011).
  5. F. Devinck and K. Knoblauch, “A common signal detection model accounts for both perception and discrimination of the watercolor effect,” J. Vision 12(3):19, 425–428 (2012).
    [CrossRef]
  6. F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006).
    [CrossRef]
  7. F. Devinck and L. Spillmann, “The watercolor effect: spacing constraints,” Vis. Res. 49, 2911–2917 (2009).
    [CrossRef]
  8. P. Gerardin, M. Dojat, F. Devinck, and K. Knoblauch, “Effects of contour frequency and amplitude on the strength of the watercolor effect,” Perception 41, ECVP Abstract Suppl., 18 (2012).
    [CrossRef]
  9. B. Pinna and S. Grossberg, “The watercolor illusion and neon color spreading: a unified analysis of new cases and neural mechanisms,” J. Opt. Soc. Am. A 22, 2207–2221 (2005).
    [CrossRef]
  10. R. Von der Heydt and R. Pierson, “Dissociation of color and figure-ground effects in the watercolor illusion,” Spatial Vis. 19, 323–340 (2006).
    [CrossRef]
  11. L. T. Maloney and J. N. Yang, “Maximum likelihood difference scaling,” J. Vision 3(8):5, 573–585 (2003).
    [CrossRef]
  12. K. Knoblauch and L. T. Maloney, “MLDS: maximum likelihood difference scaling in R,” J. Stat. Softw. 25, 1–26 (2008).
  13. K. Knoblauch and L. T. Maloney, Modeling Psychophysical Data in R (Springer, 2012).
  14. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  15. C. T. Zahn and R. Z. Roskies, “Fourier descriptors for plane close curves,” IEEE Trans. Comput. C-21, 269–281 (1972).
    [CrossRef]
  16. F. Devinck, L. Spillmann, and J. S. Werner, “Spatial profile of contours inducing long-range color assimilation,” Vis. Neurosci. 23, 573–577 (2006).
    [CrossRef]
  17. F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vision 6(5):7, 625–633 (2006).
    [CrossRef]
  18. R Development Core Team, “R: A Language and Environment for Statistical Computing” (R Foundation for Statistical Computing, Vienna, , 2011). http://www.R-project.org/ .
  19. G. E. Legge and J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
    [CrossRef]
  20. F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
  21. R. Shapley and M. J. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res. 51, 701–717 (2011).
    [CrossRef]

2012 (2)

F. Devinck and K. Knoblauch, “A common signal detection model accounts for both perception and discrimination of the watercolor effect,” J. Vision 12(3):19, 425–428 (2012).
[CrossRef]

P. Gerardin, M. Dojat, F. Devinck, and K. Knoblauch, “Effects of contour frequency and amplitude on the strength of the watercolor effect,” Perception 41, ECVP Abstract Suppl., 18 (2012).
[CrossRef]

2011 (2)

B. Cao, A. Yazdanbakhsh, and E. Mingolla, “The effect of contrast intensity and polarity in the achromatic watercolor effect,” J. Vision 11(3):18, 1–8 (2011).

R. Shapley and M. J. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res. 51, 701–717 (2011).
[CrossRef]

2009 (1)

F. Devinck and L. Spillmann, “The watercolor effect: spacing constraints,” Vis. Res. 49, 2911–2917 (2009).
[CrossRef]

2008 (1)

K. Knoblauch and L. T. Maloney, “MLDS: maximum likelihood difference scaling in R,” J. Stat. Softw. 25, 1–26 (2008).

2006 (4)

F. Devinck, L. Spillmann, and J. S. Werner, “Spatial profile of contours inducing long-range color assimilation,” Vis. Neurosci. 23, 573–577 (2006).
[CrossRef]

F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vision 6(5):7, 625–633 (2006).
[CrossRef]

R. Von der Heydt and R. Pierson, “Dissociation of color and figure-ground effects in the watercolor illusion,” Spatial Vis. 19, 323–340 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006).
[CrossRef]

2005 (2)

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005).
[CrossRef]

B. Pinna and S. Grossberg, “The watercolor illusion and neon color spreading: a unified analysis of new cases and neural mechanisms,” J. Opt. Soc. Am. A 22, 2207–2221 (2005).
[CrossRef]

2003 (1)

L. T. Maloney and J. N. Yang, “Maximum likelihood difference scaling,” J. Vision 3(8):5, 573–585 (2003).
[CrossRef]

2001 (1)

B. Pinna, G. Brelstaff, and L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vis. Res. 41, 2669–2676 (2001).
[CrossRef]

1984 (1)

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

1980 (1)

1972 (1)

C. T. Zahn and R. Z. Roskies, “Fourier descriptors for plane close curves,” IEEE Trans. Comput. C-21, 269–281 (1972).
[CrossRef]

1968 (1)

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).

Brelstaff, G.

B. Pinna, G. Brelstaff, and L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vis. Res. 41, 2669–2676 (2001).
[CrossRef]

Campbell, F. W.

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).

Cao, B.

B. Cao, A. Yazdanbakhsh, and E. Mingolla, “The effect of contrast intensity and polarity in the achromatic watercolor effect,” J. Vision 11(3):18, 1–8 (2011).

Delahunt, P. B.

F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vision 6(5):7, 625–633 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005).
[CrossRef]

Derrington, A. M.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Devinck, F.

F. Devinck and K. Knoblauch, “A common signal detection model accounts for both perception and discrimination of the watercolor effect,” J. Vision 12(3):19, 425–428 (2012).
[CrossRef]

P. Gerardin, M. Dojat, F. Devinck, and K. Knoblauch, “Effects of contour frequency and amplitude on the strength of the watercolor effect,” Perception 41, ECVP Abstract Suppl., 18 (2012).
[CrossRef]

F. Devinck and L. Spillmann, “The watercolor effect: spacing constraints,” Vis. Res. 49, 2911–2917 (2009).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006).
[CrossRef]

F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vision 6(5):7, 625–633 (2006).
[CrossRef]

F. Devinck, L. Spillmann, and J. S. Werner, “Spatial profile of contours inducing long-range color assimilation,” Vis. Neurosci. 23, 573–577 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005).
[CrossRef]

Dojat, M.

P. Gerardin, M. Dojat, F. Devinck, and K. Knoblauch, “Effects of contour frequency and amplitude on the strength of the watercolor effect,” Perception 41, ECVP Abstract Suppl., 18 (2012).
[CrossRef]

Foley, J. M.

Gerardin, P.

P. Gerardin, M. Dojat, F. Devinck, and K. Knoblauch, “Effects of contour frequency and amplitude on the strength of the watercolor effect,” Perception 41, ECVP Abstract Suppl., 18 (2012).
[CrossRef]

Grossberg, S.

Hardy, J. L.

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006).
[CrossRef]

F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vision 6(5):7, 625–633 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005).
[CrossRef]

Hawken, M. J.

R. Shapley and M. J. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res. 51, 701–717 (2011).
[CrossRef]

Knoblauch, K.

P. Gerardin, M. Dojat, F. Devinck, and K. Knoblauch, “Effects of contour frequency and amplitude on the strength of the watercolor effect,” Perception 41, ECVP Abstract Suppl., 18 (2012).
[CrossRef]

F. Devinck and K. Knoblauch, “A common signal detection model accounts for both perception and discrimination of the watercolor effect,” J. Vision 12(3):19, 425–428 (2012).
[CrossRef]

K. Knoblauch and L. T. Maloney, “MLDS: maximum likelihood difference scaling in R,” J. Stat. Softw. 25, 1–26 (2008).

K. Knoblauch and L. T. Maloney, Modeling Psychophysical Data in R (Springer, 2012).

Krauskopf, J.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Legge, G. E.

Lennie, P.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Maloney, L. T.

K. Knoblauch and L. T. Maloney, “MLDS: maximum likelihood difference scaling in R,” J. Stat. Softw. 25, 1–26 (2008).

L. T. Maloney and J. N. Yang, “Maximum likelihood difference scaling,” J. Vision 3(8):5, 573–585 (2003).
[CrossRef]

K. Knoblauch and L. T. Maloney, Modeling Psychophysical Data in R (Springer, 2012).

Mingolla, E.

B. Cao, A. Yazdanbakhsh, and E. Mingolla, “The effect of contrast intensity and polarity in the achromatic watercolor effect,” J. Vision 11(3):18, 1–8 (2011).

Pierson, R.

R. Von der Heydt and R. Pierson, “Dissociation of color and figure-ground effects in the watercolor illusion,” Spatial Vis. 19, 323–340 (2006).
[CrossRef]

Pinna, B.

B. Pinna and S. Grossberg, “The watercolor illusion and neon color spreading: a unified analysis of new cases and neural mechanisms,” J. Opt. Soc. Am. A 22, 2207–2221 (2005).
[CrossRef]

B. Pinna, G. Brelstaff, and L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vis. Res. 41, 2669–2676 (2001).
[CrossRef]

B. Pinna, “Un effeto di colorazione,” in Il laboratorio e la citt. XXI Congresso degli Psicologi Italiani, V. Majer and M. Santinello, eds. (Società Italiana di Psicologia, 1987), p. 158.

Robson, J. G.

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).

Roskies, R. Z.

C. T. Zahn and R. Z. Roskies, “Fourier descriptors for plane close curves,” IEEE Trans. Comput. C-21, 269–281 (1972).
[CrossRef]

Shapley, R.

R. Shapley and M. J. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res. 51, 701–717 (2011).
[CrossRef]

Spillmann, L.

F. Devinck and L. Spillmann, “The watercolor effect: spacing constraints,” Vis. Res. 49, 2911–2917 (2009).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006).
[CrossRef]

F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vision 6(5):7, 625–633 (2006).
[CrossRef]

F. Devinck, L. Spillmann, and J. S. Werner, “Spatial profile of contours inducing long-range color assimilation,” Vis. Neurosci. 23, 573–577 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005).
[CrossRef]

B. Pinna, G. Brelstaff, and L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vis. Res. 41, 2669–2676 (2001).
[CrossRef]

Von der Heydt, R.

R. Von der Heydt and R. Pierson, “Dissociation of color and figure-ground effects in the watercolor illusion,” Spatial Vis. 19, 323–340 (2006).
[CrossRef]

Werner, J. S.

F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vision 6(5):7, 625–633 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006).
[CrossRef]

F. Devinck, L. Spillmann, and J. S. Werner, “Spatial profile of contours inducing long-range color assimilation,” Vis. Neurosci. 23, 573–577 (2006).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005).
[CrossRef]

Yang, J. N.

L. T. Maloney and J. N. Yang, “Maximum likelihood difference scaling,” J. Vision 3(8):5, 573–585 (2003).
[CrossRef]

Yazdanbakhsh, A.

B. Cao, A. Yazdanbakhsh, and E. Mingolla, “The effect of contrast intensity and polarity in the achromatic watercolor effect,” J. Vision 11(3):18, 1–8 (2011).

Zahn, C. T.

C. T. Zahn and R. Z. Roskies, “Fourier descriptors for plane close curves,” IEEE Trans. Comput. C-21, 269–281 (1972).
[CrossRef]

IEEE Trans. Comput. (1)

C. T. Zahn and R. Z. Roskies, “Fourier descriptors for plane close curves,” IEEE Trans. Comput. C-21, 269–281 (1972).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Physiol. (2)

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

J. Stat. Softw. (1)

K. Knoblauch and L. T. Maloney, “MLDS: maximum likelihood difference scaling in R,” J. Stat. Softw. 25, 1–26 (2008).

J. Vision (4)

L. T. Maloney and J. N. Yang, “Maximum likelihood difference scaling,” J. Vision 3(8):5, 573–585 (2003).
[CrossRef]

F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vision 6(5):7, 625–633 (2006).
[CrossRef]

B. Cao, A. Yazdanbakhsh, and E. Mingolla, “The effect of contrast intensity and polarity in the achromatic watercolor effect,” J. Vision 11(3):18, 1–8 (2011).

F. Devinck and K. Knoblauch, “A common signal detection model accounts for both perception and discrimination of the watercolor effect,” J. Vision 12(3):19, 425–428 (2012).
[CrossRef]

Perception (2)

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006).
[CrossRef]

P. Gerardin, M. Dojat, F. Devinck, and K. Knoblauch, “Effects of contour frequency and amplitude on the strength of the watercolor effect,” Perception 41, ECVP Abstract Suppl., 18 (2012).
[CrossRef]

Spatial Vis. (1)

R. Von der Heydt and R. Pierson, “Dissociation of color and figure-ground effects in the watercolor illusion,” Spatial Vis. 19, 323–340 (2006).
[CrossRef]

Vis. Neurosci. (1)

F. Devinck, L. Spillmann, and J. S. Werner, “Spatial profile of contours inducing long-range color assimilation,” Vis. Neurosci. 23, 573–577 (2006).
[CrossRef]

Vis. Res. (4)

B. Pinna, G. Brelstaff, and L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vis. Res. 41, 2669–2676 (2001).
[CrossRef]

F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005).
[CrossRef]

F. Devinck and L. Spillmann, “The watercolor effect: spacing constraints,” Vis. Res. 49, 2911–2917 (2009).
[CrossRef]

R. Shapley and M. J. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res. 51, 701–717 (2011).
[CrossRef]

Other (3)

R Development Core Team, “R: A Language and Environment for Statistical Computing” (R Foundation for Statistical Computing, Vienna, , 2011). http://www.R-project.org/ .

B. Pinna, “Un effeto di colorazione,” in Il laboratorio e la citt. XXI Congresso degli Psicologi Italiani, V. Majer and M. Santinello, eds. (Società Italiana di Psicologia, 1987), p. 158.

K. Knoblauch and L. T. Maloney, Modeling Psychophysical Data in R (Springer, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Example of the WCE with the lighter interior orange contour filling-in on the left and right regions but not in the center, (b) example of Fourier descriptor used as test stimulus in experiment, and (c) example of braided contour used as a control.

Fig. 2.
Fig. 2.

Schematic representation of the stimulus configuration for a trial. Here, the contours are displayed as gray levels, but in the actual experiments they were in color. Observers judged whether stimulus b was more similar to a or c . The letters did not appear in the actual experiment.

Fig. 3.
Fig. 3.

Mean difference scales in units of d as a function of the luminance elevation of the interior, orange contour, parameterized by the width of the contour pair (legend on right). Each column shows the results from one observer, with initials indicated in the top strip. The top row shows the results for the test stimulus and the bottom for the control.

Fig. 4.
Fig. 4.

(a) Mean difference scales for the five widths tested for each observer with the fitted curves from Eq. 2 as dashed curves and (b) mean difference scales across observers for each contour width. Error bars of ± 1 SEM are used here and in subsequent figures to minimize overlap between points from different conditions. The solid curves are the best fits of Eq. 2.

Fig. 5.
Fig. 5.

(a) Points and dashed lines indicate the estimated strength of the WCE at a criterion luminance elevation as a function of contour width for individual observers. The solid curve is an average obtained from a local regression algorithm and (b) the same data as in panel a but replotted as a function of the spatial frequency of the double contour inducing the WCE (1/width). The meaning of the points and curves is the same as in panel a .

Fig. 6.
Fig. 6.

Average response functions for three observers for each of three ratios of the purple and orange ribbons of the WCE inducing contour. The error bars show ± 1 SEM. The line color and type corresponding to each ratio is indicated in the legend above the graph. The numbers in the legend indicate the inner to outer width ratio.

Fig. 7.
Fig. 7.

Average response functions for three observers for different combinations of contour width and diameter of the circle whose contour was modulated to generate the stimulus. Each panel corresponds to a different contour width, indicated at the top. The color codes for the diameters (or size) of the stimulus are shown in the legend in the first panel. The error bars correspond to ± 1 SEM.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R ( θ ) = r + m sin ( 2 π f θ ) ,
R ( L ) = R m L n L n + ς n ,

Metrics